1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/* Copyright 2017 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
#include "compound_dictionary.h"
#include "../common/platform.h"
#include <brotli/types.h>
#include "memory.h"
#include "quality.h"
static PreparedDictionary* CreatePreparedDictionaryWithParams(MemoryManager* m,
const uint8_t* source, size_t source_size, uint32_t bucket_bits,
uint32_t slot_bits, uint32_t hash_bits, uint16_t bucket_limit) {
/* Step 1: create "bloated" hasher. */
uint32_t num_slots = 1u << slot_bits;
uint32_t num_buckets = 1u << bucket_bits;
uint32_t hash_shift = 64u - bucket_bits;
uint64_t hash_mask = (~((uint64_t)0U)) >> (64 - hash_bits);
uint32_t slot_mask = num_slots - 1;
size_t alloc_size = (sizeof(uint32_t) << slot_bits) +
(sizeof(uint32_t) << slot_bits) +
(sizeof(uint16_t) << bucket_bits) +
(sizeof(uint32_t) << bucket_bits) +
(sizeof(uint32_t) * source_size);
uint8_t* flat = NULL;
PreparedDictionary* result = NULL;
uint16_t* num = NULL;
uint32_t* bucket_heads = NULL;
uint32_t* next_bucket = NULL;
uint32_t* slot_offsets = NULL;
uint16_t* heads = NULL;
uint32_t* items = NULL;
uint8_t* source_copy = NULL;
uint32_t i;
uint32_t* slot_size = NULL;
uint32_t* slot_limit = NULL;
uint32_t total_items = 0;
if (slot_bits > 16) return NULL;
if (slot_bits > bucket_bits) return NULL;
if (bucket_bits - slot_bits >= 16) return NULL;
flat = BROTLI_ALLOC(m, uint8_t, alloc_size);
if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(flat)) return NULL;
slot_size = (uint32_t*)flat;
slot_limit = (uint32_t*)(&slot_size[num_slots]);
num = (uint16_t*)(&slot_limit[num_slots]);
bucket_heads = (uint32_t*)(&num[num_buckets]);
next_bucket = (uint32_t*)(&bucket_heads[num_buckets]);
memset(num, 0, num_buckets * sizeof(num[0]));
/* TODO(eustas): apply custom "store" order. */
for (i = 0; i + 7 < source_size; ++i) {
const uint64_t h = (BROTLI_UNALIGNED_LOAD64LE(&source[i]) & hash_mask) *
kPreparedDictionaryHashMul64Long;
const uint32_t key = (uint32_t)(h >> hash_shift);
uint16_t count = num[key];
next_bucket[i] = (count == 0) ? ((uint32_t)(-1)) : bucket_heads[key];
bucket_heads[key] = i;
count++;
if (count > bucket_limit) count = bucket_limit;
num[key] = count;
}
/* Step 2: find slot limits. */
for (i = 0; i < num_slots; ++i) {
BROTLI_BOOL overflow = BROTLI_FALSE;
slot_limit[i] = bucket_limit;
while (BROTLI_TRUE) {
uint32_t limit = slot_limit[i];
size_t j;
uint32_t count = 0;
overflow = BROTLI_FALSE;
for (j = i; j < num_buckets; j += num_slots) {
uint32_t size = num[j];
/* Last chain may span behind 64K limit; overflow happens only if
we are about to use 0xFFFF+ as item offset. */
if (count >= 0xFFFF) {
overflow = BROTLI_TRUE;
break;
}
if (size > limit) size = limit;
count += size;
}
if (!overflow) {
slot_size[i] = count;
total_items += count;
break;
}
slot_limit[i]--;
}
}
/* Step 3: transfer data to "slim" hasher. */
alloc_size = sizeof(PreparedDictionary) + (sizeof(uint32_t) << slot_bits) +
(sizeof(uint16_t) << bucket_bits) + (sizeof(uint32_t) * total_items) +
source_size;
result = (PreparedDictionary*)BROTLI_ALLOC(m, uint8_t, alloc_size);
if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(result)) {
BROTLI_FREE(m, flat);
return NULL;
}
slot_offsets = (uint32_t*)(&result[1]);
heads = (uint16_t*)(&slot_offsets[num_slots]);
items = (uint32_t*)(&heads[num_buckets]);
source_copy = (uint8_t*)(&items[total_items]);
result->magic = kPreparedDictionaryMagic;
result->source_offset = total_items;
result->source_size = (uint32_t)source_size;
result->hash_bits = hash_bits;
result->bucket_bits = bucket_bits;
result->slot_bits = slot_bits;
total_items = 0;
for (i = 0; i < num_slots; ++i) {
slot_offsets[i] = total_items;
total_items += slot_size[i];
slot_size[i] = 0;
}
for (i = 0; i < num_buckets; ++i) {
uint32_t slot = i & slot_mask;
uint32_t count = num[i];
uint32_t pos;
size_t j;
size_t cursor = slot_size[slot];
if (count > slot_limit[slot]) count = slot_limit[slot];
if (count == 0) {
heads[i] = 0xFFFF;
continue;
}
heads[i] = (uint16_t)cursor;
cursor += slot_offsets[slot];
slot_size[slot] += count;
pos = bucket_heads[i];
for (j = 0; j < count; j++) {
items[cursor++] = pos;
pos = next_bucket[pos];
}
items[cursor - 1] |= 0x80000000;
}
BROTLI_FREE(m, flat);
memcpy(source_copy, source, source_size);
return result;
}
PreparedDictionary* CreatePreparedDictionary(MemoryManager* m,
const uint8_t* source, size_t source_size) {
uint32_t bucket_bits = 17;
uint32_t slot_bits = 7;
uint32_t hash_bits = 40;
uint16_t bucket_limit = 32;
size_t volume = 16u << bucket_bits;
/* Tune parameters to fit dictionary size. */
while (volume < source_size && bucket_bits < 22) {
bucket_bits++;
slot_bits++;
volume <<= 1;
}
return CreatePreparedDictionaryWithParams(m,
source, source_size, bucket_bits, slot_bits, hash_bits, bucket_limit);
}
void DestroyPreparedDictionary(MemoryManager* m,
PreparedDictionary* dictionary) {
if (!dictionary) return;
BROTLI_FREE(m, dictionary);
}
BROTLI_BOOL AttachPreparedDictionary(
CompoundDictionary* compound, const PreparedDictionary* dictionary) {
size_t length = 0;
size_t index = 0;
if (compound->num_chunks == SHARED_BROTLI_MAX_COMPOUND_DICTS) {
return BROTLI_FALSE;
}
if (!dictionary) return BROTLI_FALSE;
length = dictionary->source_size;
index = compound->num_chunks;
compound->total_size += length;
compound->chunks[index] = dictionary;
compound->chunk_offsets[index + 1] = compound->total_size;
{
uint32_t* slot_offsets = (uint32_t*)(&dictionary[1]);
uint16_t* heads = (uint16_t*)(&slot_offsets[1u << dictionary->slot_bits]);
uint32_t* items = (uint32_t*)(&heads[1u << dictionary->bucket_bits]);
compound->chunk_source[index] =
(const uint8_t*)(&items[dictionary->source_offset]);
}
compound->num_chunks++;
return BROTLI_TRUE;
}
|