1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
/*
Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package tensorflow
/*
#include <stdlib.h>
#include <string.h>
#include "tensorflow/c/c_api.h"
void toNewTString(_GoString_ gstr, TF_TString *tstr) {
TF_TString_Init(tstr);
TF_TString_Copy(tstr, _GoStringPtr(gstr), _GoStringLen(gstr));
}
*/
import "C"
import (
"bytes"
"fmt"
"io"
"math/bits"
"reflect"
"runtime"
"unsafe"
)
// DataType holds the type for a scalar value. E.g., one slot in a tensor.
type DataType C.TF_DataType
// Types of scalar values in the TensorFlow type system.
const (
Float DataType = C.TF_FLOAT
Double DataType = C.TF_DOUBLE
Int32 DataType = C.TF_INT32
Uint32 DataType = C.TF_UINT32
Uint8 DataType = C.TF_UINT8
Int16 DataType = C.TF_INT16
Int8 DataType = C.TF_INT8
String DataType = C.TF_STRING
Complex64 DataType = C.TF_COMPLEX64
Complex DataType = C.TF_COMPLEX
Int64 DataType = C.TF_INT64
Uint64 DataType = C.TF_UINT64
Bool DataType = C.TF_BOOL
Qint8 DataType = C.TF_QINT8
Quint8 DataType = C.TF_QUINT8
Qint32 DataType = C.TF_QINT32
Bfloat16 DataType = C.TF_BFLOAT16
Qint16 DataType = C.TF_QINT16
Quint16 DataType = C.TF_QUINT16
Uint16 DataType = C.TF_UINT16
Complex128 DataType = C.TF_COMPLEX128
Half DataType = C.TF_HALF
Float8e5m2 DataType = C.TF_FLOAT8_E5M2
Float8e4m3fn DataType = C.TF_FLOAT8_E4M3FN
Int4 DataType = C.TF_INT4
Uint4 DataType = C.TF_UINT4
)
// Tensor holds a multi-dimensional array of elements of a single data type.
type Tensor struct {
c *C.TF_Tensor
shape []int64
}
// NewTensor converts from a Go value to a Tensor. Valid values are scalars,
// slices, and arrays. Every element of a slice must have the same length so
// that the resulting Tensor has a valid shape.
func NewTensor(value any) (*Tensor, error) {
val := reflect.ValueOf(value)
shape, dataType, err := shapeAndDataTypeOf(val)
if err != nil {
return nil, err
}
nflattened := numElements(shape)
nbytes := TypeOf(dataType, nil).Size() * uintptr(nflattened)
if dataType == String {
nbytes = uintptr(nflattened) * C.sizeof_TF_TString
}
var shapePtr *C.int64_t
if len(shape) > 0 {
shapePtr = (*C.int64_t)(unsafe.Pointer(&shape[0]))
}
t := &Tensor{
c: C.TF_AllocateTensor(C.TF_DataType(dataType), shapePtr, C.int(len(shape)), C.size_t(nbytes)),
shape: shape,
}
raw := tensorData(t.c)
runtime.SetFinalizer(t, (*Tensor).finalize)
buf := bytes.NewBuffer(raw[:0:len(raw)])
if isAllArray(val.Type()) {
// We have arrays all the way down, or just primitive types. We can
// just copy the memory in as it is all contiguous.
if _, err := copyPtr(buf, unpackEFace(value).data, int(val.Type().Size())); err != nil {
return nil, err
}
} else {
// When there are slices involved the memory for each leaf slice may
// not be contiguous with the others or in the order we might
// expect, so we need to work our way down to each slice of
// primitives and copy them individually
if _, err := encodeTensorWithSlices(buf, val, shape); err != nil {
return nil, err
}
}
if uintptr(buf.Len()) != nbytes {
return nil, bug("NewTensor incorrectly calculated the size of a tensor with type %v and shape %v as %v bytes instead of %v", dataType, shape, nbytes, buf.Len())
}
return t, nil
}
// isAllArray returns true if type is a primitive type or an array of primitive
// types or an array of ... etc.. When this is true the data we want is
// contiguous in RAM.
func isAllArray(typ reflect.Type) bool {
switch typ.Kind() {
case reflect.String:
return false
case reflect.Slice:
return false
case reflect.Array:
return isAllArray(typ.Elem())
default:
// We know the type is slices/arrays of slices/arrays of primitive types.
return true
}
}
// eface defines what an interface type actually is: a pointer to type
// information about the encapsulated type and a pointer to the encapsulated
// value.
type eface struct {
rtype unsafe.Pointer
data unsafe.Pointer
}
// unpackEFace gives us an effient way to get us a pointer to the value carried
// in an interface. If you wrap a pointer type in an interface then the pointer
// is directly stored in the interface struct. If you wrap a value type in an
// interface then the compiler copies the value into a newly allocated piece of
// memory and stores a pointer to that memory in the interface. So we're
// guaranteed to get a pointer. Go reflection doesn't expose the pointer to
// value types straightforwardly as it doesn't want you to think you have a
// reference to the original value. But we just want a pointer to make it
// efficient to read the value, so cheating like this should be safe and
// reasonable.
func unpackEFace(obj any) *eface {
return (*eface)(unsafe.Pointer(&obj))
}
// ReadTensor constructs a Tensor with the provided type and shape from the
// serialized tensor contents in r.
//
// See also WriteContentsTo.
func ReadTensor(dataType DataType, shape []int64, r io.Reader) (*Tensor, error) {
if err := isTensorSerializable(dataType); err != nil {
return nil, err
}
var shapePtr *C.int64_t
if len(shape) > 0 {
for _, dim := range shape {
if dim < 0 {
return nil, fmt.Errorf("all shape dimentions should be non-negative: %v", shape)
}
}
shapePtr = (*C.int64_t)(unsafe.Pointer(&shape[0]))
}
nbytes := TypeOf(dataType, nil).Size() * uintptr(numElements(shape))
t := &Tensor{
c: C.TF_AllocateTensor(C.TF_DataType(dataType), shapePtr, C.int(len(shape)), C.size_t(nbytes)),
shape: shape,
}
runtime.SetFinalizer(t, (*Tensor).finalize)
raw := tensorData(t.c)
if _, err := io.ReadFull(r, raw); err != nil {
return nil, err
}
return t, nil
}
// newTensorFromC takes ownership of c and returns the owning Tensor.
func newTensorFromC(c *C.TF_Tensor) *Tensor {
var shape []int64
if ndims := int(C.TF_NumDims(c)); ndims > 0 {
shape = make([]int64, ndims)
}
for i := range shape {
shape[i] = int64(C.TF_Dim(c, C.int(i)))
}
t := &Tensor{c: c, shape: shape}
runtime.SetFinalizer(t, (*Tensor).finalize)
return t
}
func (t *Tensor) finalize() { C.TF_DeleteTensor(t.c) }
// DataType returns the scalar datatype of the Tensor.
func (t *Tensor) DataType() DataType { return DataType(C.TF_TensorType(t.c)) }
// Shape returns the shape of the Tensor.
func (t *Tensor) Shape() []int64 { return t.shape }
// Reshape updates tensor's shape in place if this is possible or returns an error otherwise.
func (t *Tensor) Reshape(newShape []int64) error {
oldShapeSize := numElements(t.shape)
newShapeSize := numElements(newShape)
if oldShapeSize != newShapeSize {
return fmt.Errorf("unable to convert shape %v (num_elements: %d) into shape %v (num_elements: %d)", t.shape, oldShapeSize, newShape, newShapeSize)
}
if len(newShape) == 0 {
return nil
}
var shapePtr *C.int64_t
shapePtr = (*C.int64_t)(unsafe.Pointer(&newShape[0]))
status := newStatus()
C.TF_TensorBitcastFrom(t.c, C.TF_TensorType(t.c), t.c, shapePtr, C.int(len(newShape)), status.c)
if err := status.Err(); err != nil {
return err
}
t.shape = newShape
return nil
}
// Value converts the Tensor to a Go value. For now, not all Tensor types are
// supported, and this function may panic if it encounters an unsupported
// DataType.
//
// The type of the output depends on the Tensor type and dimensions.
// For example:
// Tensor(int64, 0): int64
// Tensor(float64, 3): [][][]float64
func (t *Tensor) Value() any {
raw := tensorData(t.c)
shape := t.Shape()
dt := t.DataType()
return decodeTensor(raw, shape, dt).Interface()
}
func decodeTensor(raw []byte, shape []int64, dt DataType) reflect.Value {
// Create a 1-dimensional slice of the base large enough for the data and
// copy the data in.
n := int(numElements(shape))
var (
slice reflect.Value
typ reflect.Type
)
if dt == String {
strs, err := decodeOneDimString(raw, n)
if err != nil {
panic(bug("unable to decode string with shape %v: %v", shape, err))
}
slice = reflect.ValueOf(strs)
typ = slice.Type()
} else {
typ = typeForDataType(dt)
l := n * int(typ.Size())
typ = reflect.SliceOf(typ)
slice = reflect.MakeSlice(typ, n, n)
baseBytes := *(*[]byte)(unsafe.Pointer(&sliceHeader{
Data: unsafe.Pointer(slice.Pointer()),
Len: l,
Cap: l,
}))
copy(baseBytes, raw)
}
// Now we have the data in place in the base slice we can add the
// dimensions. We want to walk backwards through the shape. If the shape is
// length 1 or 0 then we're already done.
if len(shape) == 0 {
return slice.Index(0)
}
if len(shape) == 1 {
return slice
}
// We have a special case if the tensor has no data. Our backing slice is
// empty, but we still want to create slices following the shape. In this
// case only the final part of the shape will be 0 and we want to recalculate
// n at this point ignoring that 0.
// For example if our shape is 3 * 2 * 0 then n will be zero, but we still
// want 6 zero length slices to group as follows.
// {{} {}} {{} {}} {{} {}}
if n == 0 {
n = int(numElements(shape[:len(shape)-1]))
}
for i := len(shape) - 2; i >= 0; i-- {
underlyingSize := typ.Elem().Size()
typ = reflect.SliceOf(typ)
subsliceLen := int(shape[i+1])
if subsliceLen != 0 {
n = n / subsliceLen
}
// Just using reflection it is difficult to avoid unnecessary
// allocations while setting up the sub-slices as the Slice function on
// a slice Value allocates. So we end up doing pointer arithmetic!
// Pointer() on a slice gives us access to the data backing the slice.
// We insert slice headers directly into this data.
data := unsafe.Pointer(slice.Pointer())
nextSlice := reflect.MakeSlice(typ, n, n)
for j := 0; j < n; j++ {
// This is equivalent to nSlice[j] = slice[j*subsliceLen: (j+1)*subsliceLen]
setSliceInSlice(nextSlice, j, sliceHeader{
Data: unsafe.Pointer(uintptr(data) + (uintptr(j*subsliceLen) * underlyingSize)),
Len: subsliceLen,
Cap: subsliceLen,
})
}
slice = nextSlice
}
return slice
}
// setSliceInSlice sets slice[index] = content.
func setSliceInSlice(slice reflect.Value, index int, content sliceHeader) {
const sliceSize = unsafe.Sizeof(sliceHeader{})
// We must cast slice.Pointer to uninptr & back again to avoid GC issues.
// See https://github.com/google/go-cmp/issues/167#issuecomment-546093202
*(*sliceHeader)(unsafe.Pointer(uintptr(unsafe.Pointer(slice.Pointer())) + (uintptr(index) * sliceSize))) = content
}
// decodeOneDimString decodes a string tensor into a one-dimensional []string.
func decodeOneDimString(raw []byte, nStrings int) ([]string, error) {
strs := make([]string, nStrings)
tstrs := (*(*[]C.TF_TString)(unsafe.Pointer(&raw)))[:nStrings]
for i, tstr := range tstrs {
dst := C.TF_TString_GetDataPointer(&tstr)
dstLen := C.TF_TString_GetSize(&tstr)
strs[i] = C.GoStringN(dst, C.int(dstLen))
}
return strs, nil
}
// WriteContentsTo writes the serialized contents of t to w.
//
// Returns the number of bytes written. See ReadTensor for
// reconstructing a Tensor from the serialized form.
//
// WARNING: WriteContentsTo is not comprehensive and will fail
// if t.DataType() is non-numeric (e.g., String). See
// https://github.com/tensorflow/tensorflow/issues/6003.
func (t *Tensor) WriteContentsTo(w io.Writer) (int64, error) {
if err := isTensorSerializable(t.DataType()); err != nil {
return 0, err
}
return io.Copy(w, bytes.NewReader(tensorData(t.c)))
}
func tensorData(c *C.TF_Tensor) []byte {
// See: https://github.com/golang/go/wiki/cgo#turning-c-arrays-into-go-slices
cbytes := C.TF_TensorData(c)
if cbytes == nil {
return nil
}
length := int(C.TF_TensorByteSize(c))
var slice []byte
if unsafe.Sizeof(unsafe.Pointer(nil)) == 8 {
slice = (*[1<<50 - 1]byte)(unsafe.Pointer(cbytes))[:length:length]
} else {
slice = (*[1 << 30]byte)(unsafe.Pointer(cbytes))[:length:length]
}
return slice
}
var types = []struct {
typ reflect.Type
dataType C.TF_DataType
}{
{reflect.TypeOf(float32(0)), C.TF_FLOAT},
{reflect.TypeOf(float64(0)), C.TF_DOUBLE},
{reflect.TypeOf(int32(0)), C.TF_INT32},
{reflect.TypeOf(uint32(0)), C.TF_UINT32},
{reflect.TypeOf(uint8(0)), C.TF_UINT8},
{reflect.TypeOf(int16(0)), C.TF_INT16},
{reflect.TypeOf(int8(0)), C.TF_INT8},
{reflect.TypeOf(""), C.TF_STRING},
{reflect.TypeOf(complex(float32(0), float32(0))), C.TF_COMPLEX64},
{reflect.TypeOf(int64(0)), C.TF_INT64},
{reflect.TypeOf(uint64(0)), C.TF_UINT64},
{reflect.TypeOf(false), C.TF_BOOL},
{reflect.TypeOf(uint16(0)), C.TF_UINT16},
{reflect.TypeOf(complex(float64(0), float64(0))), C.TF_COMPLEX128},
// TODO(apassos): support DT_RESOURCE representation in go.
// TODO(keveman): support DT_VARIANT representation in go.
}
// shapeAndDataTypeOf returns the data type and shape of the Tensor
// corresponding to a Go type.
func shapeAndDataTypeOf(val reflect.Value) (shape []int64, dt DataType, err error) {
typ := val.Type()
for typ.Kind() == reflect.Array || typ.Kind() == reflect.Slice {
shape = append(shape, int64(val.Len()))
// If slice elements are slices, verify that all of them have the same size.
// Go's type system makes that guarantee for arrays.
if val.Len() > 0 {
if val.Type().Elem().Kind() == reflect.Slice {
expected := val.Index(0).Len()
for i := 1; i < val.Len(); i++ {
if val.Index(i).Len() != expected {
return shape, dt, fmt.Errorf("mismatched slice lengths: %d and %d", val.Index(i).Len(), expected)
}
}
}
val = val.Index(0)
}
typ = typ.Elem()
}
for _, t := range types {
if typ.Kind() == t.typ.Kind() {
return shape, DataType(t.dataType), nil
}
}
return shape, dt, fmt.Errorf("unsupported type %v", typ)
}
func typeForDataType(dt DataType) reflect.Type {
for _, t := range types {
if dt == DataType(t.dataType) {
return t.typ
}
}
panic(bug("DataType %v is not supported (see https://www.tensorflow.org/code/tensorflow/core/framework/types.proto)", dt))
}
// TypeOf converts from a DataType and Shape to the equivalent Go type.
func TypeOf(dt DataType, shape []int64) reflect.Type {
ret := typeForDataType(dt)
for range shape {
ret = reflect.SliceOf(ret)
}
return ret
}
func numElements(shape []int64) int64 {
n := int64(1)
for _, d := range shape {
n *= d
}
return n
}
// sizeVarUint determines how many bytes it would take to encode the int v as
// an unsigned varint
func sizeVarUint(v uint64) int {
if v < 0x80 {
return 1
}
bits := bits.Len64(v)
return (bits + 6) / 7
}
// encodeTensorWithSlices writes v to the specified buffer using the format specified in
// c_api.h. Use stringEncoder for String tensors.
func encodeTensorWithSlices(w *bytes.Buffer, v reflect.Value, shape []int64) (int, error) {
// If current dimension is a slice, verify that it has the expected size
// Go's type system makes that guarantee for arrays.
if v.Kind() == reflect.Slice {
expected := int(shape[0])
if v.Len() != expected {
return 0, fmt.Errorf("mismatched slice lengths: %d and %d", v.Len(), expected)
}
} else if v.Kind() == reflect.String {
s := v.Interface().(string)
var tstr C.TF_TString
C.toNewTString(s, &tstr)
ptr := unsafe.Pointer(&tstr)
return copyPtr(w, ptr, C.sizeof_TF_TString)
} else if v.Kind() != reflect.Array {
return 0, fmt.Errorf("unsupported type %v", v.Type())
}
// Once we have just a single dimension we can just copy the data
if len(shape) == 1 && v.Len() > 0 && v.Index(0).Kind() != reflect.String {
elt := v.Index(0)
if !elt.CanAddr() {
panic("cannot take address")
}
ptr := unsafe.Pointer(elt.Addr().Pointer())
return copyPtr(w, ptr, v.Len()*int(elt.Type().Size()))
}
n := 0
subShape := shape[1:]
for i := 0; i < v.Len(); i++ {
j, err := encodeTensorWithSlices(w, v.Index(i), subShape)
if err != nil {
return n + j, err
}
n += j
}
return n, nil
}
// It isn't safe to use reflect.SliceHeader as it uses a uintptr for Data and
// this is not inspected by the garbage collector
type sliceHeader struct {
Data unsafe.Pointer
Len int
Cap int
}
// copyPtr copies the backing data for a slice or array directly into w. Note
// we don't need to worry about byte ordering because we want the natural byte
// order for the machine we're running on.
func copyPtr(w *bytes.Buffer, ptr unsafe.Pointer, l int) (int, error) {
// Convert our slice header into a []byte so we can call w.Write
b := *(*[]byte)(unsafe.Pointer(&sliceHeader{
Data: ptr,
Len: l,
Cap: l,
}))
return w.Write(b)
}
func bug(format string, args ...any) error {
return fmt.Errorf("BUG: Please report at https://github.com/tensorflow/tensorflow/issues with the note: Go TensorFlow %v: %v", Version(), fmt.Sprintf(format, args...))
}
func isTensorSerializable(dataType DataType) error {
// For numeric types, the serialized Tensor matches the in-memory
// representation. See the implementation of Tensor::AsProtoContent in
// https://www.tensorflow.org/code/tensorflow/core/framework/tensor.cc
//
// The more appropriate way to be in sync with Tensor::AsProtoContent
// would be to have the TensorFlow C library export functions for
// serialization and deserialization of Tensors. Till then capitalize
// on knowledge of the implementation for numeric types.
switch dataType {
case Float, Double, Int32, Uint8, Int16, Int8, Complex, Int64, Bool, Quint8, Qint32, Bfloat16, Qint16, Quint16, Uint16, Complex128, Half, Float8e5m2, Float8e4m3fn, Int4, Uint4:
return nil
default:
return fmt.Errorf("serialization of tensors with the DataType %d is not yet supported, see https://github.com/tensorflow/tensorflow/issues/6003", dataType)
}
}
|