1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_queue_libevent.h"
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdint.h>
#include <time.h>
#include <unistd.h>
#include <list>
#include <memory>
#include <type_traits>
#include <utility>
#include "absl/container/inlined_vector.h"
#include "absl/functional/any_invocable.h"
#include "absl/strings/string_view.h"
#include "api/task_queue/task_queue_base.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/platform_thread.h"
#include "rtc_base/platform_thread_types.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/time_utils.h"
#include <event.h>
namespace webrtc {
namespace {
constexpr char kQuit = 1;
constexpr char kRunTasks = 2;
using Priority = TaskQueueFactory::Priority;
// This ignores the SIGPIPE signal on the calling thread.
// This signal can be fired when trying to write() to a pipe that's being
// closed or while closing a pipe that's being written to.
// We can run into that situation so we ignore this signal and continue as
// normal.
// As a side note for this implementation, it would be great if we could safely
// restore the sigmask, but unfortunately the operation of restoring it, can
// itself actually cause SIGPIPE to be signaled :-| (e.g. on MacOS)
// The SIGPIPE signal by default causes the process to be terminated, so we
// don't want to risk that.
// An alternative to this approach is to ignore the signal for the whole
// process:
// signal(SIGPIPE, SIG_IGN);
void IgnoreSigPipeSignalOnCurrentThread() {
sigset_t sigpipe_mask;
sigemptyset(&sigpipe_mask);
sigaddset(&sigpipe_mask, SIGPIPE);
pthread_sigmask(SIG_BLOCK, &sigpipe_mask, nullptr);
}
bool SetNonBlocking(int fd) {
const int flags = fcntl(fd, F_GETFL);
RTC_CHECK(flags != -1);
return (flags & O_NONBLOCK) || fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1;
}
// TODO(tommi): This is a hack to support two versions of libevent that we're
// compatible with. The method we really want to call is event_assign(),
// since event_set() has been marked as deprecated (and doesn't accept
// passing event_base__ as a parameter). However, the version of libevent
// that we have in Chromium, doesn't have event_assign(), so we need to call
// event_set() there.
void EventAssign(struct event* ev,
struct event_base* base,
int fd,
short events,
void (*callback)(int, short, void*),
void* arg) {
#if defined(_EVENT2_EVENT_H_)
RTC_CHECK_EQ(0, event_assign(ev, base, fd, events, callback, arg));
#else
event_set(ev, fd, events, callback, arg);
RTC_CHECK_EQ(0, event_base_set(base, ev));
#endif
}
rtc::ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) {
switch (priority) {
case Priority::HIGH:
return rtc::ThreadPriority::kRealtime;
case Priority::LOW:
return rtc::ThreadPriority::kLow;
case Priority::NORMAL:
return rtc::ThreadPriority::kNormal;
}
}
class TaskQueueLibevent final : public TaskQueueBase {
public:
TaskQueueLibevent(absl::string_view queue_name, rtc::ThreadPriority priority);
void Delete() override;
protected:
void PostTaskImpl(absl::AnyInvocable<void() &&> task,
const PostTaskTraits& traits,
const Location& location) override;
void PostDelayedTaskImpl(absl::AnyInvocable<void() &&> task,
TimeDelta delay,
const PostDelayedTaskTraits& traits,
const Location& location) override;
private:
struct TimerEvent;
void PostDelayedTaskOnTaskQueue(absl::AnyInvocable<void() &&> task,
TimeDelta delay);
~TaskQueueLibevent() override = default;
static void OnWakeup(int socket, short flags, void* context); // NOLINT
static void RunTimer(int fd, short flags, void* context); // NOLINT
bool is_active_ = true;
int wakeup_pipe_in_ = -1;
int wakeup_pipe_out_ = -1;
event_base* event_base_;
event wakeup_event_;
rtc::PlatformThread thread_;
Mutex pending_lock_;
absl::InlinedVector<absl::AnyInvocable<void() &&>, 4> pending_
RTC_GUARDED_BY(pending_lock_);
// Holds a list of events pending timers for cleanup when the loop exits.
std::list<TimerEvent*> pending_timers_;
};
struct TaskQueueLibevent::TimerEvent {
TimerEvent(TaskQueueLibevent* task_queue, absl::AnyInvocable<void() &&> task)
: task_queue(task_queue), task(std::move(task)) {}
~TimerEvent() { event_del(&ev); }
event ev;
TaskQueueLibevent* task_queue;
absl::AnyInvocable<void() &&> task;
};
TaskQueueLibevent::TaskQueueLibevent(absl::string_view queue_name,
rtc::ThreadPriority priority)
: event_base_(event_base_new()) {
int fds[2];
RTC_CHECK(pipe(fds) == 0);
SetNonBlocking(fds[0]);
SetNonBlocking(fds[1]);
wakeup_pipe_out_ = fds[0];
wakeup_pipe_in_ = fds[1];
EventAssign(&wakeup_event_, event_base_, wakeup_pipe_out_,
EV_READ | EV_PERSIST, OnWakeup, this);
event_add(&wakeup_event_, 0);
thread_ = rtc::PlatformThread::SpawnJoinable(
[this] {
{
CurrentTaskQueueSetter set_current(this);
while (is_active_)
event_base_loop(event_base_, 0);
// Ensure remaining deleted tasks are destroyed with Current() set up
// to this task queue.
absl::InlinedVector<absl::AnyInvocable<void() &&>, 4> pending;
MutexLock lock(&pending_lock_);
pending_.swap(pending);
}
for (TimerEvent* timer : pending_timers_)
delete timer;
#if RTC_DCHECK_IS_ON
MutexLock lock(&pending_lock_);
RTC_DCHECK(pending_.empty());
#endif
},
queue_name, rtc::ThreadAttributes().SetPriority(priority));
}
void TaskQueueLibevent::Delete() {
RTC_DCHECK(!IsCurrent());
struct timespec ts;
char message = kQuit;
while (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) {
// The queue is full, so we have no choice but to wait and retry.
RTC_CHECK_EQ(EAGAIN, errno);
ts.tv_sec = 0;
ts.tv_nsec = 1000000;
nanosleep(&ts, nullptr);
}
thread_.Finalize();
event_del(&wakeup_event_);
IgnoreSigPipeSignalOnCurrentThread();
close(wakeup_pipe_in_);
close(wakeup_pipe_out_);
wakeup_pipe_in_ = -1;
wakeup_pipe_out_ = -1;
event_base_free(event_base_);
delete this;
}
void TaskQueueLibevent::PostTaskImpl(absl::AnyInvocable<void() &&> task,
const PostTaskTraits& traits,
const Location& location) {
{
MutexLock lock(&pending_lock_);
bool had_pending_tasks = !pending_.empty();
pending_.push_back(std::move(task));
// Only write to the pipe if there were no pending tasks before this one
// since the thread could be sleeping. If there were already pending tasks
// then we know there's either a pending write in the pipe or the thread has
// not yet processed the pending tasks. In either case, the thread will
// eventually wake up and process all pending tasks including this one.
if (had_pending_tasks) {
return;
}
}
// Note: This behvior outlined above ensures we never fill up the pipe write
// buffer since there will only ever be 1 byte pending.
char message = kRunTasks;
RTC_CHECK_EQ(write(wakeup_pipe_in_, &message, sizeof(message)),
sizeof(message));
}
void TaskQueueLibevent::PostDelayedTaskOnTaskQueue(
absl::AnyInvocable<void() &&> task,
TimeDelta delay) {
// libevent api is not thread safe by default, thus event_add need to be
// called on the `thread_`.
RTC_DCHECK(IsCurrent());
TimerEvent* timer = new TimerEvent(this, std::move(task));
EventAssign(&timer->ev, event_base_, -1, 0, &TaskQueueLibevent::RunTimer,
timer);
pending_timers_.push_back(timer);
timeval tv = {.tv_sec = rtc::dchecked_cast<int>(delay.us() / 1'000'000),
.tv_usec = rtc::dchecked_cast<int>(delay.us() % 1'000'000)};
event_add(&timer->ev, &tv);
}
void TaskQueueLibevent::PostDelayedTaskImpl(absl::AnyInvocable<void() &&> task,
TimeDelta delay,
const PostDelayedTaskTraits& traits,
const Location& location) {
if (IsCurrent()) {
PostDelayedTaskOnTaskQueue(std::move(task), delay);
} else {
int64_t posted_us = rtc::TimeMicros();
PostTask([posted_us, delay, task = std::move(task), this]() mutable {
// Compensate for the time that has passed since the posting.
TimeDelta post_time = TimeDelta::Micros(rtc::TimeMicros() - posted_us);
PostDelayedTaskOnTaskQueue(
std::move(task), std::max(delay - post_time, TimeDelta::Zero()));
});
}
}
// static
void TaskQueueLibevent::OnWakeup(int socket,
short flags, // NOLINT
void* context) {
TaskQueueLibevent* me = static_cast<TaskQueueLibevent*>(context);
RTC_DCHECK(me->wakeup_pipe_out_ == socket);
char buf;
RTC_CHECK(sizeof(buf) == read(socket, &buf, sizeof(buf)));
switch (buf) {
case kQuit:
me->is_active_ = false;
event_base_loopbreak(me->event_base_);
break;
case kRunTasks: {
absl::InlinedVector<absl::AnyInvocable<void() &&>, 4> tasks;
{
MutexLock lock(&me->pending_lock_);
tasks.swap(me->pending_);
}
RTC_DCHECK(!tasks.empty());
for (auto& task : tasks) {
std::move(task)();
// Prefer to delete the `task` before running the next one.
task = nullptr;
}
break;
}
default:
RTC_DCHECK_NOTREACHED();
break;
}
}
// static
void TaskQueueLibevent::RunTimer(int fd,
short flags, // NOLINT
void* context) {
TimerEvent* timer = static_cast<TimerEvent*>(context);
std::move(timer->task)();
timer->task_queue->pending_timers_.remove(timer);
delete timer;
}
class TaskQueueLibeventFactory final : public TaskQueueFactory {
public:
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
absl::string_view name,
Priority priority) const override {
return std::unique_ptr<TaskQueueBase, TaskQueueDeleter>(
new TaskQueueLibevent(name,
TaskQueuePriorityToThreadPriority(priority)));
}
};
} // namespace
std::unique_ptr<TaskQueueFactory> CreateTaskQueueLibeventFactory() {
return std::make_unique<TaskQueueLibeventFactory>();
}
} // namespace webrtc
|