1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <memory>
#include <numeric>
#include <vector>
#include "base/strings/string_number_conversions.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest-param-test.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "ui/accessibility/ax_event_generator.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_serializable_tree.h"
#include "ui/accessibility/ax_tree.h"
#include "ui/accessibility/ax_tree_serializer.h"
#include "ui/accessibility/tree_generator.h"
namespace ui {
namespace {
// Do a more exhaustive test in release mode. If you're modifying
// the algorithm you may want to try even larger tree sizes if you
// can afford the time.
#ifdef NDEBUG
constexpr int kMax_tree_size = 4;
#else
constexpr int kMax_tree_size = 3;
#endif
// We split the test into four by splitting the two nested loops that builds the
// trees. To do so, we need to know the maximum number of (permuted) trees.
constexpr int kMax_number_of_trees0 =
TreeGenerator::ComputeUniqueTreeCount(kMax_tree_size,
/* permutations */ false);
constexpr int kMax_number_of_trees1 =
TreeGenerator::ComputeUniqueTreeCount(kMax_tree_size,
/* permutations */ true);
// A function to turn a tree into a string, capturing only the node ids
// and their relationship to one another.
//
// The string format is kind of like an S-expression, with each expression
// being either a node id, or a node id followed by a subexpression
// representing its children.
//
// Examples:
//
// (1) is a tree with a single node with id 1.
// (1 (2 3)) is a tree with 1 as the root, and 2 and 3 as its children.
// (1 (2 (3))) has 1 as the root, 2 as its child, and then 3 as the child of 2.
// (1 (2 (3x))) is the same with node 3 ignored.
std::string TreeToStringHelper(const AXNode* node) {
std::string result = base::NumberToString(node->id());
if (node->IsIgnored())
result += "x";
if (node->children().empty())
return result;
const auto add_children = [](const std::string& str, const auto* node) {
return str + " " + TreeToStringHelper(node);
};
return result + " (" +
std::accumulate(node->children().cbegin() + 1, node->children().cend(),
TreeToStringHelper(node->children().front()),
add_children) +
")";
}
std::string TreeToString(const AXTree& tree) {
return "(" + TreeToStringHelper(tree.root()) + ")";
}
AXTreeUpdate SerializeEntireTree(AXSerializableTree& tree) {
std::unique_ptr<AXTreeSource<const AXNode*>> tree_source(
tree.CreateTreeSource());
AXTreeSerializer<const AXNode*, std::vector<const AXNode*>> serializer(
tree_source.get());
AXTreeUpdate update;
CHECK(serializer.SerializeChanges(tree.root(), &update));
return update;
}
// Create an AXTreeUpdate consisting of only those nodes from
// |tree0| that changed their ignored status in |tree1|.
AXTreeUpdate MakeTreeUpdateFromIgnoredChanges(AXSerializableTree& tree0,
AXSerializableTree& tree1) {
AXTreeUpdate update = SerializeEntireTree(tree1);
AXTreeUpdate result;
for (size_t i = 0; i < update.nodes.size(); i++) {
AXNode* tree0_node = tree0.GetFromId(update.nodes[i].id);
AXNode* tree1_node = tree1.GetFromId(update.nodes[i].id);
if (tree0_node->IsIgnored() != tree1_node->IsIgnored())
result.nodes.push_back(update.nodes[i]);
}
return result;
}
void SerializeUnignoredNodes(AXNode* node, AXTreeUpdate* update) {
AXNodeData data = node->data();
data.child_ids.clear();
for (size_t i = 0; i < node->GetUnignoredChildCount(); i++) {
AXNode* child = node->GetUnignoredChildAtIndex(i);
data.child_ids.push_back(child->id());
}
update->nodes.push_back(data);
for (size_t i = 0; i < node->GetUnignoredChildCount(); i++) {
AXNode* child = node->GetUnignoredChildAtIndex(i);
SerializeUnignoredNodes(child, update);
}
}
void MakeTreeOfUnignoredNodesOnly(AXSerializableTree& src,
AXSerializableTree* dst) {
AXTreeUpdate update;
update.root_id = src.root()->id();
SerializeUnignoredNodes(src.root(), &update);
CHECK(dst->Unserialize(update));
}
} // namespace
// Test the TreeGenerator class by building all possible trees with
// 3 nodes and the ids [1...3], with no permutations of ids.
TEST(AXGeneratedTreeTest, TestTreeGeneratorNoPermutations) {
int tree_size = 3;
TreeGenerator generator(tree_size, false);
// clang-format off
const char* EXPECTED_TREES[] = {
"(1)",
"(1 (2))",
"(1 (2 3))",
"(1 (2 (3)))",
};
// clang-format on
int n = generator.UniqueTreeCount();
ASSERT_EQ(static_cast<int>(std::size(EXPECTED_TREES)), n);
for (int i = 0; i < n; ++i) {
AXTree tree;
generator.BuildUniqueTree(i, &tree);
std::string str = TreeToString(tree);
EXPECT_EQ(EXPECTED_TREES[i], str);
}
}
// Test generating trees with permutations of ignored nodes.
TEST(AXGeneratedTreeTest, TestGeneratingTreesWithIgnoredNodes) {
int tree_size = 3;
TreeGenerator generator(tree_size, false);
// clang-format off
const char* EXPECTED_TREES[] = {
"(1)",
"(1 (2))",
"(1 (2x))",
"(1 (2 3))",
"(1 (2x 3))",
"(1 (2 3x))",
"(1 (2x 3x))",
"(1 (2 (3)))",
"(1 (2x (3)))",
"(1 (2 (3x)))",
"(1 (2x (3x)))",
};
// clang-format on
int n = generator.UniqueTreeCount();
int expected_index = 0;
for (int i = 0; i < n; ++i) {
int ignored_permutation_count =
generator.IgnoredPermutationCountPerUniqueTree(i);
for (int j = 0; j < ignored_permutation_count; j++) {
AXTree tree;
generator.BuildUniqueTreeWithIgnoredNodes(
i, j, /* focused_node */ absl::nullopt, &tree);
std::string str = TreeToString(tree);
EXPECT_EQ(EXPECTED_TREES[expected_index++], str);
}
}
EXPECT_EQ(11, expected_index);
}
// Test the TreeGenerator class by building all possible trees with
// 3 nodes and the ids [1...3] permuted in any order.
TEST(AXGeneratedTreeTest, TestTreeGeneratorWithPermutations) {
int tree_size = 3;
TreeGenerator generator(tree_size, true);
// clang-format off
const char* EXPECTED_TREES[] = {
"(1)",
"(1 (2))",
"(2 (1))",
"(1 (2 3))",
"(2 (1 3))",
"(3 (1 2))",
"(1 (3 2))",
"(2 (3 1))",
"(3 (2 1))",
"(1 (2 (3)))",
"(2 (1 (3)))",
"(3 (1 (2)))",
"(1 (3 (2)))",
"(2 (3 (1)))",
"(3 (2 (1)))",
};
// clang-format on
int n = generator.UniqueTreeCount();
ASSERT_EQ(static_cast<int>(std::size(EXPECTED_TREES)), n);
for (int i = 0; i < n; i++) {
AXTree tree;
generator.BuildUniqueTree(i, &tree);
std::string str = TreeToString(tree);
EXPECT_EQ(EXPECTED_TREES[i], str);
}
}
struct PermutationBlock {
PermutationBlock(int first_unique_tree0,
int last_unique_tree0,
int first_unique_tree1,
int last_unique_tree1)
: first_unique_tree0(first_unique_tree0),
last_unique_tree0(last_unique_tree0),
first_unique_tree1(first_unique_tree1),
last_unique_tree1(last_unique_tree1) {}
int first_unique_tree0;
int last_unique_tree0;
int first_unique_tree1;
int last_unique_tree1;
};
class SerializeGeneratedTreesTest
: public testing::TestWithParam<PermutationBlock> {};
TEST_P(SerializeGeneratedTreesTest, SerializeGeneratedTrees) {
const int first_tree0_ = GetParam().first_unique_tree0;
const int last_tree0_ = GetParam().last_unique_tree0;
const int first_tree1_ = GetParam().first_unique_tree1;
const int last_tree1_ = GetParam().last_unique_tree1;
TreeGenerator generator0(kMax_tree_size, /* permutations */ false);
TreeGenerator generator1(kMax_tree_size, /* permutations */ true);
for (int i = first_tree0_; i < last_tree0_; i++) {
// Build the first tree, tree0.
AXSerializableTree tree0;
generator0.BuildUniqueTree(i, &tree0);
SCOPED_TRACE("tree0 is " + TreeToString(tree0));
for (int j = first_tree1_; j < last_tree1_; j++) {
// Build the second tree, tree1.
AXSerializableTree tree1;
generator1.BuildUniqueTree(j, &tree1);
SCOPED_TRACE("tree1 is " + TreeToString(tree1));
int tree_size = tree1.size();
// Now iterate over which node to update first, |k|.
for (int k = 0; k < tree_size; k++) {
// Iterate over a node to invalidate, |l| (zero means no invalidation).
for (int l = 0; l <= tree_size; l++) {
SCOPED_TRACE("i=" + base::NumberToString(i) +
" j=" + base::NumberToString(j) +
" k=" + base::NumberToString(k) +
" l=" + base::NumberToString(l));
// Start by serializing tree0 and unserializing it into a new
// empty tree |dst_tree|.
std::unique_ptr<AXTreeSource<const AXNode*>> tree0_source(
tree0.CreateTreeSource());
AXTreeSerializer<const AXNode*, std::vector<const AXNode*>>
serializer(tree0_source.get());
AXTreeUpdate update0;
ASSERT_TRUE(serializer.SerializeChanges(tree0.root(), &update0));
AXTree dst_tree;
ASSERT_TRUE(dst_tree.Unserialize(update0))
<< dst_tree.error() << "\n"
<< TreeToString(dst_tree)
<< "\nTree update: " << update0.ToString();
// At this point, |dst_tree| should now be identical to |tree0|.
EXPECT_EQ(TreeToString(tree0), TreeToString(dst_tree));
// Next, pretend that tree0 turned into tree1.
std::unique_ptr<AXTreeSource<const AXNode*>> tree1_source(
tree1.CreateTreeSource());
serializer.ChangeTreeSourceForTesting(tree1_source.get());
// Mark as dirty the subtree rooted at one of the nodes.
if (l > 0)
serializer.MarkSubtreeDirty(tree1.GetFromId(l));
// Serialize a sequence of updates to |dst_tree| to match.
for (int k_index = 0; k_index < tree_size; ++k_index) {
int id = 1 + (k + k_index) % tree_size;
AXTreeUpdate update;
ASSERT_TRUE(
serializer.SerializeChanges(tree1.GetFromId(id), &update));
std::string tree_before_str = TreeToString(dst_tree);
ASSERT_TRUE(dst_tree.Unserialize(update))
<< dst_tree.error() << "\nTree before : " << tree_before_str
<< "\nTree after : " << TreeToString(dst_tree)
<< "\nExpected after: " << TreeToString(tree1)
<< "\nTree update : " << update.ToString();
}
// After the sequence of updates, |dst_tree| should now be
// identical to |tree1|.
EXPECT_EQ(TreeToString(tree1), TreeToString(dst_tree));
}
}
}
}
}
// Test mutating every possible tree with <n> nodes to every other possible
// tree with <n> nodes, where <n> is 4 in release mode and 3 in debug mode
// (for speed). For each possible combination of trees, we also vary which
// node we serialize first.
//
// For every possible scenario, we check that the AXTreeUpdate is valid,
// that the destination tree can unserialize it and create a valid tree,
// and that after updating all nodes the resulting tree now matches the
// intended tree.
//
// Sheriffs: this test is actually very stable and reliable, but it's
// cpu-bound so under extremely heavy load it sometimes times out even
// though it only takes 1 - 2 seconds to run under normal load.
// Please don't disable unless it's actually flaking frequently (e.g.,
// every day). Check Flake Portal first.
INSTANTIATE_TEST_SUITE_P(
AXGeneratedTreeTest0,
SerializeGeneratedTreesTest,
testing::Values(PermutationBlock(0,
kMax_number_of_trees0 / 2,
0,
kMax_number_of_trees1 / 2),
PermutationBlock(0,
kMax_number_of_trees0 / 2,
kMax_number_of_trees1 / 2,
kMax_number_of_trees1),
PermutationBlock(kMax_number_of_trees0 / 2,
kMax_number_of_trees0,
0,
kMax_number_of_trees1 / 2),
PermutationBlock(kMax_number_of_trees0 / 2,
kMax_number_of_trees0,
kMax_number_of_trees1 / 2,
kMax_number_of_trees1)));
// Sheriffs: this test is actually very stable and reliable, but it's
// cpu-bound so under extremely heavy load it sometimes times out even
// though it only takes 1 - 2 seconds to run under normal load.
// Please don't disable unless it's actually flaking frequently (e.g.,
// every day). Check Flake Portal first.
TEST(AXGeneratedTreeTest, GeneratedTreesWithIgnoredNodes) {
// Do a more exhaustive test in release mode. If you're modifying
// the algorithm you may want to try even larger tree sizes if you
// can afford the time.
#ifdef NDEBUG
int max_tree_size = 5;
#else
LOG(WARNING) << "Debug build, only testing trees with 4 nodes and not 5.";
int max_tree_size = 4;
#endif
TreeGenerator generator(max_tree_size, false);
int unique_tree_count = generator.UniqueTreeCount();
// Loop over every possible tree up to a certain size.
for (int tree_index = 0; tree_index < unique_tree_count; tree_index++) {
// Try each permutation of nodes other than the root being ignored.
// We'll call this tree the "fat" tree because it has redundant
// ignored nodes. Also try permuting the focused node, because focus affects
// the ignored state of a node by removing it.
int ignored_permutation_count =
generator.IgnoredPermutationCountPerUniqueTree(tree_index);
for (int perm_index0 = 0; perm_index0 < ignored_permutation_count;
perm_index0++) {
AXSerializableTree fat_tree;
generator.BuildUniqueTreeWithIgnoredNodes(
tree_index, perm_index0, /* focused_node */ absl::nullopt, &fat_tree);
SCOPED_TRACE("fat_tree is " + TreeToString(fat_tree));
// Create a second tree, also with each permutations of nodes other than
// the root being ignored.
for (int perm_index1 = 1; perm_index1 < ignored_permutation_count;
perm_index1++) {
AXSerializableTree fat_tree1;
generator.BuildUniqueTreeWithIgnoredNodes(
tree_index, perm_index1, /* focused_node */ absl::nullopt,
&fat_tree1);
SCOPED_TRACE("fat_tree1 is " + TreeToString(fat_tree1));
// Make a source and destination tree using only the unignored nodes.
// We call this one the "skinny" tree.
AXSerializableTree skinny_tree;
MakeTreeOfUnignoredNodesOnly(fat_tree, &skinny_tree);
AXSerializableTree skinny_tree1;
MakeTreeOfUnignoredNodesOnly(fat_tree1, &skinny_tree1);
// Now, turn fat_tree into fat_tree1, and record the generated events.
AXEventGenerator event_generator(&fat_tree);
AXTreeUpdate update =
MakeTreeUpdateFromIgnoredChanges(fat_tree, fat_tree1);
std::string fat_tree_before_str = TreeToString(fat_tree);
ASSERT_TRUE(fat_tree.Unserialize(update))
<< fat_tree.error() << "\nTree before : " << fat_tree_before_str
<< "\nTree after :" << TreeToString(fat_tree)
<< "\nExpected after: " << TreeToString(fat_tree1)
<< "\nTree update : " << update.ToString();
EXPECT_EQ(TreeToString(fat_tree), TreeToString(fat_tree1));
// Capture the events generated.
std::map<AXNodeID, std::set<AXEventGenerator::Event>> actual_events;
for (const AXEventGenerator::TargetedEvent& event : event_generator) {
const AXNode* node = fat_tree.GetFromId(event.node_id);
ASSERT_NE(nullptr, node);
if (node->IsIgnored() ||
event.event_params.event ==
AXEventGenerator::Event::IGNORED_CHANGED) {
continue;
}
actual_events[event.node_id].insert(event.event_params.event);
}
// Now, turn skinny_tree into skinny_tree1 and compare
// the generated events.
AXEventGenerator skinny_event_generator(&skinny_tree);
AXTreeUpdate skinny_update = SerializeEntireTree(skinny_tree1);
std::string skinny_tree_before_str = TreeToString(skinny_tree);
ASSERT_TRUE(skinny_tree.Unserialize(skinny_update))
<< skinny_tree.error()
<< "\nTree before : " << skinny_tree_before_str
<< "\nTree after :" << TreeToString(skinny_tree)
<< "\nExpected after: " << TreeToString(skinny_tree1)
<< "\nTree update : " << skinny_update.ToString();
EXPECT_EQ(TreeToString(skinny_tree), TreeToString(skinny_tree1));
std::map<AXNodeID, std::set<AXEventGenerator::Event>> expected_events;
for (const AXEventGenerator::TargetedEvent& event :
skinny_event_generator)
expected_events[event.node_id].insert(event.event_params.event);
for (auto& entry : expected_events) {
AXNodeID node_id = entry.first;
for (auto& event_type : entry.second) {
EXPECT_TRUE(actual_events[node_id].find(event_type) !=
actual_events[node_id].end())
<< "Expected " << event_type << " on node " << node_id;
}
}
for (auto& entry : actual_events) {
AXNodeID node_id = entry.first;
for (auto& event_type : entry.second) {
EXPECT_TRUE(expected_events[node_id].find(event_type) !=
expected_events[node_id].end())
<< "Unexpected " << event_type << " on node " << node_id;
}
}
// For each node in skinny_tree (the tree with only the unignored
// nodes), check the node in fat_tree (the tree with ignored nodes).
// Make sure that the parents, children, and siblings are all computed
// correctly.
AXTreeUpdate skinny_tree_serialized = SerializeEntireTree(skinny_tree);
for (const AXNodeData& skinny_tree_node_data :
skinny_tree_serialized.nodes) {
AXNodeID id = skinny_tree_node_data.id;
AXNode* skinny_tree_node = skinny_tree.GetFromId(id);
AXNode* fat_tree_node = fat_tree.GetFromId(id);
SCOPED_TRACE("Testing node ID " + base::NumberToString(id));
// Check children.
EXPECT_EQ(skinny_tree_node->children().size(),
fat_tree_node->GetUnignoredChildCount());
// Check child IDs.
for (size_t j = 0; j < skinny_tree_node->children().size(); j++) {
AXNode* skinny_tree_child = skinny_tree_node->children()[j];
AXNode* fat_tree_child = fat_tree_node->GetUnignoredChildAtIndex(j);
EXPECT_TRUE(skinny_tree_child);
EXPECT_TRUE(fat_tree_child);
if (fat_tree_child)
EXPECT_EQ(skinny_tree_child->id(), fat_tree_child->id());
}
// Check parent.
if (skinny_tree_node->parent()) {
EXPECT_EQ(skinny_tree_node->parent()->id(),
fat_tree_node->GetUnignoredParent()->id());
} else {
EXPECT_FALSE(fat_tree_node->GetUnignoredParent());
}
// Check index in parent.
EXPECT_EQ(skinny_tree_node->index_in_parent(),
fat_tree_node->GetUnignoredIndexInParent());
// Unignored previous sibling.
size_t index_in_parent = skinny_tree_node->index_in_parent();
size_t num_siblings =
skinny_tree_node->parent()
? skinny_tree_node->parent()->children().size()
: 1;
if (index_in_parent > 0) {
AXNode* skinny_tree_previous_sibling =
skinny_tree_node->parent()->children()[index_in_parent - 1];
AXNode* fat_tree_previous_sibling =
fat_tree_node->GetPreviousUnignoredSibling();
EXPECT_TRUE(fat_tree_previous_sibling);
if (fat_tree_previous_sibling) {
EXPECT_EQ(skinny_tree_previous_sibling->id(),
fat_tree_previous_sibling->id());
}
}
// Unignored next sibling.
if (index_in_parent < num_siblings - 1) {
AXNode* skinny_tree_next_sibling =
skinny_tree_node->parent()->children()[index_in_parent + 1];
AXNode* fat_tree_next_sibling =
fat_tree_node->GetNextUnignoredSibling();
EXPECT_TRUE(fat_tree_next_sibling);
if (fat_tree_next_sibling) {
EXPECT_EQ(skinny_tree_next_sibling->id(),
fat_tree_next_sibling->id());
}
}
}
}
}
}
}
} // namespace ui
|