1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_ACCESSIBILITY_AX_POSITION_H_
#define UI_ACCESSIBILITY_AX_POSITION_H_
#include <math.h>
#include <stdint.h>
#include <functional>
#include <memory>
#include <ostream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "base/containers/contains.h"
#include "base/containers/fixed_flat_map.h"
#include "base/containers/stack.h"
#include "base/export_template.h"
#include "base/i18n/break_iterator.h"
#include "base/no_destructor.h"
#include "base/notreached.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "ui/accessibility/ax_common.h"
#include "ui/accessibility/ax_enum_util.h"
#include "ui/accessibility/ax_enums.mojom.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_node_data.h"
#include "ui/accessibility/ax_role_properties.h"
#include "ui/accessibility/ax_table_info.h"
#include "ui/accessibility/ax_text_attributes.h"
#include "ui/accessibility/ax_tree_id.h"
#include "ui/accessibility/ax_tree_manager.h"
#include "ui/gfx/utf16_indexing.h"
namespace ui {
class AXNodePosition;
class AXNode;
// Defines the type of position in the accessibility tree.
// A tree position is used when referring to a specific child of a node in the
// accessibility tree.
// A text position is used when referring to a specific character of text inside
// a particular node.
// A null position is used to signify that the provided data is invalid or that
// a boundary has been reached.
enum class AXPositionKind { NULL_POSITION, TREE_POSITION, TEXT_POSITION };
// Defines how creating the next or previous position should behave whenever we
// are at or are crossing a text boundary, (such as the start of a word or the
// end of a sentence), or whenever we are crossing the initial position's
// anchor. Note that the "anchor" is the node to which an AXPosition is attached
// to. It is provided when a position is created.
enum class AXBoundaryBehavior {
// Crosses all boundaries. If the bounds of the current window-like container,
// such as the current webpage, have been reached, returns a null position.
kCrossBoundary,
// Stops if the current anchor is crossed, regardless of how the resulting
// position has been computed. For example, even though in order to find the
// next or previous word start in a text field we need to descend to the leaf
// equivalent position, this behavior will only stop when the bounds of the
// original anchor, i.e. the text field, have been crossed.
kStopAtAnchorBoundary,
// Stops if we have reached the start or the end of of a window-like
// container, such as a webpage, a PDF, a dialog, the browser's UI (AKA
// Views), or the whole desktop.
kStopAtLastAnchorBoundary
};
// Defines whether moving to the next or previous position should consider the
// initial position before testing for the given boundary/behavior.
// kCheckInitialPosition should be used if the current position should be
// maintained if it meets the boundary criteria. Otherwise,
// kDontCheckInitialPosition will move to the next/previous position before
// testing for the specified boundary.
enum class AXBoundaryDetection {
kCheckInitialPosition,
kDontCheckInitialPosition,
};
struct AXMovementOptions {
AXMovementOptions(AXBoundaryBehavior boundary, AXBoundaryDetection detection)
: boundary_behavior(boundary), boundary_detection(detection) {}
AXBoundaryBehavior boundary_behavior;
AXBoundaryDetection boundary_detection;
};
// Describes in further detail what type of boundary a current position is on.
//
// For complex boundaries such as format boundaries, it can be useful to know
// why a particular boundary was chosen.
enum class AXBoundaryType {
// Not at a unit boundary.
kNone,
// At a unit boundary (e.g. a format boundary).
kUnitBoundary,
// At the start of the whole content, possibly spanning multiple accessibility
// trees.
kContentStart,
// At the end of the whole content, possibly spanning multiple accessibility
// trees.
kContentEnd
};
// When converting to an unignored position, determines how to adjust the new
// position in order to make it valid, either moving backward or forward in
// the accessibility tree.
enum class AXPositionAdjustmentBehavior { kMoveBackward, kMoveForward };
// Specifies how AXPosition::ExpandToEnclosingTextBoundary behaves.
//
// As an example, imagine we have the text "hello world" and a position before
// the space character. We want to expand to the surrounding word boundary.
// Since we are right at the end of the first word, we could either expand to
// the left first, find the start of the first word and then use that to find
// the corresponding word end, resulting in the word "Hello". Another
// possibility is to expand to the right first, find the end of the next word
// and use that as our starting point to find the previous word start, resulting
// in the word "world".
enum class AXRangeExpandBehavior {
// Expands to the left boundary first and then uses that position as the
// starting point to find the boundary to the right.
kLeftFirst,
// Expands to the right boundary first and then uses that position as the
// starting point to find the boundary to the left.
kRightFirst
};
// Some platforms require most objects, including empty objects, to be
// represented by an "embedded object character" in order for text navigation to
// work correctly. This enum controls whether a replacement character will be
// exposed for such objects.
//
// When an embedded object is replaced by this special character, the
// expectations are the same with this character as with other ordinary
// characters.
//
// For example, with UIA on Windows, we need to be able to navigate inside and
// outside of this character as if it was an ordinary character, using the
// `AXPlatformNodeTextRangeProvider` methods. Since an "embedded object
// character" is the only character in a node, we also treat this character as a
// word.
//
// However, there is a special case for UIA. kExposeCharacterForHypertext is
// used mainly to enable the hypertext logic and calculation for cases where the
// embedded object character is not needed. This logic is IA2 and ATK specific,
// and should not be used for UIA relevant calls and calculations. As a result,
// we have the kUIAExposeCharacterForTextContent which avoids the IA2/ATK
// specific logic for the text calculation but also keeps the same embedded
// object character behavior for cases when it is needed.
enum class AXEmbeddedObjectBehavior {
kExposeCharacterForHypertext,
kSuppressCharacter,
kUIAExposeCharacterForTextContent,
};
// Controls whether embedded objects are represented by a replacement
// character. This is initialized to a per-platform default but can be
// overridden for testing.
//
// On some platforms, most objects are represented in the text of their parents
// with a special "embedded object character" and not with their actual text
// contents. Also on the same platforms, if a node has only ignored descendants,
// i.e., it appears to be empty to assistive software, we need to treat it as a
// character and a word boundary. For example, an empty text field should act as
// a character and a word boundary when a screen reader user tries to navigate
// through it, otherwise the text field would be missed by the user.
//
// Tests should use ScopedAXEmbeddedObjectBehaviorSetter to change this.
// TODO(crbug.com/1204592) Don't export this so tests can't change it.
extern AX_EXPORT AXEmbeddedObjectBehavior g_ax_embedded_object_behavior;
class AX_EXPORT ScopedAXEmbeddedObjectBehaviorSetter {
public:
explicit ScopedAXEmbeddedObjectBehaviorSetter(
AXEmbeddedObjectBehavior behavior);
~ScopedAXEmbeddedObjectBehaviorSetter();
private:
AXEmbeddedObjectBehavior prev_behavior_;
};
// Forward declarations.
template <class AXPositionType, class AXNodeType>
class AXPosition;
template <class AXPositionType>
class AXRange;
template <class AXPositionType, class AXNodeType>
bool operator==(const AXPosition<AXPositionType, AXNodeType>& first,
const AXPosition<AXPositionType, AXNodeType>& second);
template <class AXPositionType, class AXNodeType>
bool operator!=(const AXPosition<AXPositionType, AXNodeType>& first,
const AXPosition<AXPositionType, AXNodeType>& second);
// A position in the accessibility tree.
//
// This class could either represent a tree position or a text position.
// Tree positions point to either a child of a specific node or at the end of a
// node (i.e. an "after children" position).
// Text positions point to either a character offset in the text inside a
// particular node including text from all its children, or to the end of the
// node's text, (i.e. an "after text" position).
// On tree positions that have a leaf node as their anchor, we also need to
// distinguish between "before text" and "after text" positions. To do this, if
// the child index is 0 and the anchor is a leaf node, then it's an "after text"
// position. If the child index is |BEFORE_TEXT| and the anchor is a leaf node,
// then this is a "before text" position.
// It doesn't make sense to have a "before text" position on a text position,
// because it is identical to setting its offset to the first character.
//
// To avoid re-computing either the text offset or the child index when
// converting between the two types of positions, both values are saved after
// the first conversion.
//
// This class template uses static polymorphism in order to allow sub-classes to
// be created from the base class without the base class knowing the type of the
// sub-class in advance.
// The template argument |AXPositionType| should always be set to the type of
// any class that inherits from this template, making this a
// "curiously recursive template".
//
// This class can be copied using the |Clone| method. It is designed to be
// immutable.
template <class AXPositionType, class AXNodeType>
class AXPosition {
public:
using AXPositionInstance =
std::unique_ptr<AXPosition<AXPositionType, AXNodeType>>;
using AXRangeType = AXRange<AXPosition<AXPositionType, AXNodeType>>;
using BoundaryConditionPredicate =
base::RepeatingCallback<bool(const AXPositionInstance&)>;
using BoundaryTextOffsetsFunc =
base::RepeatingCallback<const std::vector<int32_t>&(
const AXPositionInstance&)>;
static const int BEFORE_TEXT = -1;
static const int INVALID_INDEX = -2;
static const int INVALID_OFFSET = -1;
static AXPositionInstance CreateNullPosition() {
AXPositionInstance new_position(new AXPositionType());
new_position->Initialize(AXPositionKind::NULL_POSITION, AXTreeIDUnknown(),
kInvalidAXNodeID, INVALID_INDEX, INVALID_OFFSET,
ax::mojom::TextAffinity::kDownstream);
return new_position;
}
static AXPositionInstance CreateTreePosition(const AXNode& anchor,
int child_index) {
DCHECK(anchor.tree());
DCHECK_NE(anchor.tree()->GetAXTreeID(), AXTreeIDUnknown());
DCHECK_NE(anchor.id(), kInvalidAXNodeID);
AXPositionInstance new_position(new AXPositionType());
new_position->Initialize(AXPositionKind::TREE_POSITION,
anchor.tree()->GetAXTreeID(), anchor.id(),
child_index, INVALID_OFFSET,
ax::mojom::TextAffinity::kDownstream);
return new_position;
}
static AXPositionInstance CreateTreePositionAtStartOfAnchor(
const AXNode& anchor) {
// Initialize the child index:
// - For a leaf, the child index will be BEFORE_TEXT.
// - Otherwise the child index will be 0.
int child_index = IsLeafNodeForTreePosition(anchor) ? BEFORE_TEXT : 0;
return CreateTreePosition(anchor, child_index);
}
static AXPositionInstance CreateTreePositionAtEndOfAnchor(
const AXNode& anchor) {
// Initialize the child index to the anchor's child count.
return CreateTreePosition(anchor,
anchor.GetChildCountCrossingTreeBoundary());
}
static AXPositionInstance CreateTextPosition(
const AXNode& anchor,
int text_offset,
ax::mojom::TextAffinity affinity) {
DCHECK(anchor.tree());
DCHECK_NE(anchor.tree()->GetAXTreeID(), AXTreeIDUnknown());
DCHECK_NE(anchor.id(), kInvalidAXNodeID);
AXPositionInstance new_position(new AXPositionType());
new_position->Initialize(AXPositionKind::TEXT_POSITION,
anchor.tree()->GetAXTreeID(), anchor.id(),
INVALID_INDEX, text_offset, affinity);
return new_position;
}
virtual ~AXPosition() = default;
// Implemented based on the copy and swap idiom.
AXPosition& operator=(const AXPosition& other) {
AXPositionInstance clone = other.Clone();
swap(*clone);
return *this;
}
virtual AXPositionInstance Clone() const = 0;
AXPositionInstance CloneWithDownstreamAffinity() const {
if (!IsTextPosition()) {
NOTREACHED() << "Only text positions have affinity.";
return CreateNullPosition();
}
AXPositionInstance clone_with_downstream_affinity = Clone();
clone_with_downstream_affinity->affinity_ =
ax::mojom::TextAffinity::kDownstream;
return clone_with_downstream_affinity;
}
AXPositionInstance CloneWithUpstreamAffinity() const {
if (!IsTextPosition()) {
NOTREACHED() << "Only text positions have affinity.";
return CreateNullPosition();
}
AXPositionInstance clone_with_upstream_affinity = Clone();
clone_with_upstream_affinity->affinity_ =
ax::mojom::TextAffinity::kUpstream;
return clone_with_upstream_affinity;
}
// A serialization of a position as POD. Not for sharing on disk or sharing
// across thread or process boundaries, just for passing a position to an
// API that works with positions as opaque objects.
struct SerializedPosition {
AXPositionKind kind;
AXNodeID anchor_id;
int child_index;
int text_offset;
ax::mojom::TextAffinity affinity;
char tree_id[33];
};
static_assert(std::is_trivially_copyable<SerializedPosition>::value,
"SerializedPosition must be POD");
SerializedPosition Serialize() {
SerializedPosition result;
result.kind = kind_;
// A tree ID can be serialized as a 32-byte string.
std::string tree_id_string = tree_id_.ToString();
DCHECK_LE(tree_id_string.size(), 32U);
strncpy(result.tree_id, tree_id_string.c_str(), 32);
result.tree_id[32] = 0;
result.anchor_id = anchor_id_;
result.child_index = child_index_;
result.text_offset = text_offset_;
result.affinity = affinity_;
return result;
}
static AXPositionInstance Unserialize(
const SerializedPosition& serialization) {
AXPositionInstance new_position(new AXPositionType());
// Use initialize without validation because this is used by ATs that
// used outdated information to generated a selection request.
new_position->InitializeWithoutValidation(
serialization.kind, ui::AXTreeID::FromString(serialization.tree_id),
serialization.anchor_id, serialization.child_index,
serialization.text_offset, serialization.affinity);
return new_position;
}
std::string ToString() const {
std::string str;
switch (kind_) {
case AXPositionKind::NULL_POSITION:
return "NullPosition";
case AXPositionKind::TREE_POSITION: {
std::string str_child_index;
if (child_index_ == BEFORE_TEXT) {
str_child_index = "before_text";
} else if (child_index_ == INVALID_INDEX) {
str_child_index = "invalid";
} else {
str_child_index = base::NumberToString(child_index_);
}
str = "TreePosition tree_id=" + tree_id_.ToString() +
" anchor_id=" + base::NumberToString(anchor_id_) +
" child_index=" + str_child_index;
break;
}
case AXPositionKind::TEXT_POSITION: {
std::string str_text_offset;
if (text_offset_ == INVALID_OFFSET) {
str_text_offset = "invalid";
} else {
str_text_offset = base::NumberToString(text_offset_);
}
str = "TextPosition anchor_id=" + base::NumberToString(anchor_id_) +
" text_offset=" + str_text_offset + " affinity=" +
ui::ToString(static_cast<ax::mojom::TextAffinity>(affinity_));
break;
}
}
if (!IsTextPosition() || text_offset_ < 0 || text_offset_ > MaxTextOffset())
return str;
const std::u16string& text = GetText();
DCHECK_GE(text_offset_, 0);
const size_t max_text_offset = text.size();
DCHECK_LE(text_offset_, static_cast<int>(max_text_offset)) << text;
std::u16string annotated_text;
if (text_offset_ == static_cast<int>(max_text_offset)) {
annotated_text = text + u"<>";
} else {
// TODO(aleventhal) This extra casting is only necessary to satisfy a
// compiler error that strangely occurs only when Initialize() contains
// SnapToMaxTextOffsetIfBeyond().
size_t unsigned_text_offset = static_cast<size_t>(text_offset_);
annotated_text = text.substr(0, unsigned_text_offset) + u"<" +
text[unsigned_text_offset] + u">" +
text.substr(unsigned_text_offset + 1);
}
return str + " annotated_text=" + base::UTF16ToUTF8(annotated_text);
}
// Helper for logging the position, the AXTreeManager and the anchor node.
std::string ToDebugString() const {
std::ostringstream str;
str << "* Position: " << ToString();
if (GetAnchor()) {
str << "\n* Anchor node: " << *GetAnchor();
if (IsTreePosition()) {
str << "\n* AnchorChildCount(): " << AnchorChildCount()
<< "\n* IsLeaf(): " << IsLeaf();
} else {
str << "\n* TextOffset: " << text_offset()
<< "\n* MaxTextOffset: " << MaxTextOffset();
}
}
if (GetManager())
str << "\n* Tree: " << GetManager()->ax_tree()->data().ToString();
return str.str();
}
AXPositionKind kind() const { return kind_; }
AXTreeID tree_id() const { return tree_id_; }
AXNodeID anchor_id() const { return anchor_id_; }
AXTreeManager* GetManager() const { return AXTreeManager::FromID(tree_id()); }
// Returns true if this position is within an "empty object", i.e. within a
// node that should contribute no text to the accessibility tree's text
// representation. For example, returns true if this position is within an
// empty control, such as an empty text field or (on Windows) a collapsed
// popup menu. On some platforms, such nodes need to be represented by an
// "object replacement character". This character is inserted purely for
// navigational purposes. This is because empty controls still need to act as
// a word and character boundary on those platforms.
static bool IsEmptyObject(const AXNode& node) {
// A collapsed popup button that contains a menu list popup (i.e, the exact
// subtree representation we get from a collapsed <select> element on
// Windows) should not expose its descendants even though they are not
// ignored.
if (node.IsCollapsedMenuListSelect())
return true;
// All anchor nodes that are empty leaf nodes should be treated as empty
// objects. Empty leaf nodes are defined as nodes whose descendants are (A)
// not exposed to any platform accessibility APIs and (B) do not contribute
// any text to the tree's text representation. They may have unignored
// descendants however. They do not have any text content, hence they are
// empty from our perspective. For example, an empty text field may still
// have an unignored generic container inside it.
if (!node.IsEmptyLeaf())
return false;
// While atomic text fields from web content have a text node descendant,
// atomic text fields from Views don't. Their text value is set in the value
// attribute of the text field node directly.
if (node.IsView() && node.data().IsAtomicTextField() &&
!node.GetValueForControl().empty()) {
return false;
}
// One exception to the above rule that all empty leaf nodes are empty
// objects in AXPosition are <embed> and <object> elements that have
// children. They should not be treated as empty objects even when their
// descendants are all ignored so that text navigation won't stop on such
// nodes.
ax::mojom::Role role = node.GetRole();
if ((role == ax::mojom::Role::kEmbeddedObject ||
role == ax::mojom::Role::kPluginObject) &&
node.GetChildCountCrossingTreeBoundary()) {
return false;
}
// Nodes that are skipped during text navigation should also be "empty
// objects".
//
// Note that nodes that are skipped during text navigation could still have
// positions anchored to them, e.g. for determining if a paragraph boundary
// should be reported before or after such a node. Descending into the
// children of such objects could add unnecessary extra text boundaries.
if (node.IsIgnoredForTextNavigation())
return true;
// Another exception to the rule that all leaf nodes in the accessibility
// tree should be "empty objects" are kRootWebArea, kPdfRoot, kIframe,
// kIframePresentational, and text nodes. We don't want text navigation to
// stop on any of the above roles. On the other hand, nodes that only have
// ignored children (e.g., a button that contains only an empty ignored div)
// need to be treated as leaf nodes.
//
// Note that we have already determined that the anchor at this position
// doesn't have an unignored child, making this a leaf tree or text
// position, or a leaf's descendant.
return (!IsPlatformDocument(role) && !IsIframe(role) && !node.IsText());
}
// Return true if the node is a leaf, or has no selectable text content.
static bool IsLeafNodeForTreePosition(const AXNode& node) {
// Unignored text list markers expose text on their own, and all their
// descendants are ignored. Make sure they are treated as leaves, not empty
// containers.
if (node.GetRole() == ax::mojom::Role::kListMarker && !node.IsIgnored() &&
!node.GetUnignoredChildCountCrossingTreeBoundary()) {
return true;
}
return !node.GetChildCountCrossingTreeBoundary() || IsEmptyObject(node);
}
AXNode* GetAnchor() const {
if (tree_id_ == AXTreeIDUnknown() || anchor_id_ == kInvalidAXNodeID)
return nullptr;
const AXTreeManager* manager = GetManager();
if (manager)
return manager->GetNode(anchor_id());
return nullptr;
}
int GetAnchorSiblingCount() const {
if (IsNullPosition())
return 0;
AXPositionInstance parent_position = AsTreePosition()->CreateParentPosition(
ax::mojom::MoveDirection::kBackward);
if (!parent_position->IsNullPosition())
return parent_position->AnchorChildCount();
return 0;
}
int child_index() const { return child_index_; }
int text_offset() const { return text_offset_; }
ax::mojom::TextAffinity affinity() const { return affinity_; }
bool IsIgnored() const {
if (IsNullPosition())
return false;
DCHECK(GetAnchor());
// If this position is anchored to an ignored node, then consider this
// position to be ignored.
if (GetAnchor()->IsIgnored())
return true;
switch (kind_) {
case AXPositionKind::NULL_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TREE_POSITION: {
// If this is a "before text" or an "after text" tree position, it's
// pointing to the anchor itself, which we've determined to be
// unignored.
DCHECK(child_index_ == BEFORE_TEXT ||
child_index_ == AnchorChildCount() || !IsLeaf())
<< "Leaf nodes can only have a position before or after, so they "
"must have a child index of BEFORE_TEXT or AnchorChildCount(): "
<< ToString() << " AnchorChildCount(): " << AnchorChildCount();
DCHECK(child_index_ != BEFORE_TEXT || IsLeaf())
<< "Non-leaf nodes cannot have a position of BEFORE_TEXT: "
<< *GetAnchor();
if (child_index_ == BEFORE_TEXT || IsLeaf())
return false;
// If this position is an "after children" position, consider the
// position to be ignored if the last child is ignored. This is because
// the last child will not be visible in the unignored tree.
//
// For example, in the following tree if the position is not adjusted,
// the resulting position would erroneously point before the second
// child in the unignored subtree rooted at the last child.
//
// 1 kRootWebArea
// ++2 kGenericContainer ignored
// ++++3 kStaticText "Line 1."
// ++++4 kStaticText "Line 2."
//
// Tree position anchor=kGenericContainer, child_index=1.
//
// Alternatively, if there is a node at the position pointed to by
// "child_index_", i.e. this position is neither a leaf position nor an
// "after children" position, consider this tree position to be ignored
// if the child node is ignored.
int adjusted_child_index = child_index_ != AnchorChildCount()
? child_index_
: child_index_ - 1;
AXPositionInstance child_position =
CreateChildPositionAt(adjusted_child_index);
DCHECK(child_position && !child_position->IsNullPosition());
return child_position->IsNullPosition() ||
child_position->GetAnchor()->IsIgnored();
}
case AXPositionKind::TEXT_POSITION:
// If the corresponding leaf position is ignored, the current text
// offset will point to ignored text. Therefore, consider this position
// to be ignored.
if (!IsLeaf())
return AsLeafTreePosition()->IsIgnored();
return false;
}
}
bool IsNullPosition() const {
return kind_ == AXPositionKind::NULL_POSITION || !GetAnchor();
}
bool IsTreePosition() const {
return GetAnchor() && kind_ == AXPositionKind::TREE_POSITION;
}
bool IsLeafTreePosition() const { return IsTreePosition() && IsLeaf(); }
bool IsTextPosition() const {
return GetAnchor() && kind_ == AXPositionKind::TEXT_POSITION;
}
bool IsLeafTextPosition() const { return IsTextPosition() && IsLeaf(); }
bool IsLeaf() const {
if (IsNullPosition())
return false;
AXNode* anchor = GetAnchor();
DCHECK(anchor);
return IsLeafNodeForTreePosition(*anchor);
}
// Returns true if this is a valid position, e.g. the child_index_ or
// text_offset_ is within a valid range.
//
// A position is always valid at creation time, but could become invalid after
// a tree update. For performance reasons, we don't check for validity every
// time a position is used, expecting clients to use this method instead.
bool IsValid() const {
switch (kind_) {
case AXPositionKind::NULL_POSITION:
return tree_id_ == AXTreeIDUnknown() &&
anchor_id_ == kInvalidAXNodeID &&
child_index_ == INVALID_INDEX &&
text_offset_ == INVALID_OFFSET &&
affinity_ == ax::mojom::TextAffinity::kDownstream;
case AXPositionKind::TREE_POSITION:
if (!GetAnchor())
return false;
// The `BEFORE_TEXT` constant is only needed on leaf positions because
// on any other position a `child_index_` of 0 could be used. On leaf
// positions, however, often there are no child nodes and so a
// `child_index_` of 0 would confusingly indicate both a "before text"
// as well as an "after text" position. Note that some leaf positions,
// e.g. positions in empty objects, do have children.
if (IsLeaf()) {
// Leaf nodes can only have a position before or after, so they must
// have a child index of BEFORE_TEXT or AnchorChildCount().
return child_index_ == BEFORE_TEXT ||
child_index_ == AnchorChildCount();
}
return child_index_ >= 0 && child_index_ <= AnchorChildCount();
case AXPositionKind::TEXT_POSITION:
if (!GetAnchor())
return false;
// For performance reasons we skip any validation of the text offset
// that involves retrieving the anchor's text, if the offset is set to
// 0, because 0 is frequently used and always valid regardless of the
// actual text.
return text_offset_ == 0 ||
(text_offset_ > 0 && text_offset_ <= MaxTextOffset());
}
}
bool AtStartOfAnchor() const {
if (!GetAnchor())
return false;
switch (kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
if (IsLeaf())
return child_index_ == BEFORE_TEXT;
return child_index_ == 0;
case AXPositionKind::TEXT_POSITION:
return text_offset_ == 0;
}
}
bool AtEndOfAnchor() const {
if (!GetAnchor())
return false;
switch (kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
// A few positions are anchored to nodes that have children but we want
// to treat them as leaf positions. An example is an empty text field;
// it often has empty unignored divs coming from Blink inside it.
return child_index_ == AnchorChildCount();
case AXPositionKind::TEXT_POSITION:
return text_offset_ == MaxTextOffset();
}
}
bool AtStartOfWord() const {
AXPositionInstance text_position;
if (!AtEndOfAnchor()) {
// We could get a leaf text position at the end of its anchor, where word
// start offsets would surely not be present. In such cases, we need to
// normalize to the start of the next leaf anchor. We avoid making this
// change when we are at the end of our anchor because this could
// effectively shift the position forward.
text_position = AsLeafTextPositionBeforeCharacter();
} else {
text_position = AsLeafTextPosition();
}
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
const std::vector<int32_t>& word_starts =
text_position->GetWordStartOffsets();
return base::Contains(word_starts,
int32_t{text_position->text_offset_});
}
}
}
bool AtEndOfWord() const {
AXPositionInstance text_position;
if (!AtStartOfAnchor()) {
// We could get a leaf text position at the start of its anchor, where
// word end offsets would surely not be present. In such cases, we need to
// normalize to the end of the previous leaf anchor. We avoid making this
// change when we are at the start of our anchor because this could
// effectively shift the position backward.
text_position = AsLeafTextPositionAfterCharacter();
} else {
text_position = AsLeafTextPosition();
}
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
const std::vector<int32_t>& word_ends =
text_position->GetWordEndOffsets();
return base::Contains(word_ends, int32_t{text_position->text_offset_});
}
}
}
bool AtStartOfLine() const {
AXPositionInstance text_position = AsLeafTextPosition();
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION:
// We treat a position after some white space that is not connected to
// any node after it via "next on line ID", to be equivalent to a
// position before the next line, and therefore as being at start of
// line.
//
// We assume that white space, including but not limited to hard line
// breaks, might be used to separate lines. For example, an inline text
// box with just a single space character inside it can be used to
// represent a soft line break. If an inline text box containing white
// space separates two lines, it should always be connected to the first
// line via "kPreviousOnLineId". This is guaranteed by the renderer. If
// there are multiple line breaks separating the two lines, then only
// the first line break is connected to the first line via
// "kPreviousOnLineId".
//
// Sometimes there might be an inline text box with a single space in it
// at the end of a text field. We should not mark positions that are at
// the end of text fields, or in general at the end of their anchor, as
// being at the start of line, except when that anchor is an inline text
// box that is in the middle of a text span. Note that in most but not
// all cases, the parent of an inline text box is a static text object,
// whose end signifies the end of the text span. One exception is line
// breaks.
if (text_position->AtEndOfAnchor() &&
!text_position->AtEndOfTextSpan() &&
text_position->IsInWhiteSpace() &&
text_position->GetNextOnLineID() == kInvalidAXNodeID) {
return true;
}
return text_position->GetPreviousOnLineID() == kInvalidAXNodeID &&
text_position->AtStartOfAnchor();
}
}
bool AtEndOfLine() const {
AXPositionInstance text_position = AsLeafTextPosition();
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION:
// Text positions on objects with no text should not be considered at
// end of line because the empty position may share a text offset with
// a non-empty text position in which case the end of line iterators
// must move to the line end of the non-empty content. Specified next
// line IDs are ignored.
if (text_position->MaxTextOffset() == 0)
return false;
// If affinity has been used to specify whether the caret is at the end
// of a line or at the start of the next one, this should have been
// reflected in the leaf text position we got via "AsLeafTextPosition".
// If affinity had been set to upstream, the leaf text position should
// be pointing to the end of the inline text box that ends the first
// line. If it had been set to downstream, the leaf text position should
// be pointing to the start of the inline text box that starts the
// second line.
//
// In other cases, we assume that white space, including but not limited
// to hard line breaks, might be used to separate lines. For example, an
// inline text box with just a single space character inside it can be
// used to represent a soft line break. If an inline text box containing
// white space separates two lines, it should always be connected to the
// first line via "kPreviousOnLineId". This is guaranteed by the
// renderer. If there are multiple line breaks separating the two lines,
// then only the first line break is connected to the first line via
// "kPreviousOnLineId".
//
// We don't treat a position that is at the start of white space that is
// on a line by itself as being at the end of the line. This is in order
// to enable screen readers to recognize and announce blank lines
// correctly. However, we do treat positions at the start of white space
// that end a line of text as being at the end of that line. We also
// treat positions at the end of white space that is on a line by
// itself, i.e. on a blank line, as being at the end of that line.
//
// Sometimes there might be an inline text box with a single space in it
// at the end of a text field. We should mark positions that are at the
// end of text fields, or in general at the end of an anchor with no
// "kNextOnLineId", as being at end of line, except when that anchor is
// an inline text box that is in the middle of a text span. Note that
// in most but not all cases, the parent of an inline text box is a
// static text object, whose end signifies the end of the text span. One
// exception is line breaks.
if (text_position->GetNextOnLineID() == kInvalidAXNodeID) {
return (!text_position->AtEndOfTextSpan() &&
text_position->IsInWhiteSpace() &&
text_position->GetPreviousOnLineID() != kInvalidAXNodeID)
? text_position->AtStartOfAnchor()
: text_position->AtEndOfAnchor();
}
// The current anchor might be followed by a soft line break.
return text_position->AtEndOfAnchor() &&
text_position->CreateNextLeafTextPosition()->AtEndOfLine();
}
}
AXBoundaryType GetFormatStartBoundaryType() const {
// Since formats are stored on text anchors, the start of a format boundary
// must be at the start of an anchor.
if (IsNullPosition() || !AtStartOfAnchor())
return AXBoundaryType::kNone;
// Treat the first iterable node as a format boundary.
if (CreatePreviousLeafTreePosition(
base::BindRepeating(&AbortMoveAtRootBoundary))
->IsNullPosition()) {
return AXBoundaryType::kContentStart;
}
// Ignored positions cannot be format boundaries.
if (IsIgnored())
return AXBoundaryType::kNone;
// Iterate over anchors until a format boundary is found. This will return a
// null position upon crossing a boundary. Make sure the previous position
// is not on an ignored node.
AXPositionInstance previous_position = Clone();
do {
previous_position = previous_position->CreatePreviousLeafTreePosition(
base::BindRepeating(&AbortMoveAtFormatBoundary));
} while (previous_position->IsIgnored());
if (previous_position->IsNullPosition())
return AXBoundaryType::kUnitBoundary;
return AXBoundaryType::kNone;
}
bool AtStartOfFormat() const {
return GetFormatStartBoundaryType() != AXBoundaryType::kNone;
}
AXBoundaryType GetFormatEndBoundaryType() const {
// Since formats are stored on text anchors, the end of a format break must
// be at the end of an anchor.
if (IsNullPosition() || !AtEndOfAnchor())
return AXBoundaryType::kNone;
// Treat the last iterable node as a format boundary
if (CreateNextLeafTreePosition(
base::BindRepeating(&AbortMoveAtRootBoundary))
->IsNullPosition())
return AXBoundaryType::kContentEnd;
// Ignored positions cannot be format boundaries.
if (IsIgnored())
return AXBoundaryType::kNone;
// Iterate over anchors until a format boundary is found. This will return a
// null position upon crossing a boundary. Make sure the next position is
// not on an ignored node.
AXPositionInstance next_position = Clone();
do {
next_position = next_position->CreateNextLeafTreePosition(
base::BindRepeating(&AbortMoveAtFormatBoundary));
} while (next_position->IsIgnored());
if (next_position->IsNullPosition())
return AXBoundaryType::kUnitBoundary;
return AXBoundaryType::kNone;
}
bool AtEndOfFormat() const {
return GetFormatEndBoundaryType() != AXBoundaryType::kNone;
}
bool AtStartOfSentence() const {
AXPositionInstance text_position;
if (!AtEndOfAnchor()) {
// We could get a leaf text position at the end of its anchor, where
// sentence start offsets would surely not be present. In such cases, we
// need to normalize to the start of the next leaf anchor. We avoid making
// this change when we are at the end of our anchor because this could
// effectively shift the position forward.
text_position = AsLeafTextPositionBeforeCharacter();
} else {
text_position = AsLeafTextPosition();
}
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
const std::vector<int32_t>& sentence_starts =
text_position->GetAnchor()->GetIntListAttribute(
ax::mojom::IntListAttribute::kSentenceStarts);
return base::Contains(sentence_starts,
int32_t{text_position->text_offset_});
}
}
}
bool AtEndOfSentence() const {
AXPositionInstance text_position;
if (!AtStartOfAnchor()) {
// We could get a leaf text position at the start of its anchor, where
// sentence end offsets would surely not be present. In such cases, we
// need to normalize to the end of the previous leaf anchor. We avoid
// making this change when we are at the start of our anchor because this
// could effectively shift the position backward.
text_position = AsLeafTextPositionAfterCharacter();
} else {
text_position = AsLeafTextPosition();
}
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
const std::vector<int32_t>& sentence_ends =
text_position->GetAnchor()->GetIntListAttribute(
ax::mojom::IntListAttribute::kSentenceEnds);
return base::Contains(sentence_ends,
int32_t{text_position->text_offset_});
}
}
}
// `AtStartOfParagraph` is asymmetric from `AtEndOfParagraph` because line
// breaks could be present between paragraphs. The end of the paragraph is
// always before all such breaks, whilst the start of paragraph is always
// after.
//
// The start of a paragraph should be a leaf text position (or equivalent),
// either at the start of the whole content, or at the start of a leaf text
// position which is right after the one representing the end of the previous
// paragraph, or the one representing one or more line breaks that separate
// the two paragraphs.
//
// In other words, a position `AsLeafTextPosition` is the start of a paragraph
// if one of the following is true :
// 1. The current leaf text position must be at the start of an anchor, or
// after a '\n' character if white space is preserved (e.g. when using
// <pre>...</pre>, or when in an ARIA label), but not before a '\n' character
// in a <br> element unless multiple consecutive <br> elements are present and
// so empty paragraphs have been created.
// 2. Either (a) the current leaf text position is the first leaf text
// position in the whole content, or (b) there is a line breaking object
// between it and the previous leaf text position including any <br> element.
bool AtStartOfParagraph() const {
AXPositionInstance text_position = AsLeafTextPosition();
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
// 1. The current leaf text position must be at the start of an anchor,
// or after a '\n' character if white space is preserved (e.g. when
// using <pre>...</pre>, or when in an ARIA label), but not before a
// '\n' character in a <br> element unless multiple consecutive <br>
// elements are present and so empty paragraphs have been created.
//
// Note that, in theory, `!AtStartOfAnchor()` implies that
// `MaxTextOffset()` > 0 and `text_offset()` > 0. Therefore,
// `text_position->GetText().at(text_position->text_offset_ - 1)` should
// always be valid. However, as reported by https://crbug.com/1379716,
// this logic appears to have flaws.
//
// TODO(accessibility): Investigate what are these edge cases that lead
// to have a `text_offset_` greater than or equal to the `text` length.
if (!text_position->AtStartOfAnchor()) {
if (!text_position->IsPointingToLineBreak()) {
const std::u16string text = text_position->GetText();
if (static_cast<size_t>(text_position->text_offset_) <
text.length() &&
text.at(text_position->text_offset_) == '\n') {
return true;
}
}
return false;
}
// 2. Either (a) the current leaf text position is the first leaf text
// position in the whole content, or (b) there is a line breaking object
// between it and the previous leaf text position including any <br>
// element.
//
// Search for the previous text position within the current paragraph,
// using the paragraph boundary abort predicate. If a valid position was
// found, then this position cannot be the start of a paragraph. The
// predicate will return a null position when an anchor movement would
// cross a paragraph boundary, or the start of content has been reached.
const AbortMovePredicate abort_move_predicate =
base::BindRepeating(&AbortMoveAtParagraphBoundary,
ax::mojom::TextBoundary::kParagraphStart);
return text_position
->CreatePreviousLeafTextPosition(abort_move_predicate)
->IsNullPosition();
}
}
}
// `AtEndOfParagraph` is asymmetric from `AtStartOfParagraph` because line
// breaks could be present between paragraphs. The end of the paragraph is
// always before all such breaks, whilst the start of paragraph is always
// after.
//
// The end of a paragraph should be a leaf text position (or equivalent),
// either at the end of the whole content, or at the end of a leaf text
// position which is right before the one representing the start of the next
// paragraph, or the one representing one or more line breaks that separate
// the two paragraphs.
//
// In other words, a position `AsLeafTextPosition` is the end of a paragraph
// if one of the following is true :
// 1. The current leaf text position must be at the end of an anchor, or
// before a '\n' character if white space is preserved (e.g. when using
// <pre>...</pre>, or when in an ARIA label), but not after a '\n' character
// in a <br> element unless multiple consecutive <br> elements are present and
// so empty paragraphs have been created.
// 2. Either (a) the current leaf text position is the last leaf text position
// in the whole content, or (b) there is a line breaking object between it and
// the next leaf text position, including any <br> element.
bool AtEndOfParagraph() const {
AXPositionInstance text_position = AsLeafTextPosition();
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
// 1. The current leaf text position must be at the end of an anchor, or
// before a '\n' character if white space is preserved (e.g. when using
// <pre>...</pre>, or when in an ARIA label), but not after a '\n'
// character in a <br> element unless multiple consecutive <br> elements
// are present and so empty paragraphs have been created.
//
// Note that, in theory, `!AtEndOfAnchor()` implies
// `AtStartOfAnchor()` != `AtEndOfAnchor()` which in turn implies that
// `MaxTextOffset()` > 0 and `text_offset()` < `MaxTextOffset()`.
// Therefore, `text_position->GetText().at(text_position->text_offset_)`
// should always be valid. However, as reported by
// https://crbug.com/1379716, this logic appears to have flaws.
//
// TODO(accessibility): Investigate what are these edge cases that lead
// to have a `text_offset_` greater than or equal to the `text` length.
if (!text_position->AtEndOfAnchor()) {
if (!text_position->IsPointingToLineBreak()) {
const std::u16string text = text_position->GetText();
if (static_cast<size_t>(text_position->text_offset_) <
text.length() &&
text.at(text_position->text_offset_) == '\n') {
return true;
}
}
return false;
}
// 2. Either (a) the current leaf text position is the last leaf text
// position in the whole content, or (b) there is a line breaking object
// between it and the next leaf text position, including any <br>
// element.
//
// Search for the next text position within the current paragraph, using
// the paragraph boundary abort predicate. If a valid position was
// found, then this position cannot be the end of a paragraph. The
// predicate will return a null position when an anchor movement would
// cross a paragraph boundary, or the end of content has been reached.
const AbortMovePredicate abort_move_predicate =
base::BindRepeating(&AbortMoveAtParagraphBoundary,
ax::mojom::TextBoundary::kParagraphEnd);
return text_position->CreateNextLeafTextPosition(abort_move_predicate)
->IsNullPosition();
}
}
}
// Returns true if this position is at the start or right before content that
// is laid out using "display: inline-block".
bool AtStartOfInlineBlock() const {
AXPositionInstance text_position = AsLeafTextPosition();
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
if (text_position->AtStartOfAnchor()) {
AXPositionInstance previous_position =
text_position->CreatePreviousLeafTreePosition();
// Check that this position is not the start of the first anchor.
if (!previous_position->IsNullPosition()) {
previous_position = text_position->CreatePreviousLeafTreePosition(
base::BindRepeating(&AbortMoveAtStartOfInlineBlock));
// If we get a null position here it means we have crossed an inline
// block's start, thus this position is located at such start.
if (previous_position->IsNullPosition())
return true;
}
}
if (text_position->AtEndOfAnchor()) {
AXPositionInstance next_position =
text_position->CreateNextLeafTreePosition();
// Check that this position is not the end of the last anchor.
if (!next_position->IsNullPosition()) {
next_position = text_position->CreateNextLeafTreePosition(
base::BindRepeating(&AbortMoveAtStartOfInlineBlock));
// If we get a null position here it means we have crossed an inline
// block's start, thus this position is located at such start.
if (next_position->IsNullPosition())
return true;
}
}
return false;
}
}
}
// Page boundaries are only supported in certain content types, e.g. PDF
// documents.
bool AtStartOfPage() const {
AXPositionInstance text_position = AsLeafTextPosition();
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
if (!text_position->AtStartOfAnchor())
return false;
// Search for the previous text position within the current page,
// using the page boundary abort predicate.
// If a valid position was found, then this position cannot be
// the start of a page.
// This will return a null position when an anchor movement would
// cross a page boundary, or the start of content was reached.
AXPositionInstance previous_text_position =
text_position->CreatePreviousLeafTextPosition(
base::BindRepeating(&AbortMoveAtPageBoundary));
return previous_text_position->IsNullPosition();
}
}
}
// Page boundaries are only supported in certain content types, e.g. PDF
// documents.
bool AtEndOfPage() const {
AXPositionInstance text_position = AsLeafTextPosition();
switch (text_position->kind_) {
case AXPositionKind::NULL_POSITION:
return false;
case AXPositionKind::TREE_POSITION:
NOTREACHED();
return false;
case AXPositionKind::TEXT_POSITION: {
if (!text_position->AtEndOfAnchor())
return false;
// Search for the next text position within the current page,
// using the page boundary abort predicate.
// If a valid position was found, then this position cannot be
// the end of a page.
// This will return a null position when an anchor movement would
// cross a page boundary, or the end of content was reached.
AXPositionInstance next_text_position =
text_position->CreateNextLeafTextPosition(
base::BindRepeating(&AbortMoveAtPageBoundary));
return next_text_position->IsNullPosition();
}
}
}
// Returns true if this position is at the start of the current accessibility
// tree, such as the current iframe, webpage, PDF document, dialog or window.
// Note that the current webpage could be made up of multiple accessibility
// trees stitched together, e.g. an out-of-process iframe will be in its own
// accessibility tree. For the purposes of this method, we don't distinguish
// between out-of-process and in-process iframes, treating them both as tree
// boundaries.
bool AtStartOfAXTree() const {
if (IsNullPosition() || !AtStartOfAnchor())
return false;
AXPositionInstance previous_anchor = CreatePreviousAnchorPosition();
// The start of the whole content should also be the start of an AXTree.
if (previous_anchor->IsNullPosition())
return true;
return previous_anchor->tree_id() != tree_id();
}
// Returns true if this position is at the end of the current accessibility
// tree, such as the current iframe, webpage, PDF document, dialog or window.
// Note that the current webpage could be made up of multiple accessibility
// trees stitched together, e.g. an out-of-process iframe will be in its own
// accessibility tree. For the purposes of this method, we don't distinguish
// between out-of-process and in-process iframes, treating them both as tree
// boundaries.
bool AtEndOfAXTree() const {
if (IsNullPosition() || !IsLeaf() || !AtEndOfAnchor())
return false;
return *CreatePositionAtEndOfAXTree() == *this;
}
// Returns true if this position is at the start of all content. This might
// refer to e.g. a single webpage (made up of multiple iframes), or a PDF
// document. Note that the current webpage could be made up of multiple
// accessibility trees stitched together, so even though a position could be
// at the start of a specific accessibility tree, it might not be at the start
// of the whole content.
bool AtStartOfContent() const {
if (IsNullPosition() || !AtStartOfAnchor())
return false;
return *CreatePositionAtStartOfContent() == *this;
}
// Returns true if this position is at the end of all content. This might
// refer to e.g. a single webpage (made up of multiple iframes), or a PDF
// document. Note that the current webpage could be made up of multiple
// accessibility trees stitched together, so even though a position could be
// at the end of a specific accessibility tree, it might not be at the end of
// the whole content.
bool AtEndOfContent() const {
if (IsNullPosition() || !AtEndOfAnchor())
return false;
return *CreatePositionAtEndOfContent() == *this;
}
// This method finds the lowest common ancestor node in the accessibility tree
// of this and |other| positions' anchor nodes.
AXNode* LowestCommonAnchor(const AXPosition& other) const {
if (IsNullPosition() || other.IsNullPosition())
return nullptr;
if (GetAnchor() == other.GetAnchor())
return GetAnchor();
base::stack<AXNode*> our_ancestors = GetAncestorAnchors();
base::stack<AXNode*> other_ancestors = other.GetAncestorAnchors();
AXNode* common_anchor = nullptr;
while (!our_ancestors.empty() && !other_ancestors.empty() &&
our_ancestors.top() == other_ancestors.top()) {
common_anchor = our_ancestors.top();
our_ancestors.pop();
other_ancestors.pop();
}
return common_anchor;
}
// This method returns a position instead of a node because this allows us to
// return the corresponding text offset or child index in the ancestor that
// relates to the current position.
// Also, this method uses position instead of tree logic to traverse the tree,
// because positions can handle moving across multiple trees, while trees
// cannot.
AXPositionInstance LowestCommonAncestorPosition(
const AXPosition& other,
ax::mojom::MoveDirection move_direction) const {
return CreateAncestorPosition(LowestCommonAnchor(other), move_direction);
}
// See "CreateParentPosition" for an explanation of the use of
// |move_direction|.
AXPositionInstance CreateAncestorPosition(
const AXNode* ancestor_anchor,
ax::mojom::MoveDirection move_direction) const {
if (!ancestor_anchor)
return CreateNullPosition();
AXPositionInstance ancestor_position = Clone();
while (!ancestor_position->IsNullPosition() &&
ancestor_position->GetAnchor() != ancestor_anchor) {
ancestor_position =
ancestor_position->CreateParentPosition(move_direction);
}
return ancestor_position;
}
// If the position is not valid, we return a new valid position that is
// closest to the original position if possible, or a null position otherwise.
AXPositionInstance AsValidPosition() const {
AXPositionInstance position = Clone();
switch (position->kind_) {
case AXPositionKind::NULL_POSITION:
// We avoid cloning to ensure that all fields will be valid.
return CreateNullPosition();
case AXPositionKind::TREE_POSITION: {
if (!position->GetAnchor())
return CreateNullPosition();
const AXNode* leaf_node = GetEmptyObjectAncestorNode();
if (!leaf_node && position->IsLeaf()) {
// If there is no empty object ancestor, but the current position's
// anchor is a leaf, then use the same anchor, as it will be valid
// as long as a valid offset is used.
leaf_node = position->GetAnchor();
}
if (leaf_node) {
// In this class, we define the empty node as a leaf node (see
// `AXNode::IsLeaf()`) that doesn't have any content. On certain
// platforms, and so that such nodes will act as a character and a
// word boundary, we insert an "embedded object replacement character"
// in their text contents. This character is a string of length
// `AXNode::kEmbeddedObjectCharacterLengthUTF16`. For example, an
// empty text field should act as a character and a word boundary when
// a screen reader user tries to navigate through it, otherwise the
// text field would be missed by the user.
//
// Since we just explained that on certain platforms empty leaf nodes
// expose the "embedded object replacement character" in their text
// contents, and since we assume that all text is found only on leaf
// nodes, we should hide any descendants. Thus, a position on a
// descendant of an empty object is defined as invalid. To make it
// valid we move the position from the descendant to the empty leaf
// node itself. Otherwise, character and word navigation won't work
// properly.
AXPositionInstance new_position =
position->child_index() == BEFORE_TEXT
? CreateTreePositionAtStartOfAnchor(*leaf_node)
: CreateTreePositionAtEndOfAnchor(*leaf_node);
DCHECK(new_position->IsLeaf());
return new_position;
}
DCHECK(!position->IsLeaf());
// Not a leaf: use a child index from 0 to AnchorChilkdCount().
if (position->child_index_ == BEFORE_TEXT) {
position->child_index_ = 0;
return position;
}
DCHECK_GE(position->child_index_, 0);
if (position->child_index_ > position->AnchorChildCount())
position->child_index_ = position->AnchorChildCount();
break;
}
case AXPositionKind::TEXT_POSITION: {
if (!position->GetAnchor())
return CreateNullPosition();
if (const AXNode* empty_object_node = GetEmptyObjectAncestorNode()) {
// This is needed because an empty object as defined in this class can
// have descendants that should not be exposed. See comment above in
// similar implementation for AXPositionKind::TREE_POSITION.
//
// We set the |text_offset_| to either 0 or (on certain platforms) the
// length of the embedded object character here because the
// `MaxTextOffset()` of an empty object on those platforms is
// `AXNode::kEmbeddedObjectCharacterLengthUTF16`. If the invalid
// position was already at the start of the node, we set it to 0.
AXPositionInstance valid_position = CreateTextPosition(
*empty_object_node,
/* text_offset */ 0, ax::mojom::TextAffinity::kDownstream);
if (position->text_offset() > 0)
return valid_position->CreatePositionAtEndOfAnchor();
return std::move(valid_position);
}
if (position->text_offset_ <= 0) {
// 0 is always a valid offset, so skip calling MaxTextOffset in that
// case.
position->text_offset_ = 0;
position->affinity_ = ax::mojom::TextAffinity::kDownstream;
} else {
int max_text_offset = position->MaxTextOffset();
if (position->text_offset_ > max_text_offset) {
position->text_offset_ = max_text_offset;
position->affinity_ = ax::mojom::TextAffinity::kDownstream;
}
}
break;
}
}
DCHECK(position->IsValid()) << *position;
return position;
}
AXPositionInstance AsTreePosition() const {
if (IsNullPosition() || IsTreePosition())
return Clone();
AXPositionInstance copy = Clone();
DCHECK_GE(copy->text_offset_, 0);
// Note that by design, `AXPosition::IsLeaf()` excludes the text found in
// ignored subtrees from the accessibility tree's text representation. (See
// `AXNode::IsEmptyLeaf()`.)
if (copy->IsLeaf()) {
// Even though leaf positions are generally not anchored to a node with a
// lot of descendants, still, there is the possibility that the leaf node
// is a text field with a large amount of text. We avoid computing
// `MaxTextOffset()` unless it is really necessary.
if (copy->text_offset_ == 0) {
copy->child_index_ = BEFORE_TEXT;
} else {
const int max_text_offset = copy->MaxTextOffset();
copy->child_index_ = copy->text_offset_ != max_text_offset
? BEFORE_TEXT
: AnchorChildCount();
}
copy->kind_ = AXPositionKind::TREE_POSITION;
DCHECK(copy->IsValid());
return copy;
}
// We stop at the first child that we can reach with the current text
// offset. We do not attempt to validate `MaxTextOffset()` in case it
// doesn't match the total length of all our children. This may happen if,
// for example, there is a bug in the internal accessibility tree we get
// from the renderer. In contrast, the current offset could not be greater
// than the length of all our children because the position would have been
// invalid.
//
// Note that even though ignored children should not contribute any text
// content or hypertext to the tree's text representation, we have to
// include them because they might contain unignored descendants. We only
// exclude them if they are both ignored and contain no text content or
// hypertext. The latter is to avoid, as much as we can, the possibility
// that an unignored position will turn into an ignored one after calling
// this method.
int child_index = 0;
for (int current_offset = 0; child_index < copy->AnchorChildCount();
++child_index) {
AXPositionInstance child = copy->CreateChildPositionAt(child_index);
DCHECK(!child->IsNullPosition());
// If the text offset falls on the boundary between two adjacent children,
// we look at the affinity to decide whether to place the tree position on
// the first child vs. the second child. Upstream affinity would always
// choose the first child, whilst downstream affinity the second. This
// also has implications when converting the resulting tree position back
// to a text position. In that case, maintaining an upstream affinity
// would place the text position at the end of the first child, whilst
// maintaining a downstream affinity will place the text position at the
// beginning of the second child. This is vital for text positions on soft
// line breaks, as well as text positions before and after character, to
// work properly.
//
// Note that in this context "adjacent children" excludes ignored
// children. Note also that children with no text content or no hypertext
// are not skipped, otherwise the following situation will produce an
// erroneous tree position:
// ++kTextField contenteditable=true "" (empty)
// ++++kStaticText "\n" ignored
// ++++++kInlineTextBox "\n" ignored
// ++++kStaticText "" (empty)
// ++++++kInlineTextOffset "" (empty)
// TextPosition anchor=kTextField text_offset=0 affinity=downstream
// AsTreePosition should produce:
// TreePosition anchor=kTextField child_index=1, and not child_index=0 or
// child_index=2
//
// See also `CreateLeafTextPositionBeforeCharacter` and
// `CreateLeafTextPositionAfterCharacter`.
const int child_length = child->MaxTextOffsetInParent();
const bool contributes_no_text_in_parent = !child_length;
const bool is_anchor_unignored = !child->GetAnchor()->IsIgnored();
if (copy->text_offset_ >= current_offset &&
(copy->text_offset_ < (current_offset + child_length) ||
((copy->affinity_ == ax::mojom::TextAffinity::kUpstream ||
(contributes_no_text_in_parent && is_anchor_unignored)) &&
copy->text_offset_ == (current_offset + child_length)))) {
break;
}
current_offset += child_length;
}
copy->child_index_ = child_index;
copy->kind_ = AXPositionKind::TREE_POSITION;
return copy;
}
// This is an optimization over "AsLeafTextPosition", in cases when computing
// the corresponding text offset on the leaf node is not needed. If this
// method is called on a text position, it will conservatively fall back to
// the non-optimized "AsLeafTextPosition", if the current text offset is
// greater than 0, or the affinity is upstream, since converting to a tree
// position at any point before reaching the leaf node could potentially lose
// information.
AXPositionInstance AsLeafTreePosition() const {
if (IsNullPosition() || IsLeaf())
return AsTreePosition();
// If our text offset is greater than 0, or if our affinity is set to
// upstream, we need to ensure that text offset and affinity will be taken
// into consideration during our descend to the leaves. Switching to a tree
// position early in this case will potentially lose information, so we
// descend using a text position instead.
//
// We purposely don't check whether this position is a text position, to
// allow for the possibility that this position has recently been converted
// from a text to a tree position and text offset or affinity information
// has been left intact.
if (text_offset_ > 0 || affinity_ == ax::mojom::TextAffinity::kUpstream)
return AsLeafTextPosition()->AsTreePosition();
AXPositionInstance tree_position = AsTreePosition();
do {
if (tree_position->AtEndOfAnchor()) {
tree_position =
tree_position
->CreateChildPositionAt(tree_position->child_index_ - 1)
->CreatePositionAtEndOfAnchor();
} else {
tree_position =
tree_position->CreateChildPositionAt(tree_position->child_index_);
}
DCHECK(!tree_position->IsNullPosition());
} while (!tree_position->IsLeaf());
DCHECK(tree_position->IsLeafTreePosition());
return tree_position;
}
AXPositionInstance AsTextPosition() const {
if (IsNullPosition() || IsTextPosition())
return Clone();
AXPositionInstance copy = Clone();
// Check if it is a "before text" position.
if (copy->child_index_ == BEFORE_TEXT) {
DCHECK(copy->IsLeaf())
<< "Before text positions can only appear on leaf nodes.";
// If the current text offset is valid, we don't touch it to potentially
// allow converting from a text position to a tree position and back
// without losing information.
//
// We test for INVALID_OFFSET and greater than 0 first, due to the
// possible performance cost of calling `MaxTextOffset()`. Also, if the
// text offset is already 0, we don't need to touch it, and if it is less
// than `MaxTextOffset()` we don't modify it as explained above.
DCHECK_GE(copy->text_offset_, INVALID_OFFSET)
<< "Unrecognized text offset.";
if (copy->text_offset_ == INVALID_OFFSET ||
(copy->text_offset_ > 0 &&
copy->text_offset_ >= copy->MaxTextOffset())) {
copy->text_offset_ = 0;
}
copy->kind_ = AXPositionKind::TEXT_POSITION;
return copy;
}
// Leaf nodes might have descendants that should be hidden for text
// navigation purposes, thus we can't rely solely on `AnchorChildCount()`.
// Any child index that is not `BEFORE_TEXT` should be treated as indicating
// an "after text" position. (See `IsInEmptyObject()` for more information.)
// ++kButton "<embedded_object_character>" (empty)
// ++++kGenericContainer ignored (Might sometimes be added by Blink.)
if (copy->IsLeaf() || copy->child_index_ == copy->AnchorChildCount()) {
copy->text_offset_ = copy->MaxTextOffset();
copy->kind_ = AXPositionKind::TEXT_POSITION;
return copy;
}
DCHECK_GE(copy->child_index_, 0);
DCHECK_LT(copy->child_index_, copy->AnchorChildCount());
int new_offset = 0;
for (int i = 0; i <= child_index_; ++i) {
AXPositionInstance child = copy->CreateChildPositionAt(i);
DCHECK(!child->IsNullPosition());
// If the current text offset is valid, we don't touch it to
// potentially allow converting from a text position to a tree
// position and back without losing information. Otherwise, if the
// text_offset is invalid, equals to 0 or is smaller than
// |new_offset|, we reset it to the beginning of the current child.
if (i == child_index_ && copy->text_offset_ <= new_offset) {
copy->text_offset_ = new_offset;
break;
}
int child_length = child->MaxTextOffsetInParent();
// Same comment as above: we don't touch the text offset if it's
// already valid.
if (i == child_index_ &&
(copy->text_offset_ > (new_offset + child_length) ||
// When the text offset is equal to the text's length but this is
// not an "after text" position.
(!copy->AtEndOfAnchor() &&
copy->text_offset_ == (new_offset + child_length)))) {
copy->text_offset_ = new_offset;
break;
}
new_offset += child_length;
}
// Affinity should always be left as downstream. The only case when the
// resulting text position is at the end of the line is when we get an
// "after text" leaf position, but even in this case downstream is
// appropriate because there is no ambiguity whether the position is at
// the end of the current line vs. the start of the next line. It would
// always be the former.
copy->kind_ = AXPositionKind::TEXT_POSITION;
return copy;
}
AXPositionInstance AsLeafTextPosition() const {
if (IsNullPosition() || IsLeaf())
return AsTextPosition();
AXPositionInstance text_position = Clone();
if (IsTreePosition()) {
DCHECK_NE(child_index(), BEFORE_TEXT)
<< "Before text positions should only be present on leaf anchor "
"nodes.";
DCHECK_GT(AnchorChildCount(), 0)
<< "Non-leaf positions should be anchored to nodes that have "
"children.";
// We can't go directly to a text position if we are initially dealing
// with a tree position, because empty child objects contribute no text to
// the tree's text representation and thus the existing child index
// information would be lost.
//
// ++kRootWebArea
// ++++kGenericContainer (empty object)
// ++++kGenericContainer (empty object)
// TreePosition anchor=kRootWebArea child_index=1 would turn into a text
// position on the same anchor but with a text offset of 0 if we call
// `AsTextPosition()` immediately before first anchoring ourselves to the
// selected child node.
if (child_index() > 0 && child_index() == AnchorChildCount()) {
text_position = CreateChildPositionAt(child_index() - 1)
->CreatePositionAtEndOfAnchor();
} else {
text_position = CreateChildPositionAt(child_index());
}
}
text_position = text_position->AsTextPosition();
DCHECK(!text_position->IsNullPosition());
int offset_in_parent = text_position->text_offset_;
// Determine the anchor and text offset of the leaf equivalent position by
// counting characters that are previous in tree order than
// `offset_in_parent`.
while (!text_position->IsLeaf()) {
AXPositionInstance child = text_position->CreateChildPositionAt(0);
DCHECK(!child->IsNullPosition());
// Note that even though ignored children should not contribute any text
// content or hypertext to the tree's text representation, we have to
// include them because they might contain unignored descendants. We only
// exclude them if they are both ignored and contain no text content or
// hypertext. The latter is to avoid, as much as we can, the possibility
// that an unignored position will turn into an ignored one after calling
// this method.
for (int i = 1;
i < text_position->AnchorChildCount() && offset_in_parent >= 0;
++i) {
const int child_length_in_parent = child->MaxTextOffsetInParent();
const bool contributes_no_text_in_parent =
(child_length_in_parent == 0);
const bool is_anchor_unignored = !child->GetAnchor()->IsIgnored();
if (offset_in_parent == 0 && contributes_no_text_in_parent &&
is_anchor_unignored) {
// If the text offset corresponds to multiple child positions because
// some of the children have no text content or hypertext, the above
// condition ensures that the first child will be chosen; unless it is
// ignored as explained before.
break;
}
if (offset_in_parent < child_length_in_parent)
break;
if (affinity_ == ax::mojom::TextAffinity::kUpstream &&
offset_in_parent == child_length_in_parent) {
// Maintain upstream affinity so that we'll be able to choose the
// correct leaf anchor if the text offset is right on the boundary
// between two leaves.
child->affinity_ = ax::mojom::TextAffinity::kUpstream;
break;
}
child = text_position->CreateChildPositionAt(i);
offset_in_parent -= child_length_in_parent;
}
// The text offset provided by our parent position might need to be
// adjusted, if this is an "after text" position and our anchor node is an
// embedded object (as determined by `IsEmbeddedObjectInParent()`).
// ++kRootWebArea "<embedded_object>"
// ++++kParagraph "Hello"
// TextPosition anchor=kRootWebArea text_offset=1
// should be translated into the following text position
// TextPosition anchor=kParagraph text_offset=5 annotated_text=Hello<>
// and not into the following one
// TextPosition anchor=kParagraph text_offset=1 annotated_text=<H>ello
if (child->IsEmbeddedObjectInParent() &&
offset_in_parent == child->MaxTextOffsetInParent()) {
offset_in_parent -= child->MaxTextOffsetInParent();
offset_in_parent += child->MaxTextOffset();
}
text_position = std::move(child);
}
DCHECK(text_position->IsLeafTextPosition());
text_position->text_offset_ = offset_in_parent;
// A leaf Text position is always downstream since there is no ambiguity as
// to whether it refers to the end of the current or the start of the next
// line.
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
return text_position;
}
// Converts to a text position that is suitable for passing into the renderer
// as a selection endpoint. In other words, converts to a position that is
// suitable for setting as a DOM selection range endpoint.
//
// When blink is asked to set selection, it expects a text position to be
// anchored to the text node (otherwise a generic tree position is assumed
// and the offset is interpreted as a child index).
AXPositionInstance AsDomSelectionPosition() const {
if (IsNullPosition() || GetAnchor()->data().IsAtomicTextField())
return Clone();
AXPositionInstance text_position = AsLeafTextPosition();
if (text_position->GetAnchor() && text_position->GetAnchor()->GetRole() ==
ax::mojom::Role::kInlineTextBox) {
return text_position->CreateParentPosition();
}
return text_position;
}
// We deploy three strategies in order to find the best match for an ignored
// position in the accessibility tree:
//
// 1. In the case of a text position, we move up the parent positions until we
// find the next unignored equivalent parent position. We don't do this for
// tree positions because, unlike text positions which maintain the
// corresponding text offset in the text content of the parent node, tree
// positions would lose some information every time a parent position is
// computed. In other words, the parent position of a tree position is, in
// most cases, non-equivalent to the child position.
// 2. If no equivalent and unignored parent position can be computed, we try
// computing the leaf equivalent position. If this is unignored, we return it.
// This can happen both for tree and text positions, provided that the leaf
// node and its text content is visible to platform APIs, i.e. it's unignored.
// 3. As a last resort, we move either to the next or previous unignored
// position in the accessibility tree, based on the "adjustment_behavior".
AXPositionInstance AsUnignoredPosition(
AXPositionAdjustmentBehavior adjustment_behavior) const {
if (IsNullPosition() || !IsIgnored())
return Clone();
AXPositionInstance leaf_tree_position = AsLeafTreePosition();
// If this is a text position, first try moving up to a parent equivalent
// position and check if the resulting position is still ignored. This
// won't result in the loss of any information. We can't do that in the
// case of tree positions, because we would be better off to move to the
// next or previous position within the same anchor, as this would lose
// less information than moving to a parent equivalent position.
//
// Text positions are considered ignored if either the current anchor is
// ignored, or if the equivalent leaf tree position is ignored.
// If this position is a leaf text position, or the equivalent leaf tree
// position is ignored, then it's not possible to create an ancestor text
// position that is unignored.
if (IsTextPosition() && !IsLeafTextPosition() &&
!leaf_tree_position->IsIgnored()) {
AXPositionInstance unignored_position = CreateParentPosition();
while (!unignored_position->IsNullPosition()) {
// Since the equivalent leaf tree position is unignored, search for the
// first unignored ancestor anchor and return that text position.
if (!unignored_position->GetAnchor()->IsIgnored()) {
DCHECK(!unignored_position->IsIgnored());
return unignored_position;
}
unignored_position = unignored_position->CreateParentPosition();
}
}
// There is a possibility that the position became unignored by moving to a
// leaf equivalent position. Otherwise, we have no choice but to move to the
// next or previous position and lose some information in the process.
while (leaf_tree_position->IsIgnored()) {
switch (adjustment_behavior) {
case AXPositionAdjustmentBehavior::kMoveForward:
leaf_tree_position = leaf_tree_position->CreateNextLeafTreePosition();
break;
case AXPositionAdjustmentBehavior::kMoveBackward:
leaf_tree_position =
leaf_tree_position->CreatePreviousLeafTreePosition();
// in case the unignored leaf node contains some text, ensure that the
// resulting position is an "after text" position, as such a position
// would be the closest to the ignored one, given the fact that we are
// moving backwards through the tree.
leaf_tree_position =
leaf_tree_position->CreatePositionAtEndOfAnchor();
break;
}
}
if (IsTextPosition())
return leaf_tree_position->AsTextPosition();
return leaf_tree_position;
}
// Searches backward and forward from this position until it finds the given
// text boundary, and creates an AXRange that spans from the former to the
// latter. The resulting AXRange is always a forward range: its anchor always
// comes before its focus in document order. The resulting AXRange is bounded
// by the anchor of this position and the requested boundary type, i.e. the
// AXMovementOptions is set to `AXBoundaryBehavior::kStopAtAnchorBoundary` and
// `AXBoundaryDetection::kCheckInitialPosition`. The
// exception is `ax::mojom::TextBoundary::kWebPage`, where this behavior won't
// make sense. This behavior is based on current platform needs and might be
// relaxed if necessary in the future.
//
// Observe that `expand_behavior` has an effect only when this position is
// between text units, e.g. between words, lines, paragraphs, etc. Also,
// please note that `expand_behavior` should have no effect for
// `ax::mojom::TextBoundary::kObject` and `ax::mojom::TextBoundary::kWebPage`
// because the range should be the same regardless if we first move left or
// right.
AXRangeType ExpandToEnclosingTextBoundary(
ax::mojom::TextBoundary boundary,
AXRangeExpandBehavior expand_behavior) const {
AXMovementOptions left_options{AXBoundaryBehavior::kStopAtAnchorBoundary,
AXBoundaryDetection::kCheckInitialPosition};
AXMovementOptions right_options{
AXBoundaryBehavior::kStopAtAnchorBoundary,
AXBoundaryDetection::kDontCheckInitialPosition};
if (boundary == ax::mojom::TextBoundary::kWebPage) {
left_options =
right_options = {AXBoundaryBehavior::kCrossBoundary,
AXBoundaryDetection::kDontCheckInitialPosition};
}
switch (expand_behavior) {
case AXRangeExpandBehavior::kLeftFirst: {
AXPositionInstance left_position = CreatePositionAtTextBoundary(
boundary, ax::mojom::MoveDirection::kBackward, left_options);
AXPositionInstance right_position =
left_position->CreatePositionAtTextBoundary(
boundary, ax::mojom::MoveDirection::kForward, right_options);
return AXRangeType(std::move(left_position), std::move(right_position));
}
case AXRangeExpandBehavior::kRightFirst: {
AXPositionInstance right_position = CreatePositionAtTextBoundary(
boundary, ax::mojom::MoveDirection::kForward, left_options);
AXPositionInstance left_position =
right_position->CreatePositionAtTextBoundary(
boundary, ax::mojom::MoveDirection::kBackward, right_options);
return AXRangeType(std::move(left_position), std::move(right_position));
}
}
}
// Starting from this position, moves in the given direction until it finds
// the given text boundary, and creates a new position at that location.
//
// When a boundary has the "StartOrEnd" suffix, it means that this method will
// find the start boundary when moving in the backward direction, and the end
// boundary when moving in the forward direction.
AXPositionInstance CreatePositionAtTextBoundary(
ax::mojom::TextBoundary boundary,
ax::mojom::MoveDirection direction,
AXMovementOptions options) const {
AXPositionInstance resulting_position = CreateNullPosition();
switch (boundary) {
case ax::mojom::TextBoundary::kNone:
NOTREACHED();
break;
case ax::mojom::TextBoundary::kCharacter:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousCharacterPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextCharacterPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kFormatEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousFormatEndPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextFormatEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kFormatStart:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousFormatStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextFormatStartPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kFormatStartOrEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousFormatStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextFormatEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kLineEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousLineEndPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextLineEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kLineStart:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousLineStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextLineStartPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kLineStartOrEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousLineStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextLineEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kObject:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePositionAtStartOfAnchor();
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreatePositionAtEndOfAnchor();
break;
}
break;
case ax::mojom::TextBoundary::kPageEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousPageEndPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextPageEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kPageStart:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousPageStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextPageStartPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kPageStartOrEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousPageStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextPageEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kParagraphEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousParagraphEndPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextParagraphEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kParagraphStart:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousParagraphStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextParagraphStartPosition(options);
break;
}
break;
// For UI Automation, empty lines after a paragraph should be merged into
// the preceding paragraph.
//
// See
// https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-uiautomationtextunits#paragraph
case ax::mojom::TextBoundary::kParagraphStartSkippingEmptyParagraphs:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position =
CreatePreviousParagraphStartPositionSkippingEmptyParagraphs(
options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position =
CreateNextParagraphStartPositionSkippingEmptyParagraphs(
options);
break;
}
break;
case ax::mojom::TextBoundary::kParagraphStartOrEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousParagraphStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextParagraphEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kSentenceEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousSentenceEndPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextSentenceEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kSentenceStart:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousSentenceStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextSentenceStartPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kSentenceStartOrEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousSentenceStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextSentenceEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kWebPage:
DCHECK_EQ(options.boundary_behavior, AXBoundaryBehavior::kCrossBoundary)
<< "We can't reach the start of the whole contents if we are "
"disallowed from crossing boundaries.";
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePositionAtStartOfContent();
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreatePositionAtEndOfContent();
break;
}
break;
case ax::mojom::TextBoundary::kWordEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousWordEndPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextWordEndPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kWordStart:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousWordStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextWordStartPosition(options);
break;
}
break;
case ax::mojom::TextBoundary::kWordStartOrEnd:
switch (direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
break;
case ax::mojom::MoveDirection::kBackward:
resulting_position = CreatePreviousWordStartPosition(options);
break;
case ax::mojom::MoveDirection::kForward:
resulting_position = CreateNextWordEndPosition(options);
break;
}
break;
}
return resulting_position;
}
AXPositionInstance CreatePositionAtStartOfAnchor() const {
const AXNode* anchor = GetAnchor();
if (!anchor)
return CreateNullPosition();
switch (kind_) {
case AXPositionKind::NULL_POSITION:
return CreateNullPosition();
case AXPositionKind::TREE_POSITION:
return CreateTreePositionAtStartOfAnchor(*anchor);
case AXPositionKind::TEXT_POSITION:
return CreateTextPosition(*anchor, 0 /* text_offset */,
ax::mojom::TextAffinity::kDownstream);
}
}
AXPositionInstance CreatePositionAtEndOfAnchor() const {
const AXNode* anchor = GetAnchor();
if (!anchor)
return CreateNullPosition();
switch (kind_) {
case AXPositionKind::NULL_POSITION:
return CreateNullPosition();
case AXPositionKind::TREE_POSITION:
return CreateTreePositionAtEndOfAnchor(*anchor);
case AXPositionKind::TEXT_POSITION:
return CreateTextPosition(*anchor, MaxTextOffset(),
ax::mojom::TextAffinity::kDownstream);
}
}
// Creates a position at the start of this position's accessibility tree, e.g.
// at the start of the current iframe, PDF plugin, Views tree, dialog, etc. We
// don't distinguish between out-of-process and in-process iframes, treating
// them both as tree boundaries.
//
// For a similar method that does not stop at iframe boundaries, see
// `CreatePositionAtStartOfContent()`.
AXPositionInstance CreatePositionAtStartOfAXTree() const {
AXPositionInstance root_position =
AsTreePosition()
->CreateAXTreeRootAncestorPosition(
ax::mojom::MoveDirection::kBackward)
->CreatePositionAtStartOfAnchor();
if (IsTextPosition())
root_position = root_position->AsTextPosition();
DCHECK_EQ(root_position->tree_id_, tree_id_)
<< "`CreatePositionAtStartOfAXTree` should not cross any tree "
"boundaries, neither return the null position.";
return root_position;
}
// Creates a position at the end of this position's accessibility tree, e.g.
// at the end of the current iframe, PDF plugin, Views tree, dialog, etc. We
// don't distinguish between out-of-process and in-process iframes, treating
// them both as tree boundaries.
//
// For a similar method that does not stop at iframe boundaries, see
// `CreatePositionAtEndOfContent()`.
AXPositionInstance CreatePositionAtEndOfAXTree() const {
AXPositionInstance root_position =
AsTreePosition()->CreateAXTreeRootAncestorPosition(
ax::mojom::MoveDirection::kBackward);
AXPositionInstance last_position =
root_position->CreatePositionAtEndOfAnchor()->AsLeafTreePosition();
if (IsTextPosition())
last_position = last_position->AsTextPosition();
return last_position;
}
// Creates a position at the start of all content, e.g. at the start of the
// whole webpage, PDF plugin, Views tree, dialog (native, ARIA or HTML),
// window, or the whole desktop.
//
// Note that this method will break out of an out-of-process iframe and return
// a position at the start of the top-level document, but it will not break
// into the Views tree if present. For a similar method that stops at all
// iframe boundaries, see `CreatePositionAtStartOfAXTree()`.
AXPositionInstance CreatePositionAtStartOfContent() const {
AXPositionInstance root_position =
AsTreePosition()
->CreateRootAncestorPosition(ax::mojom::MoveDirection::kBackward)
->CreatePositionAtStartOfAnchor();
if (IsTextPosition())
root_position = root_position->AsTextPosition();
return root_position;
}
// Creates a position at the end of all content, e.g. at the end of the whole
// webpage, PDF plugin, Views tree, dialog (native, ARIA or HTML), window, or
// the whole desktop.
//
// Note that this method will break out of an out-of-process iframe and return
// a position at the end of the top-level document, but it will not break into
// the Views tree if present. For a similar method that stops at all iframe
// boundaries, see `CreatePositionAtEndOfAXTree()`.
AXPositionInstance CreatePositionAtEndOfContent() const {
AXPositionInstance root_position =
AsTreePosition()->CreateRootAncestorPosition(
ax::mojom::MoveDirection::kBackward);
AXPositionInstance last_position =
root_position->CreatePositionAtEndOfAnchor()->AsLeafTreePosition();
if (IsTextPosition())
last_position = last_position->AsTextPosition();
return last_position;
}
AXPositionInstance CreateChildPositionAt(int child_index) const {
if (IsNullPosition() || IsLeaf())
return CreateNullPosition();
if (child_index < 0 || child_index >= AnchorChildCount())
return CreateNullPosition();
const AXNode* child_anchor =
GetAnchor()->GetChildAtIndexCrossingTreeBoundary(child_index);
if (!child_anchor)
return CreateNullPosition();
switch (kind_) {
case AXPositionKind::NULL_POSITION:
NOTREACHED();
return CreateNullPosition();
case AXPositionKind::TREE_POSITION:
return CreateTreePositionAtStartOfAnchor(*child_anchor);
case AXPositionKind::TEXT_POSITION:
return CreateTextPosition(*child_anchor, 0 /* text_offset */,
ax::mojom::TextAffinity::kDownstream);
}
return CreateNullPosition();
}
// Creates a parent equivalent position.
//
// Note that "move_direction" is only taken into consideration when all of
// these three conditions apply: This is a text position, we are in the
// process of searching for a text boundary, and this is a platform where
// child nodes are represented by "object replacement characters". On such
// platforms, the `IsEmbeddedObjectInParent` method returns true. We need to
// decide whether to create a parent equivalent position that is before or
// after the child node, since moving to a parent position would always cause
// us to lose some information. We can't simply re-use the text offset of the
// child position because by definition the parent node doesn't include all
// the text of the child node, but only a single "object replacement
// character".
//
// staticText name='Line one' IA2-hypertext='<embedded_object>'
// ++inlineTextBox name='Line one'
//
// If we are given a text position pointing to somewhere inside the
// inlineTextBox, and we move to the parent equivalent position, we need to
// decide whether the parent position would be set to point to before the
// object replacement character or after it. Both are valid, depending on the
// direction on motion, e.g. if we are trying to find the start of the line
// vs. the end of the line.
AXPositionInstance CreateParentPosition(
ax::mojom::MoveDirection move_direction =
ax::mojom::MoveDirection::kForward) const {
if (IsNullPosition())
return CreateNullPosition();
const AXNode* parent_anchor = GetAnchor()->GetParentCrossingTreeBoundary();
if (!parent_anchor)
return CreateNullPosition();
const AXTree* tree = parent_anchor->tree();
DCHECK(tree);
switch (kind_) {
case AXPositionKind::NULL_POSITION:
NOTREACHED();
return CreateNullPosition();
case AXPositionKind::TREE_POSITION: {
if (IsLeafNodeForTreePosition(*parent_anchor)) {
if (AtEndOfAnchor() ||
move_direction == ax::mojom::MoveDirection::kForward) {
// If this position is an "after children" or an "after text"
// position inside of a leaf, or we are seeking a parent position
// for a forward movement operation with a parent leaf anchor,
// return a position at the end of the parent anchor.
return CreateTreePositionAtEndOfAnchor(*parent_anchor);
}
// If we are seeking a parent position for a backward movement
// operation, return a position at the start of the parent anchor.
return CreateTreePositionAtStartOfAnchor(*parent_anchor);
}
// If this position is an "after children" or an "after text" position,
// return either an "after children" position on the parent anchor, or a
// position anchored at the next child, depending on whether this is the
// last child in its parent anchor.
int child_index = AnchorIndexInParent();
if (AtEndOfAnchor())
return CreateTreePosition(*parent_anchor, (child_index + 1));
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
// "move_direction" is only important when this position is an
// "embedded object in parent", i.e., when this position's anchor is
// represented by an "object replacement character" in the text of
// its parent anchor. In this case we need to keep the child index
// to be right before the "object replacement character". If this is
// not an "embedded object in parent", then we simply need to use
// the "AnchorIndexInParent" for the child index. However, since
// "AnchorIndexInParent" always returns a child index that is before
// any "object replacement character" in our parent, we use that for
// both situations.
return CreateTreePosition(*parent_anchor, child_index);
case ax::mojom::MoveDirection::kForward:
// "move_direction" is only important when this position is an
// "embedded object in parent", i.e., when this position's anchor is
// represented by an "object replacement character" in the text of
// its parent anchor. In this case we need to move the child index
// to be after the "object replacement character" when this position
// is not at the start of its anchor. If this is not an "embedded
// object in parent", then we simply need to use the
// "AnchorIndexInParent" for the child index.
if (!AtStartOfAnchor() && IsEmbeddedObjectInParent())
++child_index;
return CreateTreePosition(*parent_anchor, child_index);
}
}
case AXPositionKind::TEXT_POSITION: {
// On some platforms, such as Android, Mac and Chrome OS, the text
// content of a node is made up by concatenating the text of child
// nodes. On other platforms, such as Windows IAccessible2 and Linux
// ATK, child nodes are represented by a single "object replacement
// character".
//
// If our parent's text content is a concatenation of all its children's
// text, we need to maintain the affinity and compute the corresponding
// text offset. Otherwise, we have no choice but to return a position
// that is either before or after this child, losing some information in
// the process. Regardless to whether our parent contains all our text,
// we always recompute the affinity when the position is after the
// child.
//
// Recomputing the affinity in the latter situation is important because
// even though a text position might unambiguously be at the end of a
// line, its parent position might be the same as the parent position of
// a position that represents the start of the next line. For example:
//
// staticText name='Line oneLine two'
// ++inlineTextBox name='Line one'
// ++inlineTextBox name='Line two'
//
// If the original position is at the end of the inline text box for
// "Line one", then the resulting parent equivalent position would be
// the same as the one that would have been computed if the original
// position were at the start of the inline text box for "Line two".
const int max_text_offset = MaxTextOffset();
// TODO(crbug.com/1404289): temporary disabled until ax position
// autocorrection issue is fixed.
// DCHECK_LE(text_offset_, max_text_offset);
const int max_text_offset_in_parent =
IsEmbeddedObjectInParent()
? AXNode::kEmbeddedObjectCharacterLengthUTF16
: max_text_offset;
int parent_offset = AnchorTextOffsetInParent();
ax::mojom::TextAffinity parent_affinity = affinity_;
// "max_text_offset > 0" is required to filter out anchor nodes that are
// either ignored or empty, i.e. those that contribute no text content
// or hypertext to their parent's text representation. (See example in
// the "else" block.)
if (max_text_offset > 0 &&
max_text_offset == max_text_offset_in_parent) {
// Our parent contains all our text. No information would be lost when
// moving to a parent equivalent position. It turns out, that even in
// the unusual case where there is a single character in our anchor's
// text content but our anchor is represented in our parent by an
// "embedded object replacement character" and not by our text
// content, the outcome is still correct.
parent_offset += text_offset_;
} else {
// Our parent represents our anchor node using an "object replacement"
// character in its text representation. Or, our anchor is a text node
// that is ignored or empty, and so contributes no text in its
// parent's text representation. For example:
// ++kTextField "Before after."
// ++++kStaticText "Before "
// ++++kStaticText "Ignored text" ignored
// ++++kStaticText "after."
// TextPosition anchor=kStaticText (ignored) text_offset=2
// annotated_text="Ig<n>ored text"
if (text_offset_ > 0 && text_offset_ < max_text_offset) {
// If this is a "before text" or an "after text" position, i.e. if
// "text_offset_" == 0 or "max_text_offset", then the child position
// is clearly before or clearly after any "object replacement
// character". No information would be lost when moving to a parent
// equivalent position, including affinity which can easily be
// computed. Otherwise, we should decide whether to set the parent
// position to be before or after the child, based on the direction
// of motion, and also reset the affinity.
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
// Keep the offset to be right before the embedded object
// character.
break;
case ax::mojom::MoveDirection::kForward:
// Set the offset to be after the embedded object character.
parent_offset += max_text_offset_in_parent;
break;
}
} else if (text_offset_ == max_text_offset) {
// Clearly, this is an "after text" position. The text offset should
// be after the "object replacement character". No information would
// be lost when moving to a parent equivalent position, including
// affinity which can easily be computed.
parent_offset += max_text_offset_in_parent;
}
// The original affinity doesn't apply any more. In most cases, it
// should be downstream, unless there is an ambiguity as to whether
// the parent position is between the end of one line and the start of
// the next. We perform this check below.
parent_affinity = ax::mojom::TextAffinity::kDownstream;
}
// There are two cases for which we need to set an upstream affinity on
// the parent position:
//
// Case 1:
// If the current position is pointing at the end of its anchor, we need
// to check if the parent position has introduced ambiguity as to
// whether it refers to the end of a line or the start of the next.
// Ambiguity is only present when the parent position points to a text
// offset that is neither at the start nor at the end of its anchor. We
// check for ambiguity by creating the parent position and testing if it
// is erroneously at the start of the next line. Given that the current
// position, by the nature of being at the end of its anchor, could only
// be at end of line, the fact that the parent position is also
// determined to be at start of line demonstrates the presence of
// ambiguity which is resolved by setting its affinity to upstream.
//
// We could not have checked if the child was at the end of the line,
// because our "AtEndOfLine" predicate takes into account trailing line
// breaks, which would create false positives.
//
// Case 2:
// If the current position is followed by a generated newline character,
// which is a character that is actually not represented in the text
// content of the nodes but should still act as a stop when navigating
// to the previous/next character.
//
// When this is the case, we almost always want to set an upstream
// affinity on the `parent_position`. The only exception is when our
// current position is contained on a descendant of an empty object,
// because an empty object will hide the textual representation of its
// descendants, including the generated newline characters, by exposing
// a only the empty object character.
//
// Example:
// ++1 kLink "<embedded_object>"
// ++++2 kStaticText "hello" IsLineBreakingObject=true
// ++++++3 kInlineTextBox "hello"
// ++++4 kStaticText "world"
// ++++++5 kInlineTextBox "world"
//
// While there should be a generated newline character at the end of a
// position created on node 2, there won't be one represented to the
// user because node 1 simply exposes the empty object character and not
// its children's text.
AXPositionInstance parent_position =
CreateTextPosition(*parent_anchor, parent_offset, parent_affinity);
if ((AtEndOfAnchor() && !parent_position->AtStartOfAnchor() &&
!parent_position->AtEndOfAnchor() &&
parent_position->AtStartOfLine()) ||
(!IsEmbeddedObjectInParent() && IsFollowedByGeneratedNewline())) {
parent_position->affinity_ = ax::mojom::TextAffinity::kUpstream;
}
return parent_position;
}
}
}
// Creates the next tree position that is anchored at a leaf node of the
// AXTree.
AXPositionInstance CreateNextLeafTreePosition() const {
return CreateNextLeafTreePosition(
base::BindRepeating(&DefaultAbortMovePredicate));
}
// Creates the previous tree position that is anchored at a leaf node of the
// AXTree.
AXPositionInstance CreatePreviousLeafTreePosition() const {
return CreatePreviousLeafTreePosition(
base::BindRepeating(&DefaultAbortMovePredicate));
}
// Creates the next text position that is anchored at a leaf node of the
// AXTree.
AXPositionInstance CreateNextLeafTextPosition() const {
return CreateNextLeafTextPosition(
base::BindRepeating(&DefaultAbortMovePredicate));
}
// Creates the previous text position that is anchored at a leaf node of the
// AXTree.
AXPositionInstance CreatePreviousLeafTextPosition() const {
return CreatePreviousLeafTextPosition(
base::BindRepeating(&DefaultAbortMovePredicate));
}
AXPositionInstance CreateNextPositionAtAnchorWithText() const {
AXPositionInstance text_position = AsLeafTextPosition();
do {
text_position = text_position->CreateNextLeafTextPosition(
base::BindRepeating(&AbortMoveAtRootBoundary));
} while (!text_position->IsNullPosition() &&
(text_position->IsIgnored() || !text_position->MaxTextOffset()));
return text_position;
}
AXPositionInstance CreatePreviousPositionAtAnchorWithText() const {
AXPositionInstance text_position = AsLeafTextPosition();
do {
text_position = text_position->CreatePreviousLeafTextPosition(
base::BindRepeating(&AbortMoveAtRootBoundary));
} while (!text_position->IsNullPosition() &&
(text_position->IsIgnored() || !text_position->MaxTextOffset()));
return text_position->CreatePositionAtEndOfAnchor();
}
// Generated newline characters are not part of any AXNode in the AXTree. They
// are appended to the accessible textual representation exposed to ATs in
// AXRange::GetText. They are necessary to expose the implicit newlines
// created from the layout breaks to screen reader users. For example, the
// following HTML will create an implicit line break after "hello":
//
// <div contenteditable>
// <div>hello</div>
// <div>world</div>
// </div>
//
// Even though there is not explicit line break in this template, the text
// returned for this contenteditable is "hello\nworld". In order to allow
// screen reader users to navigate (either using the caret or the controls
// built-in the AT), we need to create character stops around these
// generated characters.
//
// We can only create character stops around generated newline characters
// when empty objects are represented in the accessible text (ie. when the
// behavior is set to
// `AXEmbeddedObjectBehavior::kExposeCharacterForHypertext`). Otherwise,
// there's a risk that `CreateParentPosition` will create a position that
// doesn't point to the same character. This is because a position located
// right before a generated newline character will be represented in the
// parent ancestor with an upstream affinity.
//
// Let's consider this AXTree:
// 1 root
// ++2 button
// ++3 checkbox
// ++4 static text
// ++++5 inline text box "abc"
//
// The text representation for the entire document, including the generated
// newlines, will be "\n\nabc" if the empty objects do not expose the empty
// object character. If we were to allow character stops at generated
// newline characters, it would be possible to create a next and previous
// position located before/after a generated newline character. However,
// creating an equivalent position in an ancestor would potentially lead to
// an incorrect position.
//
// Example:
// leaf_position_1: anchor=2, text_offset=0, affinity=downstream
// leaf_position_2: anchor=3, text_offset=0, affinity=downstream
//
// `leaf_position_1` and `leaf_position_2` should both return true for
// `AtStartOfParagraph` and `AtEndOfParagraph`. Calling
// `CreateParentPosition` on each of those will respectively create:
// parent_position_1: anchor=1, text_offset=0, affinity=upstream
// parent_position_1: anchor=1, text_offset=0, affinity=upstream
//
// ...which are both the same. `CreateParentPosition` is relatively important
// when it comes to moving the position by character because
// `CreatePreviousCharacterPosition` uses it in many cases to create the
// previous position on the same anchor as the original position.
//
// This is a quirk of the current implementation which cannot easily be fixed,
// because when object replacement characters are missing from empty objects
// (sucha as a checkbox without a label, etc.) any leaf equivalent position
// from one of the objects' ancestors would skip the empty object and create
// the child position at the first non-empty object. Consequently,
// CreateParentPosition cannot easily determine the correct affinity when
// computing parent equivalent positions from positions on empty objects, i.e.
// like the example positions given here. Skipping empty objects when creating
// leaf equivalent positions had to be done, because on platforms where they
// are not represented by an object replacement character, the AT does not
// even know they are there.
bool AllowsCharacterStopsOnGeneratedNewline() const {
return g_ax_embedded_object_behavior ==
AXEmbeddedObjectBehavior::kExposeCharacterForHypertext ||
!IsInUnignoredEmptyObject();
}
bool IsFollowedByGeneratedNewline() const {
// Hard line breaks (such as <br> in HTML) are discounted because generated
// newlines are only inserted between neighboring block elements (such as
// <p>Hello</p><p>world</p>). Generated newlines are always a product of
// layout and have no corresponding AXNode to it. Hard line breaks have
// a matching AXNode and thus do not require to be treated differently.
AXPositionInstance leaf_text_position = AsLeafTextPosition();
if (!leaf_text_position->AllowsCharacterStopsOnGeneratedNewline() ||
leaf_text_position->affinity_ != ax::mojom::TextAffinity::kDownstream ||
leaf_text_position->GetAnchor()->IsLineBreak() ||
!leaf_text_position->AtEndOfParagraph()) {
return false;
}
AXPositionInstance next_position =
leaf_text_position->CreateNextPositionAtAnchorWithText();
return next_position->AllowsCharacterStopsOnGeneratedNewline() &&
!next_position->IsNullPosition() &&
!next_position->GetAnchor()->IsLineBreak() &&
next_position->AtStartOfParagraph();
}
bool IsPrecededByGeneratedNewline() const {
// Hard line breaks (such as <br> in HTML) are discounted because generated
// newlines are only inserted between neighboring block elements (such as
// <p>Hello</p><p>world</p>). Generated newlines are always a product of
// layout and have no corresponding AXNode to it. Hard line breaks have
// a matching AXNode and thus do not require to be treated differently.
AXPositionInstance leaf_text_position = AsLeafTextPosition();
if (!leaf_text_position->AllowsCharacterStopsOnGeneratedNewline() ||
leaf_text_position->GetAnchor()->IsLineBreak() ||
!leaf_text_position->AtStartOfParagraph()) {
return false;
}
AXPositionInstance previous_position =
leaf_text_position->CreatePreviousPositionAtAnchorWithText();
if (previous_position->IsNullPosition()) {
// When it's null, it's because we've reached the beginning of the tree.
// We need to make sure we didn't skip any generated newlines that could
// have been before the start of the page and our current position.
AXPositionInstance start_of_content =
CreatePositionAtStartOfContent()->AsLeafTextPosition();
return *start_of_content < *this &&
start_of_content->IsFollowedByGeneratedNewline();
}
return previous_position->AllowsCharacterStopsOnGeneratedNewline() &&
!previous_position->GetAnchor()->IsLineBreak() &&
previous_position->AtEndOfParagraph();
}
// Returns a text position located right before the next character (from this
// position) in the tree's text representation, following these conditions:
//
// - If this position is at the end of its anchor, normalize it to the start
// of the next text anchor, regardless of the position's affinity.
// Both text positions are equal when compared, but we consider the start of
// an anchor to be a position BEFORE its first character and the end of the
// previous to be AFTER its last character.
//
// - Skip any empty text anchors; they're "invisible" to the text
// representation and the next character could be ahead.
//
// - Return a null position if there is no next character forward.
//
// If possible, return a position anchored at the current position's anchor;
// this is necessary because we don't want to return any position that might
// be located in the shadow DOM or in a position anchored at a node that is
// not visible to a specific platform's APIs.
//
// Also, |text_offset| is adjusted to point to a valid character offset, i.e.
// it cannot be pointing to a low surrogate pair or to the middle of a
// grapheme cluster.
AXPositionInstance AsLeafTextPositionBeforeCharacter() const {
if (IsNullPosition())
return Clone();
AXPositionInstance leaf_text_position = AsLeafTextPosition();
if (leaf_text_position->IsFollowedByGeneratedNewline())
return leaf_text_position;
AXPositionInstance text_position = AsTextPosition();
// In case the input affinity is upstream, reset it to downstream.
//
// This is to ensure that when we find the equivalent leaf text position, it
// will be at the start of anchor if the original position is anchored to a
// node higher up in the tree and pointing to a text offset that falls on
// the boundary between two leaf nodes. In other words, the returned
// position will always be "before character".
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
text_position = text_position->AsLeafTextPosition();
DCHECK(!text_position->IsNullPosition())
<< "Adjusting to a leaf position should never turn a non-null position "
"into a null one.";
if (!text_position->IsIgnored() && !text_position->AtEndOfAnchor()) {
std::unique_ptr<base::i18n::BreakIterator> grapheme_iterator =
text_position->GetGraphemeIterator();
// The following situation should not be possible but there are existing
// crashes in the field.
//
// TODO(nektar): Remove this workaround as soon as the source of the bug
// is identified.
if (text_position->text_offset_ < 0 ||
text_position->text_offset_ > text_position->MaxTextOffset()) {
SANITIZER_NOTREACHED() << "Offset range error:\n" << ToDebugString();
return CreateNullPosition();
}
DCHECK_GE(text_position->text_offset_, 0);
DCHECK_LE(text_position->text_offset_, text_position->MaxTextOffset());
while (!text_position->AtStartOfAnchor() &&
(!gfx::IsValidCodePointIndex(
text_position->GetText(),
static_cast<size_t>(text_position->text_offset_)) ||
(grapheme_iterator &&
!grapheme_iterator->IsGraphemeBoundary(
static_cast<size_t>(text_position->text_offset_))))) {
--text_position->text_offset_;
}
return text_position;
}
return text_position->CreateNextPositionAtAnchorWithText();
}
// Returns a text position located right after the previous character (from
// this position) in the tree's text representation.
//
// See `AsLeafTextPositionBeforeCharacter`, as this is its "reversed" version.
AXPositionInstance AsLeafTextPositionAfterCharacter() const {
if (IsNullPosition())
return Clone();
AXPositionInstance leaf_text_position = AsLeafTextPosition();
if (leaf_text_position->IsPrecededByGeneratedNewline())
return leaf_text_position;
AXPositionInstance text_position = AsTextPosition();
// Temporarily set the affinity to upstream.
//
// This is to ensure that when we find the equivalent leaf text position, it
// will be at the end of anchor if the original position is anchored to a
// node higher up in the tree and pointing to a text offset that falls on
// the boundary between two leaf nodes. In other words, the returned
// position will always be "after character".
text_position->affinity_ = ax::mojom::TextAffinity::kUpstream;
text_position = text_position->AsLeafTextPosition();
DCHECK(!text_position->IsNullPosition())
<< "Adjusting to a leaf position should never turn a non-null position "
"into a null one.";
if (!text_position->IsIgnored() && !text_position->AtStartOfAnchor()) {
std::unique_ptr<base::i18n::BreakIterator> grapheme_iterator =
text_position->GetGraphemeIterator();
// The following situation should not be possible but there are existing
// crashes in the field.
//
// TODO(nektar): Remove this workaround as soon as the source of the bug
// is identified.
if (text_position->text_offset_ < 0 ||
text_position->text_offset_ > text_position->MaxTextOffset()) {
SANITIZER_NOTREACHED() << "Offset range error:\n" << ToDebugString();
return CreateNullPosition();
}
DCHECK_GE(text_position->text_offset_, 0);
DCHECK_LE(text_position->text_offset_, text_position->MaxTextOffset());
while (!text_position->AtEndOfAnchor() &&
(!gfx::IsValidCodePointIndex(
text_position->GetText(),
static_cast<size_t>(text_position->text_offset_)) ||
(grapheme_iterator &&
!grapheme_iterator->IsGraphemeBoundary(
static_cast<size_t>(text_position->text_offset_))))) {
++text_position->text_offset_;
}
// Reset the affinity to downstream, because an upstream affinity doesn't
// make sense on a leaf anchor.
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
return text_position;
}
return text_position->CreatePreviousPositionAtAnchorWithText();
}
// Creates a position pointing to before the next character, which is defined
// as the start of the next grapheme cluster. Also, ensures that the created
// position will not point to a low surrogate pair.
//
// A grapheme cluster is what an end-user would consider a character and it
// could include a letter with additional diacritics. It could be more than
// one Unicode code unit in length.
//
// See also http://www.unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries
AXPositionInstance CreateNextCharacterPosition(
AXMovementOptions options) const {
if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary &&
AtEndOfAnchor()) {
return Clone();
}
AXPositionInstance text_position = AsLeafTextPositionBeforeCharacter();
if (text_position->IsNullPosition()) {
if (options.boundary_behavior != AXBoundaryBehavior::kCrossBoundary)
text_position = Clone();
return text_position;
}
if (text_position->IsFollowedByGeneratedNewline())
return CreateNextPositionAtAnchorWithText();
// Calling "AsLeafTextPositionBeforeCharacter" should have created a text
// position that is either at a grapheme boundary, or a null position. If
// our text offset is pointing to a position that is in the middle of a
// grapheme cluster, we should not erroneously assume that we are at a
// character boundary and stop because we had been asked to "stop if already
// at boundary". However, we should not modify our position if
// `AsLeafTextPositionBeforeCharacter` has simply moved us to the start of
// the next leaf anchor because we originally happened to be at the end of
// our current anchor. We also need to ensure that we are comparing two
// positions that have the same affinity, since
// `AsLeafTextPositionBeforeCharacter` resets the affinity to downstream,
// while the original affinity might have been upstream.
if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary &&
options.boundary_detection ==
AXBoundaryDetection::kCheckInitialPosition &&
(AtEndOfAnchor() || *text_position == *CloneWithDownstreamAffinity())) {
return Clone();
}
int max_text_offset = text_position->MaxTextOffset();
DCHECK_LT(text_position->text_offset_, max_text_offset);
std::unique_ptr<base::i18n::BreakIterator> grapheme_iterator =
text_position->GetGraphemeIterator();
do {
++text_position->text_offset_;
} while (text_position->text_offset_ < max_text_offset &&
grapheme_iterator &&
!grapheme_iterator->IsGraphemeBoundary(
static_cast<size_t>(text_position->text_offset_)));
DCHECK_GT(text_position->text_offset_, 0);
DCHECK_LE(text_position->text_offset_, text_position->MaxTextOffset());
// If the character boundary is in the same subtree, return a position
// rooted at this position's anchor. This is necessary because we don't want
// to return a position that might be in the shadow DOM when this position
// is not.
const AXNode* common_anchor = text_position->LowestCommonAnchor(*this);
if (GetAnchor() == common_anchor) {
text_position = text_position->CreateAncestorPosition(
common_anchor, ax::mojom::MoveDirection::kForward);
} else if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary) {
// If the next character position crosses the current anchor boundary
// with kStopAtAnchorBoundary, snap to the end of the current anchor.
return CreatePositionAtEndOfAnchor();
}
// Even if the resulting position is right on a soft line break, affinity is
// defaulted to downstream so that this method will always produce the same
// result regardless of the direction of motion or the input affinity.
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
if (IsTreePosition())
return text_position->AsTreePosition();
return text_position;
}
// Creates a position pointing to before the previous character, which is
// defined as the start of the previous grapheme cluster. Also, ensures that
// the created position will not point to a low surrogate pair.
//
// See the comment above `CreateNextCharacterPosition` for the definition of a
// grapheme cluster.
AXPositionInstance CreatePreviousCharacterPosition(
AXMovementOptions options) const {
if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary &&
AtStartOfAnchor()) {
return Clone();
}
AXPositionInstance text_position = AsLeafTextPositionAfterCharacter();
if (text_position->IsNullPosition()) {
if (options.boundary_behavior != AXBoundaryBehavior::kCrossBoundary)
text_position = Clone();
return text_position;
}
// Calling "AsLeafTextPositionAfterCharacter" should have created a text
// position that is either at the start of an anchor that is preceded by a
// generated newline, at a grapheme boundary or a null position.
if (text_position->IsPrecededByGeneratedNewline()) {
// When `text_position` is right after a generated newline character, we
// should create a position located at the end of the previous anchor.
text_position = CreatePreviousPositionAtAnchorWithText();
DCHECK(!text_position->IsNullPosition());
} else {
// If our text offset is pointing to a position that is in the middle of a
// grapheme cluster, we should not erroneously assume that we are at a
// character boundary and stop because we had been asked to "stop if
// already at boundary". However, we should not modify our position if
// `AsLeafTextPositionAfterCharacter` has simply moved us to the end of
// the previous leaf anchor because we originally happened to be at the
// start of our current anchor. We also need to ignore any differences
// that might be due to the affinity, because that should not be a
// determining factor as to whether we would stop if we are already at
// boundary or not.
if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary &&
options.boundary_detection ==
AXBoundaryDetection::kCheckInitialPosition &&
(AtStartOfAnchor() ||
*text_position == *CloneWithUpstreamAffinity() ||
*text_position == *CloneWithDownstreamAffinity())) {
return Clone();
}
DCHECK_GT(text_position->text_offset_, 0);
std::unique_ptr<base::i18n::BreakIterator> grapheme_iterator =
text_position->GetGraphemeIterator();
do {
--text_position->text_offset_;
} while (!text_position->AtStartOfAnchor() && grapheme_iterator &&
!grapheme_iterator->IsGraphemeBoundary(
static_cast<size_t>(text_position->text_offset_)));
DCHECK_GE(text_position->text_offset_, 0);
DCHECK_LT(text_position->text_offset_, text_position->MaxTextOffset());
}
// The character boundary should be in the same subtree. Return a position
// rooted at this position's anchor. This is necessary because we don't want
// to return a position that might be in the shadow DOM when this position
// is not.
const AXNode* common_anchor = text_position->LowestCommonAnchor(*this);
if (GetAnchor() == common_anchor) {
text_position = text_position->CreateAncestorPosition(
common_anchor, ax::mojom::MoveDirection::kBackward);
} else if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary) {
// If the previous character position crosses the current anchor boundary
// with StopAtAnchorBoundary, snap to the start of the current anchor.
return CreatePositionAtStartOfAnchor();
}
// Even if the resulting position is right on a soft line break, affinity is
// defaulted to downstream so that this method will always produce the same
// result regardless of the direction of motion or the input affinity.
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
if (IsTreePosition())
return text_position->AsTreePosition();
return text_position;
}
AXPositionInstance CreateNextWordStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfWordPredicate),
base::BindRepeating(&AtEndOfWordPredicate),
base::BindRepeating(&GetWordStartOffsetsFunc));
}
AXPositionInstance CreatePreviousWordStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfWordPredicate),
base::BindRepeating(&AtEndOfWordPredicate),
base::BindRepeating(&GetWordStartOffsetsFunc));
}
// Word end positions are one past the last character of the word.
AXPositionInstance CreateNextWordEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfWordPredicate),
base::BindRepeating(&AtEndOfWordPredicate),
base::BindRepeating(&GetWordEndOffsetsFunc));
}
// Word end positions are one past the last character of the word.
AXPositionInstance CreatePreviousWordEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfWordPredicate),
base::BindRepeating(&AtEndOfWordPredicate),
base::BindRepeating(&GetWordEndOffsetsFunc));
}
AXPositionInstance CreateNextLineStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfLinePredicate),
base::BindRepeating(&AtEndOfLinePredicate));
}
AXPositionInstance CreatePreviousLineStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfLinePredicate),
base::BindRepeating(&AtEndOfLinePredicate));
}
// Line end positions are one past the last character of the line, excluding
// any white space or newline characters that separate the lines.
AXPositionInstance CreateNextLineEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfLinePredicate),
base::BindRepeating(&AtEndOfLinePredicate));
}
// Line end positions are one past the last character of the line, excluding
// any white space or newline characters separating the lines.
AXPositionInstance CreatePreviousLineEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfLinePredicate),
base::BindRepeating(&AtEndOfLinePredicate));
}
AXPositionInstance CreateNextFormatStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfFormatPredicate),
base::BindRepeating(&AtEndOfFormatPredicate));
}
AXPositionInstance CreatePreviousFormatStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfFormatPredicate),
base::BindRepeating(&AtEndOfFormatPredicate));
}
AXPositionInstance CreateNextFormatEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfFormatPredicate),
base::BindRepeating(&AtEndOfFormatPredicate));
}
AXPositionInstance CreatePreviousFormatEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfFormatPredicate),
base::BindRepeating(&AtEndOfFormatPredicate));
}
AXPositionInstance CreateNextSentenceStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfSentencePredicate),
base::BindRepeating(&AtEndOfSentencePredicate),
base::BindRepeating(&GetSentenceStartOffsetsFunc));
}
AXPositionInstance CreatePreviousSentenceStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfSentencePredicate),
base::BindRepeating(&AtEndOfSentencePredicate),
base::BindRepeating(&GetSentenceStartOffsetsFunc));
}
AXPositionInstance CreateNextSentenceEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfSentencePredicate),
base::BindRepeating(&AtEndOfSentencePredicate),
base::BindRepeating(&GetSentenceEndOffsetsFunc));
}
AXPositionInstance CreatePreviousSentenceEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfSentencePredicate),
base::BindRepeating(&AtEndOfSentencePredicate),
base::BindRepeating(&GetSentenceEndOffsetsFunc));
}
AXPositionInstance CreateNextParagraphStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfParagraphPredicate),
base::BindRepeating(&AtEndOfParagraphPredicate));
}
AXPositionInstance CreateNextParagraphStartPositionSkippingEmptyParagraphs(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(
&AtStartOfParagraphExcludingEmptyParagraphsPredicate),
base::BindRepeating(
&AtStartOfParagraphExcludingEmptyParagraphsPredicate));
}
AXPositionInstance CreatePreviousParagraphStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfParagraphPredicate),
base::BindRepeating(&AtEndOfParagraphPredicate));
}
AXPositionInstance
CreatePreviousParagraphStartPositionSkippingEmptyParagraphs(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(
&AtStartOfParagraphExcludingEmptyParagraphsPredicate),
base::BindRepeating(
&AtStartOfParagraphExcludingEmptyParagraphsPredicate));
}
AXPositionInstance CreateNextParagraphEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfParagraphPredicate),
base::BindRepeating(&AtEndOfParagraphPredicate));
}
AXPositionInstance CreatePreviousParagraphEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfParagraphPredicate),
base::BindRepeating(&AtEndOfParagraphPredicate));
}
AXPositionInstance CreateNextPageStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfPagePredicate),
base::BindRepeating(&AtEndOfPagePredicate));
}
AXPositionInstance CreatePreviousPageStartPosition(
AXMovementOptions options) const {
return CreateBoundaryStartPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfPagePredicate),
base::BindRepeating(&AtEndOfPagePredicate));
}
AXPositionInstance CreateNextPageEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kForward,
base::BindRepeating(&AtStartOfPagePredicate),
base::BindRepeating(&AtEndOfPagePredicate));
}
AXPositionInstance CreatePreviousPageEndPosition(
AXMovementOptions options) const {
return CreateBoundaryEndPosition(
options, ax::mojom::MoveDirection::kBackward,
base::BindRepeating(&AtStartOfPagePredicate),
base::BindRepeating(&AtEndOfPagePredicate));
}
AXPositionInstance CreateBoundaryStartPosition(
AXMovementOptions options,
ax::mojom::MoveDirection move_direction,
BoundaryConditionPredicate at_start_condition,
BoundaryConditionPredicate at_end_condition,
BoundaryTextOffsetsFunc get_start_offsets =
BoundaryTextOffsetsFunc()) const {
AXPositionInstance text_position;
if (!AtEndOfAnchor()) {
// We could get a leaf text position at the end of its anchor, where
// boundary start offsets would surely not be present. In such cases, we
// need to normalize to the start of the next leaf anchor. We avoid making
// this change when we are at the end of our anchor because this could
// effectively shift the position forward.
text_position = AsLeafTextPositionBeforeCharacter();
} else {
text_position = AsLeafTextPosition();
}
if (text_position->IsNullPosition())
return text_position;
if (options.boundary_detection ==
AXBoundaryDetection::kDontCheckInitialPosition) {
text_position =
text_position->CreateAdjacentLeafTextPosition(move_direction);
if (text_position->IsNullPosition()) {
// There is no adjacent position to move to; in such case, CrossBoundary
// behavior shall return a null position, while any other behavior shall
// fallback to return the initial position.
if (options.boundary_behavior == AXBoundaryBehavior::kCrossBoundary)
return text_position;
return Clone();
}
}
if (!at_start_condition.Run(text_position)) {
text_position = text_position->CreatePositionAtNextOffsetBoundary(
move_direction, get_start_offsets);
while (!at_start_condition.Run(text_position)) {
AXPositionInstance next_position;
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
if (text_position->AtStartOfAnchor()) {
next_position = text_position->CreatePreviousLeafTextPosition(
base::BindRepeating(&AbortMoveAtRootBoundary));
} else {
text_position = text_position->CreatePositionAtStartOfAnchor();
DCHECK(!text_position->IsNullPosition());
continue;
}
break;
case ax::mojom::MoveDirection::kForward:
next_position = text_position->CreateNextLeafTextPosition(
base::BindRepeating(&AbortMoveAtRootBoundary));
break;
}
if (next_position->IsNullPosition()) {
if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary) {
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
return CreatePositionAtStartOfAnchor()->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveBackward);
case ax::mojom::MoveDirection::kForward:
return CreatePositionAtEndOfAnchor()->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveForward);
}
}
if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtLastAnchorBoundary) {
// We can't simply return the following position; break and after
// this loop we'll try to do some adjustments to text_position.
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
text_position = text_position->CreatePositionAtStartOfAnchor();
break;
case ax::mojom::MoveDirection::kForward:
text_position = text_position->CreatePositionAtEndOfAnchor();
break;
}
break;
}
return next_position->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveForward);
}
// Continue searching for the next boundary start in the specified
// direction until the next logical text position is reached.
text_position = next_position->CreatePositionAtFirstOffsetBoundary(
move_direction, get_start_offsets);
}
}
// If the boundary is in the same subtree, return a position rooted at this
// position's anchor. This is necessary because we don't want to return a
// position that might be in the shadow DOM when this position is not.
const AXNode* common_anchor = text_position->LowestCommonAnchor(*this);
if (GetAnchor() == common_anchor) {
text_position =
text_position->CreateAncestorPosition(common_anchor, move_direction);
} else if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary) {
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
return CreatePositionAtStartOfAnchor()->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveBackward);
case ax::mojom::MoveDirection::kForward:
return CreatePositionAtEndOfAnchor()->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveForward);
}
}
// Affinity is only upstream at the end of a line, and so a start boundary
// will never have an upstream affinity.
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
if (IsTreePosition())
text_position = text_position->AsTreePosition();
AXPositionInstance unignored_position = text_position->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveForward);
// If there are no unignored positions then `text_position` is anchored in
// ignored content at the end of the whole content. For
// `kStopAtLastAnchorBoundary`, try to adjust in the opposite direction to
// return a position within the whole content just before crossing into the
// ignored content. This will be the last unignored anchor boundary.
if (unignored_position->IsNullPosition() &&
options.boundary_behavior ==
AXBoundaryBehavior::kStopAtLastAnchorBoundary) {
unignored_position = text_position->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveBackward);
}
return unignored_position;
}
AXPositionInstance CreateBoundaryEndPosition(
AXMovementOptions options,
ax::mojom::MoveDirection move_direction,
BoundaryConditionPredicate at_start_condition,
BoundaryConditionPredicate at_end_condition,
BoundaryTextOffsetsFunc get_end_offsets =
BoundaryTextOffsetsFunc()) const {
AXPositionInstance text_position;
if (!AtStartOfAnchor()) {
// We could get a leaf text position at the start of its anchor, where
// boundary end offsets would surely not be present. In such cases, we
// need to normalize to the end of the previous leaf anchor. We avoid
// making this change when we are at the start of our anchor because this
// could effectively shift the position backward.
text_position = AsLeafTextPositionAfterCharacter();
} else {
text_position = AsLeafTextPosition();
}
if (text_position->IsNullPosition())
return text_position;
if (options.boundary_detection ==
AXBoundaryDetection::kDontCheckInitialPosition) {
text_position =
text_position->CreateAdjacentLeafTextPosition(move_direction);
if (text_position->IsNullPosition()) {
// There is no adjacent position to move to; in such case, CrossBoundary
// behavior shall return a null position, while any other behavior shall
// fallback to return the initial position.
if (options.boundary_behavior == AXBoundaryBehavior::kCrossBoundary)
return text_position;
return Clone();
}
}
if (!at_end_condition.Run(text_position)) {
text_position = text_position->CreatePositionAtNextOffsetBoundary(
move_direction, get_end_offsets);
while (!at_end_condition.Run(text_position)) {
AXPositionInstance next_position;
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
next_position =
text_position
->CreatePreviousLeafTextPosition(
base::BindRepeating(&AbortMoveAtRootBoundary))
->CreatePositionAtEndOfAnchor();
break;
case ax::mojom::MoveDirection::kForward:
if (text_position->AtEndOfAnchor()) {
next_position = text_position->CreateNextLeafTextPosition(
base::BindRepeating(&AbortMoveAtRootBoundary));
} else {
text_position = text_position->CreatePositionAtEndOfAnchor();
DCHECK(!text_position->IsNullPosition());
continue;
}
break;
}
if (next_position->IsNullPosition()) {
if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary) {
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
return CreatePositionAtStartOfAnchor()->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveBackward);
case ax::mojom::MoveDirection::kForward:
return CreatePositionAtEndOfAnchor()->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveForward);
}
}
if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtLastAnchorBoundary) {
// We can't simply return the following position; break and after
// this loop we'll try to do some adjustments to text_position.
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
text_position = text_position->CreatePositionAtStartOfAnchor();
break;
case ax::mojom::MoveDirection::kForward:
text_position = text_position->CreatePositionAtEndOfAnchor();
break;
}
break;
}
return next_position->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveBackward);
}
// Continue searching for the next boundary end in the specified
// direction until the next logical text position is reached.
text_position = next_position->CreatePositionAtFirstOffsetBoundary(
move_direction, get_end_offsets);
}
}
// If the boundary is in the same subtree, return a position rooted at this
// position's anchor. This is necessary because we don't want to return a
// position that might be in the shadow DOM when this position is not.
const AXNode* common_anchor = text_position->LowestCommonAnchor(*this);
if (GetAnchor() == common_anchor) {
text_position =
text_position->CreateAncestorPosition(common_anchor, move_direction);
} else if (options.boundary_behavior ==
AXBoundaryBehavior::kStopAtAnchorBoundary) {
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
return CreatePositionAtStartOfAnchor()->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveBackward);
case ax::mojom::MoveDirection::kForward:
return CreatePositionAtEndOfAnchor()->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveForward);
}
}
// If there is no ambiguity as to whether the position is at the end of
// the current boundary or the start of the next boundary, an upstream
// affinity should be reset to downstream in order to get consistent output
// from this method, regardless of input affinity.
//
// Note that there could be no ambiguity if the boundary is either at the
// start or the end of the current anchor, so we should always reset to
// downstream affinity in those cases.
if (text_position->affinity_ == ax::mojom::TextAffinity::kUpstream) {
AXPositionInstance downstream_position =
text_position->CloneWithDownstreamAffinity();
if (downstream_position->AtStartOfAnchor() ||
downstream_position->AtEndOfAnchor() ||
!downstream_position->AtStartOfLine()) {
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
}
}
if (IsTreePosition())
text_position = text_position->AsTreePosition();
AXPositionInstance unignored_position = text_position->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveBackward);
// If there are no unignored positions then `text_position` is anchored in
// ignored content at the start or end of the whole content. For
// `kStopAtLastAnchorBoundary`, try to adjust in the opposite direction to
// return a position within the whole content just before crossing into the
// ignored content. This will be the last unignored anchor boundary.
if (unignored_position->IsNullPosition() &&
options.boundary_behavior ==
AXBoundaryBehavior::kStopAtLastAnchorBoundary) {
unignored_position = text_position->AsUnignoredPosition(
AXPositionAdjustmentBehavior::kMoveForward);
}
return unignored_position;
}
// Uses depth-first pre-order traversal.
AXPositionInstance CreateNextAnchorPosition() const {
return CreateNextAnchorPosition(
base::BindRepeating(&DefaultAbortMovePredicate));
}
// Uses depth-first pre-order traversal.
AXPositionInstance CreatePreviousAnchorPosition() const {
return CreatePreviousAnchorPosition(
base::BindRepeating(&DefaultAbortMovePredicate));
}
// Returns an optional integer indicating the logical order of this position
// compared to another position or returns an empty optional if the positions
// are not comparable. Any text position at the same character location is
// logically equivalent although they may be on different anchors or have
// different text offsets. Positions are not comparable when one position is
// null and the other is not or if the positions do not have any common
// ancestor.
//
// 0: if this position is logically equivalent to the other position
// <0: if this position is logically less than the other position
// >0: if this position is logically greater than the other position
absl::optional<int> CompareTo(const AXPosition& other) const {
if (IsNullPosition() || other.IsNullPosition()) {
if (IsNullPosition() && other.IsNullPosition())
return 0;
return absl::nullopt;
}
// Valid positions are required for comparison. Use `AsValidPosition`
// or `SnapToMaxTextOffsetIfBeyond` before calling `CompareTo` or making
// comparisons.
DCHECK(IsValid());
DCHECK(other.IsValid());
if (GetAnchor() == other.GetAnchor())
return SlowCompareTo(other); // No optimization is necessary.
// Ancestor positions are expensive to compute. If possible, we will avoid
// doing so by computing the ancestor chain of the two positions' anchors.
// If the lowest common ancestor is neither position's anchor, we can use
// the order of the first uncommon ancestors as a proxy for the order of the
// positions. Obviously, this heuristic cannot be used if one position is
// the ancestor of the other.
//
// In order to do that, we need to normalize text positions at the end of an
// anchor to equivalent positions at the start of the next anchor. Ignored
// positions are a special case in that they need to be shifted to the
// nearest unignored position in order to be normalized. That shifting can
// change the comparison result, so if we have an ignored position, we must
// use a different, slower method which does away with many of our
// optimizations.
if (IsIgnored() || other.IsIgnored())
return SlowCompareTo(other);
// Normalize any text positions at the end of an anchor to equivalent
// positions at the start of the next anchor. This will potentially make the
// two positions not be ancestors of one another, if they originally were.
AXPositionInstance normalized_this_position = Clone();
if (normalized_this_position->IsTextPosition()) {
normalized_this_position =
normalized_this_position->AsLeafTextPositionBeforeCharacter();
}
AXPositionInstance normalized_other_position = other.Clone();
if (normalized_other_position->IsTextPosition()) {
normalized_other_position =
normalized_other_position->AsLeafTextPositionBeforeCharacter();
}
if (normalized_this_position->IsNullPosition()) {
if (normalized_other_position->IsNullPosition()) {
// Both positions normalized to a position past the end of the whole
// content. There is no way that they could be ancestors of one another,
// so using the slow path is not required.
DCHECK_EQ(SlowCompareTo(other).value(), 0);
return 0;
}
// |this| normalized to a position past the end of the whole content.
// Since we don't know if one position is the ancestor of the other, we
// need to use the slow path.
return SlowCompareTo(other);
}
if (normalized_other_position->IsNullPosition()) {
// |other| normalized to a position past the end of the whole content.
// Since we don't know if one position is the ancestor of the other, we
// need to use the slow path.
return SlowCompareTo(other);
}
// Compute the ancestor stacks of both positions and walk them ourselves
// rather than calling `LowestCommonAnchor`. That way, we can discover the
// first uncommon ancestors which we need to use in order to compare the two
// positions.
const AXNode* common_anchor = nullptr;
base::stack<AXNode*> our_ancestors =
normalized_this_position->GetAncestorAnchors();
base::stack<AXNode*> other_ancestors =
normalized_other_position->GetAncestorAnchors();
while (!our_ancestors.empty() && !other_ancestors.empty() &&
our_ancestors.top() == other_ancestors.top()) {
common_anchor = our_ancestors.top();
our_ancestors.pop();
other_ancestors.pop();
}
if (!common_anchor)
return absl::nullopt;
// If each position has an uncommon ancestor node, we can compare those
// instead of needing to compute ancestor positions. Otherwise we need to
// use "SlowCompareTo". Also, if the two positions became equivalent after
// being normalized above, we can't compare using this optimized method. We
// need to use "SlowCompareTo", because affinity information would have been
// lost during the normalization process. See comments in "SlowCompareTo"
// for an explanation of how affinity could affect the comparison. If one
// position is the ancestor of the other, we need to use "SlowCompareTo",
// especially if either or both positions are text positions, because the
// conversion to tree positions below would lose information that could
// affect the comparison. In the case where the positions are ancestors of
// one another, but they are both tree positions, using the "SlowCompareTo"
// method will not affect performance, so we still opt for that. Note that
// determining whether two positions are ancestors of one another could
// easily be accomplished by checking if there are any ancestors left after
// removing the common ancestor anchor from either position's ancestor
// stack.
if (our_ancestors.empty() || other_ancestors.empty())
return SlowCompareTo(other);
AXPositionInstance this_uncommon_tree_position =
CreateTreePositionAtStartOfAnchor(*our_ancestors.top());
int this_uncommon_ancestor_index =
this_uncommon_tree_position->AnchorIndexInParent();
AXPositionInstance other_uncommon_tree_position =
CreateTreePositionAtStartOfAnchor(*other_ancestors.top());
int other_uncommon_ancestor_index =
other_uncommon_tree_position->AnchorIndexInParent();
DCHECK_NE(this_uncommon_ancestor_index, other_uncommon_ancestor_index)
<< "Deepest uncommon ancestors should truly be uncommon, i.e. not "
"the same.";
int result = this_uncommon_ancestor_index - other_uncommon_ancestor_index;
// On platforms that support embedded objects, if a text position is within
// an embedded object and if it is not at the start of that object, the
// resulting ancestor position should be adjusted to point after the
// embedded object. Otherwise, assistive software will not be able to get
// out of the embedded object if its text is not editable when navigating by
// character or by word. The "SlowCompareTo" method can handle such corner
// cases. For some reproduction steps see https://crbug.com/1057831.
//
// For example, look at the following accessibility tree and the two example
// text positions together with their equivalent ancestor positions.
// ++1 kRootWebArea
// ++++2 kTextField "Before<embedded_object>after"
// ++++++3 kStaticText "Before"
// ++++++++4 kInlineTextBox "Before"
// ++++++5 kImage "Test image"
// ++++++6 kStaticText "after"
// ++++++++7 kInlineTextBox "after"
//
// Note that the alt text of an image cannot be navigated with cursor
// left/right, even when the rest of the contents are in a contenteditable.
//
// 1. Ancestor position should not be adjusted:
// TextPosition anchor_id=kImage text_offset=0 affinity=downstream
// annotated_text=<T>est image
//
// AncestorTextPosition anchor_id=kTextField text_offset=6
// affinity=downstream annotated_text=Before<embedded_object>after
//
// 2. Ancestor position should be adjusted:
// TextPosition anchor_id=kImage text_offset=1 affinity=downstream
// annotated_text=T<e>st image
//
// AncestorTextPosition anchor_id=kTextField text_offset=7
// affinity=downstream annotated_text=Beforeembedded_object<a>fter
//
// Note that since the adjustment to the distance between the ancestor
// positions could at most be by one, we skip doing this check if the
// ancestor positions have a distance of more than one since it can never
// change the outcome of the comparison. We also don't need to perform an
// adjustment if one of the positions is not right after the "object
// replacement character" representing the object inside which the other
// position is located, hence the `AtStartOfAnchor()` and
// `IsEmbeddedObjectInParent()` checks.
if (abs(result) == 1 &&
((IsTextPosition() && !AtStartOfAnchor() &&
this_uncommon_tree_position->IsEmbeddedObjectInParent()) ||
(other.IsTextPosition() && !other.AtStartOfAnchor() &&
other_uncommon_tree_position->IsEmbeddedObjectInParent()))) {
return SlowCompareTo(other);
}
#if DCHECK_IS_ON()
// Validate the optimization against the non-optimized version of the
// method.
int slow_result = SlowCompareTo(other).value();
DCHECK((result == 0 && slow_result == 0) ||
(result < 0 && slow_result < 0) || (result > 0 && slow_result > 0))
<< result << " vs. " << slow_result;
#endif // DCHECK_IS_ON()
return result;
}
// A less optimized, but much slower version of "CompareTo". Should only be
// used when optimizations cannot be applied, e.g. when comparing ignored
// positions. See "CompareTo" for an explanation of the return values.
absl::optional<int> SlowCompareTo(const AXPosition& other) const {
if (IsNullPosition() && other.IsNullPosition())
return 0;
if (IsNullPosition() || other.IsNullPosition())
return absl::nullopt;
// If both positions share an anchor and either one is a text position, or
// both are tree positions, we can do a straight comparison of text offsets
// or child indices.
if (GetAnchor() == other.GetAnchor()) {
absl::optional<int> optional_result;
ax::mojom::TextAffinity this_affinity;
ax::mojom::TextAffinity other_affinity;
if (IsTextPosition()) {
AXPositionInstance other_text_position = other.AsTextPosition();
optional_result = text_offset_ - other_text_position->text_offset_;
this_affinity = affinity();
other_affinity = other_text_position->affinity();
} else if (other.IsTextPosition()) {
AXPositionInstance this_text_position = AsTextPosition();
optional_result = this_text_position->text_offset_ - other.text_offset_;
this_affinity = this_text_position->affinity();
other_affinity = other.affinity();
}
if (optional_result) {
// Only when the two positions are otherwise equivalent will affinity
// play a role.
if (*optional_result != 0)
return optional_result;
if (this_affinity == ax::mojom::TextAffinity::kUpstream &&
other_affinity == ax::mojom::TextAffinity::kDownstream) {
return -1;
}
if (this_affinity == ax::mojom::TextAffinity::kDownstream &&
other_affinity == ax::mojom::TextAffinity::kUpstream) {
return 1;
}
return optional_result;
}
return child_index_ - other.child_index_;
}
// It is potentially costly to compute the parent position of a text
// position, whilst computing the parent position of a tree position is
// really inexpensive. In order to find the lowest common ancestor position,
// especially if that ancestor is all the way up to the root of the tree,
// computing the parent position will need to be done repeatedly. We avoid
// the performance hit by converting both positions to tree positions and
// only falling back to computing ancestor text positions if at least one
// position is a text position and they don't have the same anchor.
//
// Essentially, the question we need to answer is: "When are two non
// equivalent positions going to erroneously have the same lowest common
// ancestor position when converted to tree positions as the ones they had
// before the conversion?" In other words, when will
// "this->AsTreePosition()->LowestCommonAncestorPosition(*other.AsTreePosition())
// ==
// other.AsTreePosition()->LowestCommonAncestorPosition(*this->AsTreePosition())"?
// The answer is either when they have the same anchor and at least one is a
// text position, (a case that was dealt with in the previous block), or
// when at least one is a text position and one is an ancestor position of
// the other. In all other cases, no information will be lost when
// converting to tree positions.
const AXNode* common_anchor = this->LowestCommonAnchor(other);
if (!common_anchor)
return absl::nullopt;
// If either of the two positions is a text position, and if one position is
// an ancestor of the other, we need to compare using text positions,
// because converting to tree positions will potentially lose information if
// the text offset is anything other than 0 or `MaxTextOffset()`.
if (IsTextPosition() || other.IsTextPosition()) {
absl::optional<int> optional_result;
ax::mojom::TextAffinity this_affinity;
ax::mojom::TextAffinity other_affinity;
// The following two "if" blocks deal with comparisons between two
// positions (one of which is a text position) that are ancestors of one
// another. The third "if" block deals with comparisons between two text
// positions that may or may not be ancestors of one another. Obviously,
// in the case of two text positions, affinity could always play a role
// (see comment in the relevant "if" block for an example). For the first
// two cases, affinity still needs to be taken into consideration because
// an "object replacement character" could be used to represent child
// nodes in the text of their parents. Here is an example of how affinity
// can influence a text/tree position comparison.
//
// 1 kRootWebArea
// ++2 kGenericContainer
// "<embedded_object_character><embedded_object_character>"
// ++3 kButton "Line 1"
// ++++++4 kStaticText "Line 1"
// ++++++++5 kInlineTextBox "Line 1"
// ++++6 kImage "<embedded_object_character>" kIsLineBreakingObject
//
// TextPosition anchor_id=5 text_offset=2 affinity=downstream
// annotated_text=Li<n>e 1
//
// TreePosition anchor_id=6 child_index=BEFORE_TEXT
//
// The `LowestCommonAncestor` for both will differ in its affinity:
// TextPosition anchor_id=2 text_offset=1 affinity=...
// annotated_text=embedded_object_character<embedded_object_character>
//
// The text position would create a kUpstream position, while the tree
// position would create a kDownstream position.
if (GetAnchor() == common_anchor) {
DCHECK_EQ(AsTextPosition()->GetAnchor(), common_anchor)
<< "AsTextPosition() should never modify the position's anchor.";
// This text position's anchor is the common ancestor of the other text
// position's anchor. We don't need to compute the ancestor position of
// this position at the common anchor, since we already have it.
//
// Note that we convert the other position to an ancestor text position
// using a forward direction, so that if there are any "object
// replacement characters", two positions one inside the character and
// one after it would compare as equivalent. Otherwise, screen readers
// might get stuck inside embedded objects while navigating by character
// or word. For some reproduction steps see https://crbug.com/1057831.
// Per the IAccessible2 Spec, any selection that partially selects text
// inside an embedded object, should select the entire "object
// replacement character" in the parent object where the character
// appears.
AXPositionInstance other_text_position =
other.AsTextPosition()->CreateAncestorPosition(
common_anchor, ax::mojom::MoveDirection::kForward);
DCHECK_EQ(other_text_position->GetAnchor(), common_anchor);
other_affinity = other_text_position->affinity();
AXPositionInstance this_text_position = AsTextPosition();
this_affinity = this_text_position->affinity();
optional_result = this_text_position->text_offset() -
other_text_position->text_offset();
} else if (other.GetAnchor() == common_anchor) {
DCHECK_EQ(other.AsTextPosition()->GetAnchor(), common_anchor)
<< "AsTextPosition() should never modify the position's anchor.";
// The other text position's anchor is the common ancestor of this text
// position's anchor. We don't need to compute the ancestor position of
// the other position at the common anchor, since we already have it.
//
// Note that we convert this position to an ancestor text position using
// a forward direction, so that if there are any "object replacement
// characters", two positions one inside the character and one after it
// would compare as equivalent. Otherwise, screen readers might get
// stuck inside embedded objects while navigating by character or word.
// For some reproduction steps see https://crbug.com/1057831.
// Per the IAccessible2 Spec, any selection that partially selects text
// inside an embedded object, should select the entire "object
// replacement character" in the parent object where the character
// appears.
AXPositionInstance this_text_position =
AsTextPosition()->CreateAncestorPosition(
common_anchor, ax::mojom::MoveDirection::kForward);
DCHECK_EQ(this_text_position->GetAnchor(), common_anchor);
this_affinity = this_text_position->affinity();
AXPositionInstance other_text_position = other.AsTextPosition();
other_affinity = other_text_position->affinity();
optional_result = this_text_position->text_offset() -
other_text_position->text_offset();
} else if (IsTextPosition() && other.IsTextPosition()) {
// We should compute and compare using the common ancestor text
// position. Computing an ancestor text position will automatically take
// affinity into consideration. It will also normalize text positions at
// the end of their anchors to equivalent positions at the start of the
// next anchor. Additionally, it would normalize positions within
// "object replacement characters" to before the character, because the
// two positions are not ancestors of one another and thus the special
// case (see previous block) defined in the IAccessible2 Spec doesn't
// apply. This process would maintain the characteristics of text
// position comparisons, since a particular offset in the tree's text
// representation could refer to multiple equivalent positions which are
// anchored to different nodes in the tree, i.e. nodes which are
// adjacent, or nodes that are at different levels of the tree.
//
// Here is an example of how affinity can influence a text position
// comparison when at a line boundary:
//
// 1 kRootWebArea
// ++2 kTextField "Line 1Line 2"
// ++++3 kStaticText "Line 1"
// ++++++4 kInlineTextBox "Line 1"
// ++++5 kGenericContainer kIsLineBreakingObject
// ++++++6 kStaticText "Line 2"
// ++++++++7 kInlineTextBox "Line 2"
//
// TextPosition anchor_id=4 text_offset=6 affinity=downstream
// annotated_text=Line 1<>
//
// TextPosition anchor_id=7 text_offset=0 affinity=downstream
// annotated_text=<L>ine 2
//
// The `LowestCommonAncestor` for both will differ only in its affinity:
// TextPosition anchor_id=2 text_offset=6 affinity=...
// annotated_text=Line 1<L>ine 2
//
// anchor_id=4 would create a kUpstream position, while anchor_id=7
// would create a kDownstream position.
AXPositionInstance this_text_position_ancestor =
LowestCommonAncestorPosition(other,
ax::mojom::MoveDirection::kBackward);
AXPositionInstance other_text_position_ancestor =
other.LowestCommonAncestorPosition(
*this, ax::mojom::MoveDirection::kBackward);
DCHECK(this_text_position_ancestor->IsTextPosition());
DCHECK(other_text_position_ancestor->IsTextPosition());
this_affinity = this_text_position_ancestor->affinity();
other_affinity = other_text_position_ancestor->affinity();
optional_result = this_text_position_ancestor->text_offset() -
other_text_position_ancestor->text_offset();
}
if (optional_result) {
// Only when the two positions are otherwise equivalent will affinity
// play a role.
if (*optional_result != 0)
return optional_result;
if (this_affinity == ax::mojom::TextAffinity::kUpstream &&
other_affinity == ax::mojom::TextAffinity::kDownstream) {
return -1;
}
if (this_affinity == ax::mojom::TextAffinity::kDownstream &&
other_affinity == ax::mojom::TextAffinity::kUpstream) {
return 1;
}
return optional_result;
}
}
// Both positions are tree positions. We should normalize all tree positions
// to the beginning of their anchors, unless one of the positions is the
// ancestor of the other. In the latter case, such a normalization would
// potentially lose information if performed on any of the two positions.
//
// ++kRootWebArea "<embedded_object><embedded_object>"
// ++++kParagraph "Paragraph1"
// ++++kParagraph "paragraph2"
// A tree position at the end of the root web area and a tree position at
// the end of the second paragraph should compare as equal. Normalizing any
// of the two positions to the start of their respective anchors would make
// the two positions unequal.
//
// Unlike text positions, two tree positions on two adjacent anchors, (the
// first position at the end of its anchor, (i.e. an "after children"
// position), and the other at its beginning), should not compare as equal.
// This is because each position in the tree is unique, unlike an offset in
// the tree's text representation which can refer to more than one tree
// position. Meanwhile, affinity does not play any role in this case, since
// except for "after children" positions, tree positions are collapsed to
// the beginning of their parent node when computing their parent position.
AXPositionInstance this_normalized_tree_position = AsTreePosition();
AXPositionInstance other_normalized_tree_position = other.AsTreePosition();
if (GetAnchor() != common_anchor &&
other_normalized_tree_position->GetAnchor() != common_anchor) {
// None of the positions is the ancestor of the other, so normalization
// could go ahead.
this_normalized_tree_position =
this_normalized_tree_position->CreatePositionAtStartOfAnchor();
other_normalized_tree_position =
other_normalized_tree_position->CreatePositionAtStartOfAnchor();
}
AXPositionInstance this_tree_position_ancestor =
this_normalized_tree_position->CreateAncestorPosition(
common_anchor, ax::mojom::MoveDirection::kBackward);
AXPositionInstance other_tree_position_ancestor =
other_normalized_tree_position->CreateAncestorPosition(
common_anchor, ax::mojom::MoveDirection::kBackward);
DCHECK(this_tree_position_ancestor->IsTreePosition());
DCHECK(other_tree_position_ancestor->IsTreePosition());
return this_tree_position_ancestor->child_index_ -
other_tree_position_ancestor->child_index_;
}
// A valid position can become invalid if the underlying tree structure
// changes. This is expected behavior, but it is sometimes necessary to
// maintain valid positions. This method modifies an invalid position that is
// beyond MaxTextOffset to snap to MaxTextOffset.
void SnapToMaxTextOffsetIfBeyond() {
int max_text_offset = MaxTextOffset();
if (text_offset_ > max_text_offset)
text_offset_ = max_text_offset;
}
bool IsInEmptyObject() const {
if (IsNullPosition())
return false;
return IsEmptyObject(*GetAnchor());
}
bool IsInUnignoredEmptyObject() const {
return GetAnchor() && !GetAnchor()->IsIgnored() && IsInEmptyObject();
}
AXNode* GetEmptyObjectAncestorNode() const {
if (!GetAnchor())
return nullptr;
if (!GetAnchor()->IsIgnored()) {
// The only cases where a descendant of an empty object can be unignored
// is when on Windows we are inside of a collapsed popup button which is
// the parent of a menu list popup, or on all platforms inside a generic
// container that is the child of an empty text field.
if (AXNode* popup_button =
GetAnchor()->GetCollapsedMenuListSelectAncestor()) {
return popup_button;
}
if (GetAnchorRole() == ax::mojom::Role::kGenericContainer &&
!AnchorUnignoredChildCount()) {
return GetAnchor()->GetTextFieldAncestor();
}
return nullptr;
}
// The first unignored ancestor is necessarily the empty object if this node
// is the descendant of an empty object.
AXNode* ancestor_node = GetLowestUnignoredAncestor();
if (!ancestor_node)
return nullptr;
AXPositionInstance position =
CreateTextPosition(*ancestor_node, 0 /* text_offset */,
ax::mojom::TextAffinity::kDownstream);
if (position->IsInUnignoredEmptyObject())
return ancestor_node;
return nullptr;
}
void swap(AXPosition& other) {
std::swap(kind_, other.kind_);
std::swap(tree_id_, other.tree_id_);
std::swap(anchor_id_, other.anchor_id_);
std::swap(child_index_, other.child_index_);
std::swap(text_offset_, other.text_offset_);
std::swap(affinity_, other.affinity_);
// We explicitly don't swap any cached members.
name_ = std::u16string();
other.name_ = std::u16string();
}
// Returns the text (in UTF16 format) that is present inside the anchor node,
// including any text found in descendant text nodes, based on the platform's
// text representation. Some platforms use an embedded object replacement
// character that replaces the text coming from most child nodes and empty
// objects.
const std::u16string& GetText(
const AXEmbeddedObjectBehavior embedded_object_behavior =
g_ax_embedded_object_behavior) const {
// Note that the use of `base::EmptyString16()` is a special case here. For
// performance reasons `base::EmptyString16()` should only be used when
// returning a const reference to a string and there is an error condition,
// not in any other case when an empty string16 is required.
if (IsNullPosition())
return base::EmptyString16();
static const base::NoDestructor<std::u16string> embedded_character_str(
AXNode::kEmbeddedObjectCharacterUTF16);
switch (embedded_object_behavior) {
case AXEmbeddedObjectBehavior::kSuppressCharacter:
return GetAnchor()->GetTextContentUTF16();
case AXEmbeddedObjectBehavior::kExposeCharacterForHypertext:
// Special case, if a position's anchor node has only ignored
// descendants, i.e., it appears to be empty to assistive software, on
// some platforms we need to still treat it as a character and a word
// boundary. We achieve this by adding an embedded object character in
// the text representation used by this class, but we don't expose that
// character to assistive software that tries to retrieve the node's
// text content.
if (IsInUnignoredEmptyObject()) {
return *embedded_character_str;
}
return GetAnchor()->GetHypertext();
case AXEmbeddedObjectBehavior::kUIAExposeCharacterForTextContent:
// For UIA, we still have the notion of embedded object characters for
// text navigation purposes. I.e. when AT's need to navigate around
// nodes and elements which are empty and should then be exposed as
// embedded object characters.
if (IsInUnignoredEmptyObject()) {
return *embedded_character_str;
}
// However, for UIA, we don't want to expose the Hypertext like the
// kExposeCharacterForHypertext case does, since that computation for
// Hypertext is IA2-specific. Instead, UIA needs the text contents of
// the node, which is what GetTextContentUTF16() returns.
return GetAnchor()->GetTextContentUTF16();
}
}
// Determines if this position is pointing to text inside a node that causes a
// line break. For example, a tree position pointing to a <br> element or a
// text node whose only content is the
// '\n' character, or a text position pointing to a '\n' character in its
// anchor's text representation.
bool IsPointingToLineBreak() const {
if (IsNullPosition())
return false;
// The position might be an ancestor position that does not currently point
// to a line break node, but once resolved to a leaf position, it might do
// so. This could only occur when we have a text position, because tree
// positions do not point to text unless they are anchored directly to a
// text node.
if (IsTextPosition()) {
AXPositionInstance leaf_text_position = AsLeafTextPosition();
DCHECK(leaf_text_position->GetAnchor());
if (leaf_text_position->GetAnchor()->IsLineBreak())
return true;
std::u16string text = leaf_text_position->GetText();
if (text.empty() ||
static_cast<size_t>(leaf_text_position->text_offset()) >=
text.length()) {
return false;
}
return text[leaf_text_position->text_offset()] == '\n';
}
// Tree position.
return GetAnchor()->IsLineBreak();
}
// Determines if the anchor containing this position is a text object.
bool IsInTextObject() const {
if (IsNullPosition())
return false;
return GetAnchor()->IsText();
}
// Determines if the text representation of this position's anchor contains
// only whitespace characters; <br> objects span a single '\n' character, so
// positions inside line breaks are also considered "in whitespace". Note that
// by the above definition, if a position is pointing to a whitespace
// character, but not all of the text inside the position's anchor is
// whitespace, this method returns false.
bool IsInWhiteSpace() const {
if (IsNullPosition())
return false;
if (GetAnchor()->IsLineBreak())
return true; // A <br> or a text node whose contents is a single '\n'.
std::u16string text = GetText();
// `base::ContainsOnlyChars` returns true if the text is empty, which is not
// what we want here because the empty text is not the same as text with
// only whitespace characters. So, we explicitly exclude that possibility.
return !text.empty() &&
base::ContainsOnlyChars(text, base::kWhitespaceUTF16);
}
// Returns the length of the text that is present inside the anchor node,
// including any text found in descendant text nodes. This is based on the
// platform's text representation. Some platforms use an embedded object
// character that replaces the text coming from most child nodes and empty
// objects.
//
// Similar to "text_offset_", the length of the text is in UTF16 code units,
// not in grapheme clusters.
int MaxTextOffset(const AXEmbeddedObjectBehavior embedded_object_behavior =
g_ax_embedded_object_behavior) const {
if (IsNullPosition())
return INVALID_OFFSET;
switch (embedded_object_behavior) {
case AXEmbeddedObjectBehavior::kSuppressCharacter:
// TODO(nektar): Switch to anchor->GetTextContentLengthUTF8() after
// AXPosition switches to using UTF8.
return GetAnchor()->GetTextContentLengthUTF16();
case AXEmbeddedObjectBehavior::kExposeCharacterForHypertext:
// Special case: If a node has only ignored descendants, i.e., it
// appears to be empty to assistive software, on some platforms we need
// to still treat it as a character and a word boundary. We achieve this
// by adding an "object replacement character" in the accessibility
// tree's text representation, but we don't expose that character to
// assistive software that tries to retrieve the node's text content or
// hypertext.
if (IsInUnignoredEmptyObject())
return AXNode::kEmbeddedObjectCharacterLengthUTF16;
return static_cast<int>(GetAnchor()->GetHypertext().length());
case AXEmbeddedObjectBehavior::kUIAExposeCharacterForTextContent:
// For UIA, we still have the notion of embedded object characters for
// text navigation purposes. I.e. when AT's need to navigate around
// nodes and elements which are empty and should then be exposed as
// embedded object characters, and as such we need to return the length
// of the embedded object character when calculating the `MaxTextOffset`
// for these nodes.
if (IsInUnignoredEmptyObject()) {
return AXNode::kEmbeddedObjectCharacterLengthUTF16;
}
// However, for UIA, we don't want to expose the Hypertext like the
// kExposeCharacterForHypertext case does, since that computation for
// Hypertext is IA2-specific. Instead, UIA needs the text contents of
// the node, so for `MaxTextOffset()` we should return the length of the
// text content.
return GetAnchor()->GetTextContentLengthUTF16();
}
}
// Returns the accessibility role of this position's anchor node. If this is a
// "null position", returns `ax::mojom::Role::kUnknown`.
ax::mojom::Role GetRole() const {
if (IsNullPosition())
return ax::mojom::Role::kUnknown;
return GetAnchor()->GetRole();
}
AXTextAttributes GetTextAttributes() const {
// Check either the current anchor or its parent for text attributes.
AXTextAttributes current_anchor_text_attributes =
!IsNullPosition() ? GetAnchor()->GetTextAttributes()
: AXTextAttributes();
if (current_anchor_text_attributes.IsUnset()) {
AXPositionInstance parent_position =
AsTreePosition()->CreateParentPosition(
ax::mojom::MoveDirection::kBackward);
if (!parent_position->IsNullPosition()) {
return parent_position->GetAnchor()->GetTextAttributes();
}
}
return current_anchor_text_attributes;
}
protected:
AXPosition()
: kind_(AXPositionKind::NULL_POSITION),
tree_id_(AXTreeIDUnknown()),
anchor_id_(kInvalidAXNodeID),
child_index_(INVALID_INDEX),
text_offset_(INVALID_OFFSET),
affinity_(ax::mojom::TextAffinity::kDownstream) {}
// We explicitly don't copy any cached members.
AXPosition(const AXPosition& other)
: kind_(other.kind_),
tree_id_(other.tree_id_),
anchor_id_(other.anchor_id_),
child_index_(other.child_index_),
text_offset_(other.text_offset_),
affinity_(other.affinity_),
name_() {}
// Returns the character offset inside our anchor's parent at which our text
// starts.
int AnchorTextOffsetInParent() const {
if (IsNullPosition())
return INVALID_OFFSET;
// Calculate how much text there is to the left of this anchor.
//
// Work with a tree position so as not to incur any performance hit for
// calculating the corresponding text offset in the parent anchor on
// platforms that do not use an "object replacement character" to represent
// child nodes.
//
// Ignored positions are not visible to platform APIs. As a result, their
// text content or hypertext does not appear in their parent node, but the
// text of their unignored children does. (See `AXNode::GetHypertext()` for
// the meaning of "hypertext" in this context.
AXPositionInstance tree_position =
CreatePositionAtStartOfAnchor()->AsTreePosition();
DCHECK(!tree_position->IsNullPosition());
AXPositionInstance parent_position = tree_position->CreateParentPosition(
ax::mojom::MoveDirection::kBackward);
if (parent_position->IsNullPosition())
return 0; // There is only a single root node.
int offset_in_parent = 0;
for (int i = 0; i < parent_position->child_index(); ++i) {
AXPositionInstance child = parent_position->CreateChildPositionAt(i);
DCHECK(!child->IsNullPosition());
offset_in_parent += child->MaxTextOffsetInParent();
}
return offset_in_parent;
}
// In the case of a text position, lazily initializes or returns the existing
// grapheme iterator for the position's text. The grapheme iterator breaks at
// every grapheme cluster boundary.
//
// We only allow creating this iterator on leaf nodes. We currently don't need
// to move by grapheme boundaries on non-leaf nodes and computing plus caching
// the text content for all nodes is costly.
std::unique_ptr<base::i18n::BreakIterator> GetGraphemeIterator() const {
if (!IsLeafTextPosition())
return {};
// TODO(nektar): Remove member variable `name_` once hypertext has been
// migrated to AXNode. Currently, hypertext in AXNode gets updated every
// time the `AXNode::GetHypertext()` method is called which erroniously
// invalidates this AXPosition.
name_ = GetText();
auto grapheme_iterator = std::make_unique<base::i18n::BreakIterator>(
name_, base::i18n::BreakIterator::BREAK_CHARACTER);
if (!grapheme_iterator->Init())
return {};
return grapheme_iterator;
}
void InitializeWithoutValidation(AXPositionKind kind,
AXTreeID tree_id,
AXNodeID anchor_id,
int child_index,
int text_offset,
ax::mojom::TextAffinity affinity) {
kind_ = kind;
tree_id_ = tree_id;
anchor_id_ = anchor_id;
child_index_ = child_index;
text_offset_ = text_offset;
affinity_ = affinity;
if (!IsValid()) {
// Reset to the null position.
kind_ = AXPositionKind::NULL_POSITION;
tree_id_ = AXTreeIDUnknown();
anchor_id_ = kInvalidAXNodeID;
child_index_ = INVALID_INDEX;
text_offset_ = INVALID_OFFSET;
affinity_ = ax::mojom::TextAffinity::kDownstream;
}
}
void Initialize(AXPositionKind kind,
AXTreeID tree_id,
AXNodeID anchor_id,
int child_index,
int text_offset,
ax::mojom::TextAffinity affinity) {
kind_ = kind;
tree_id_ = tree_id;
anchor_id_ = anchor_id;
child_index_ = child_index;
text_offset_ = text_offset;
affinity_ = affinity;
// TODO(accessibility) Consider using WeakPtr<AXTree> instead of an
// AXTreeID, which would be both faster and easier to use in combination
// with AXTreeSnapshotter, which does not use AXTreeManager to cache
// AXTreeIDs in a map.
SANITIZER_CHECK(GetManager() || kind_ == AXPositionKind::NULL_POSITION)
<< "Tree manager required, tree_id = " << tree_id.ToString()
<< " is unknown = " << (tree_id == AXTreeIDUnknown());
SANITIZER_CHECK(GetAnchor() || kind_ == AXPositionKind::NULL_POSITION)
<< "Creating a position without an anchor is disallowed:\n"
<< ToDebugString();
// TODO(crbug.com/1404289) Remove this line and let the below IsValid()
// assertion get triggered instead. We shouldn't be creating test positions
// with offsets that are too large. This seems to occur when the anchor node
// is ignored, and leads to a number of failing tests.
// Comment this line out as a known performance culprit (also see
// crbug.com/1401591).
// SnapToMaxTextOffsetIfBeyond();
#if defined(AX_EXTRA_MAC_NODES)
// Temporary hack to constrain child index when extra mac nodes are present.
// TODO(accessibility) Remove this hack that works around the fact that Mac
// can set a selection on extra mac nodes, which looks invalid because the
// child index is larger than AnchorChildCount(), which does not account
// for them. We need to get a child count that includes extra mac nodes,
// similar to how BrowserAccessibility::PlatformChildCount() does.
if (!IsValid() && IsTreePosition() &&
ui::IsTableLike(GetAnchor()->GetRole()) &&
child_index > AnchorChildCount()) {
child_index_ = AnchorChildCount();
}
#endif
// TODO(crbug.com/1404289) see TODO above.
// Also look for the failures in
// AXPositionTest.AsLeafTextPositionBeforeCharacterIncludingGeneratedNewlines,
// AXPlatformNodeTextRangeProviderTest.TestNormalizeTextRangeForceSameAnchorOnDegenerateRange.
// SANITIZER_CHECK(IsValid()) << "Creating invalid positions is
// disallowed:\n"
// << ToDebugString();
}
int AnchorChildCount() const {
if (!GetAnchor())
return 0;
return static_cast<int>(GetAnchor()->GetChildCountCrossingTreeBoundary());
}
// When a child is ignored, it looks for unignored nodes of that child's
// children until there are no more descendants.
//
// For example:
// ++TextField
// ++++GenericContainer ignored
// ++++++StaticText "Hello"
// When we call the following method on TextField, it would return 1.
int AnchorUnignoredChildCount() const {
if (!GetAnchor())
return 0;
return static_cast<int>(
GetAnchor()->GetUnignoredChildCountCrossingTreeBoundary());
}
int AnchorIndexInParent() const {
// If this is the root tree, the index in parent will be 0.
return GetAnchor() ? static_cast<int>(GetAnchor()->GetIndexInParent())
: INVALID_INDEX;
}
base::stack<AXNode*> GetAncestorAnchors() const {
if (!GetAnchor())
return base::stack<AXNode*>();
return GetAnchor()->GetAncestorsCrossingTreeBoundaryAsStack();
}
AXNode* GetLowestUnignoredAncestor() const {
if (!GetAnchor())
return nullptr;
return GetAnchor()->GetLowestPlatformAncestor();
}
// Returns the length of text (in UTF16 code points) that this anchor node
// takes up in its parent.
//
// On some platforms, embedded objects are represented in their parent with a
// single "embedded object character".
int MaxTextOffsetInParent() const {
if (IsNullPosition())
return 0;
// Ignored anchors are not visible to platform APIs. As a result, their
// text content or hypertext does not appear in their parent node, but the
// text of their unignored children does, if any. (See
// `AXNode::GetHypertext()` for the meaning of "hypertext" in this context.
if (!GetAnchor()->IsIgnored()) {
if (IsEmbeddedObjectInParent())
return AXNode::kEmbeddedObjectCharacterLengthUTF16;
} else {
// Ignored leaf (text) nodes might contain text content or hypertext, but
// it should not be exposed in their parent.
if (!AnchorUnignoredChildCount())
return 0;
}
return MaxTextOffset();
}
// Returns whether or not this anchor is represented in their parent with a
// single "object replacement character".
bool IsEmbeddedObjectInParent() const {
switch (g_ax_embedded_object_behavior) {
case AXEmbeddedObjectBehavior::kSuppressCharacter:
return false;
case AXEmbeddedObjectBehavior::kExposeCharacterForHypertext:
// We expose an "object replacement character" for all nodes except:
// A) Textual nodes, such as static text, inline text boxes and line
// breaks, and B) Nodes that are invisible to platform APIs.
//
// In the first case, textual nodes cannot be represented by an "object
// replacement character" in the hypertext of their unignored parents,
// because we want to maintain compatibility with how Firefox exposes
// text in IAccessibleText. In the second case, ignored nodes and nodes
// that are descendants of platform leaves should maintain the actual
// text of all their static text descendants, otherwise there would be
// loss of information while traversing the accessibility tree upwards.
// An example of a platform leaf is an <input> text field, because all
// of the accessibility subtree inside the text field is hidden from
// platform APIs. An example of how an ignored node can affect the
// hypertext of an unignored ancestor is shown below:
// ++kTextField "Hello"
// ++++kGenericContainer ignored "Hello"
// ++++++kStaticText "Hello"
// ++++++++kInlineTextBox "Hello"
// The generic container, even though it is ignored, should nevertheless
// maintain the text of its static text child and not use an "object
// replacement character". Otherwise, the value of the text field would
// be wrong.
//
// Please note that there is one more method that controls whether an
// "object replacement character" would be exposed. See
// `AXPosition::IsInUnignoredEmptyObject()`.
return !IsNullPosition() && !GetAnchor()->IsIgnored() &&
!GetAnchor()->IsText() && !GetAnchor()->IsChildOfLeaf();
case AXEmbeddedObjectBehavior::kUIAExposeCharacterForTextContent:
return !IsNullPosition() && !GetAnchor()->IsIgnored() &&
GetAnchor()->IsLeaf() && IsInUnignoredEmptyObject();
}
}
// Determines if the anchor containing this position produces a hard line
// break in the text representation, e.g. the anchor is a block level element
// or a <br>.
bool IsInLineBreakingObject() const {
if (IsNullPosition())
return false;
return GetAnchor()->GetBoolAttribute(
ax::mojom::BoolAttribute::kIsLineBreakingObject);
}
ax::mojom::Role GetAnchorRole() const {
if (IsNullPosition())
return ax::mojom::Role::kUnknown;
return GetRole(GetAnchor());
}
ax::mojom::Role GetRole(AXNode* node) const { return node->GetRole(); }
const std::vector<int32_t>& GetWordStartOffsets() const {
if (IsNullPosition()) {
static const base::NoDestructor<std::vector<int32_t>> empty_word_starts;
return *empty_word_starts;
}
DCHECK(GetAnchor());
// An embedded object replacement character is exposed in a node's text
// representation when a control, such as a text field, is empty. Since the
// control has no text, no word start offsets are present in the
// `ax::mojom::IntListAttribute::kWordStarts` attribute, so we need to
// special case them here.
if (g_ax_embedded_object_behavior ==
AXEmbeddedObjectBehavior::kExposeCharacterForHypertext &&
IsInUnignoredEmptyObject()) {
// Using braces ensures that the vector will contain the given value, and
// not create a vector of size 0.
static const base::NoDestructor<std::vector<int32_t>>
embedded_word_starts{{0}};
return *embedded_word_starts;
}
return GetAnchor()->GetIntListAttribute(
ax::mojom::IntListAttribute::kWordStarts);
}
const std::vector<int32_t>& GetWordEndOffsets() const {
if (IsNullPosition()) {
static const base::NoDestructor<std::vector<int32_t>> empty_word_ends;
return *empty_word_ends;
}
DCHECK(GetAnchor());
// An embedded object replacement character is exposed in a node's text
// representation when a control, such as a text field, is empty. Since the
// control has no text, no word end offsets are present in the
// `ax::mojom::IntListAttribute::kWordEnds` attribute, so we need to special
// case them here.
//
// Since the whole text exposed inside of an embedded object is of
// length 1 (the embedded object replacement character), the word end offset
// is positioned at 1. Because we want to treat embedded object replacement
// characters as ordinary characters, it wouldn't be consistent to assume
// they have no length and return 0 instead of 1.
if (g_ax_embedded_object_behavior ==
AXEmbeddedObjectBehavior::kExposeCharacterForHypertext &&
IsInUnignoredEmptyObject()) {
// Using braces ensures that the vector will contain the given value, and
// not create a vector of size 1.
static const base::NoDestructor<std::vector<int32_t>> embedded_word_ends{
{1}};
return *embedded_word_ends;
}
return GetAnchor()->GetIntListAttribute(
ax::mojom::IntListAttribute::kWordEnds);
}
AXNodeID GetNextOnLineID() const {
if (IsNullPosition())
return kInvalidAXNodeID;
DCHECK(GetAnchor());
int next_on_line_id;
if (GetAnchor()->GetIntAttribute(ax::mojom::IntAttribute::kNextOnLineId,
&next_on_line_id)) {
return static_cast<AXNodeID>(next_on_line_id);
}
return kInvalidAXNodeID;
}
AXNodeID GetPreviousOnLineID() const {
if (IsNullPosition())
return kInvalidAXNodeID;
DCHECK(GetAnchor());
int previous_on_line_id;
if (GetAnchor()->GetIntAttribute(ax::mojom::IntAttribute::kPreviousOnLineId,
&previous_on_line_id)) {
return static_cast<AXNodeID>(previous_on_line_id);
}
return kInvalidAXNodeID;
}
private:
// Defines the relationship between positions during traversal.
// For example, moving from a descendant to an ancestor, is a kAncestor move.
enum class AXMoveType {
kAncestor,
kDescendant,
kSibling,
};
// Defines the direction of position movement, either next / previous in tree.
enum class AXMoveDirection {
kNextInTree,
kPreviousInTree,
};
// Type of predicate function called during anchor navigation.
// When the predicate returns |true|, the navigation stops and returns a
// null position object.
using AbortMovePredicate =
base::RepeatingCallback<bool(const AXPosition& move_from,
const AXPosition& move_to,
const AXMoveType type,
const AXMoveDirection direction)>;
// A text span is defined by a series of inline text boxes that make up a
// single static text object.
bool AtEndOfTextSpan() const {
if (GetAnchorRole() != ax::mojom::Role::kInlineTextBox || !AtEndOfAnchor())
return false;
// We are at the end of text span if |this| position has
// role::kInlineTextBox, the parent of |this| has role::kStaticText, and the
// anchor node of |this| is the last child of its parent's children.
const bool is_last_child =
AnchorIndexInParent() == (GetAnchorSiblingCount() - 1);
DCHECK(GetAnchor());
return is_last_child &&
GetRole(GetAnchor()->GetParentCrossingTreeBoundary()) ==
ax::mojom::Role::kStaticText;
}
// Uses depth-first pre-order traversal.
AXPositionInstance CreateNextAnchorPosition(
const AbortMovePredicate& abort_predicate) const {
if (IsNullPosition())
return Clone();
AXPositionInstance current_position = AsTreePosition();
DCHECK(!current_position->IsNullPosition());
if (!IsLeaf()) {
const int child_index = current_position->child_index_;
if (child_index < current_position->AnchorChildCount()) {
AXPositionInstance child_position =
current_position->CreateChildPositionAt(child_index);
if (abort_predicate.Run(*current_position, *child_position,
AXMoveType::kDescendant,
AXMoveDirection::kNextInTree)) {
return CreateNullPosition();
}
return child_position;
}
}
AXPositionInstance parent_position =
current_position->CreateParentPosition();
// Get the next sibling if it exists, otherwise move up the AXTree to the
// lowest next sibling of this position's ancestors.
while (!parent_position->IsNullPosition()) {
const int index_in_parent = current_position->AnchorIndexInParent();
if (index_in_parent + 1 < parent_position->AnchorChildCount()) {
AXPositionInstance next_sibling =
parent_position->CreateChildPositionAt(index_in_parent + 1);
DCHECK(!next_sibling->IsNullPosition());
if (abort_predicate.Run(*current_position, *next_sibling,
AXMoveType::kSibling,
AXMoveDirection::kNextInTree)) {
return CreateNullPosition();
}
return next_sibling;
}
if (abort_predicate.Run(*current_position, *parent_position,
AXMoveType::kAncestor,
AXMoveDirection::kNextInTree)) {
return CreateNullPosition();
}
current_position = std::move(parent_position);
parent_position = current_position->CreateParentPosition();
}
return CreateNullPosition();
}
// Uses depth-first pre-order traversal.
AXPositionInstance CreatePreviousAnchorPosition(
const AbortMovePredicate& abort_predicate) const {
if (IsNullPosition())
return Clone();
AXPositionInstance current_position = AsTreePosition();
DCHECK(!current_position->IsNullPosition());
AXPositionInstance parent_position =
current_position->CreateParentPosition();
if (parent_position->IsNullPosition())
return parent_position;
// If there is no previous sibling, or the parent itself is a leaf, move up
// to the parent. The parent can be a leaf if we start with a tree position
// that is a descendant of a node that is an empty control represented by an
// "object replacement character" (see `IsInUnignoredEmptyObject()`).
const int index_in_parent = current_position->AnchorIndexInParent();
if (index_in_parent <= 0 || parent_position->IsLeaf()) {
if (abort_predicate.Run(*current_position, *parent_position,
AXMoveType::kAncestor,
AXMoveDirection::kPreviousInTree)) {
return CreateNullPosition();
}
return parent_position;
}
// Get the previous sibling's deepest last child.
AXPositionInstance rightmost_leaf =
parent_position->CreateChildPositionAt(index_in_parent - 1);
DCHECK(!rightmost_leaf->IsNullPosition());
if (abort_predicate.Run(*current_position, *rightmost_leaf,
AXMoveType::kSibling,
AXMoveDirection::kPreviousInTree)) {
return CreateNullPosition();
}
CHECK(!rightmost_leaf->IsNullPosition());
while (!rightmost_leaf->IsLeaf()) {
parent_position = std::move(rightmost_leaf);
rightmost_leaf = parent_position->CreateChildPositionAt(
parent_position->AnchorChildCount() - 1);
DCHECK(!rightmost_leaf->IsNullPosition());
if (abort_predicate.Run(*parent_position, *rightmost_leaf,
AXMoveType::kDescendant,
AXMoveDirection::kPreviousInTree)) {
return CreateNullPosition();
}
CHECK(!rightmost_leaf->IsNullPosition());
}
return rightmost_leaf;
}
// Creates a text position using the next leaf node as its anchor.
// Nearly all of the text in the accessibility tree is contained in leaf
// nodes, so this method is mostly used to move through text nodes.
AXPositionInstance CreateNextLeafTextPosition(
const AbortMovePredicate& abort_predicate) const {
// If this is an ancestor text position, resolve to its leaf text position.
if (IsTextPosition() && !IsLeaf())
return AsLeafTextPosition();
AXPositionInstance next_leaf = CreateNextAnchorPosition(abort_predicate);
while (!next_leaf->IsNullPosition() && !next_leaf->IsLeaf())
next_leaf = next_leaf->CreateNextAnchorPosition(abort_predicate);
DCHECK(next_leaf);
return next_leaf->AsLeafTextPosition();
}
// Creates a text position using the previous leaf node as its anchor.
// Nearly all of the text in the accessibility tree is contained in leaf
// nodes, so this method is mostly used to move through text nodes.
AXPositionInstance CreatePreviousLeafTextPosition(
const AbortMovePredicate& abort_predicate) const {
// If this is an ancestor text position, resolve to its leaf text position.
if (IsTextPosition() && !IsLeaf())
return AsLeafTextPosition();
AXPositionInstance previous_leaf =
CreatePreviousAnchorPosition(abort_predicate);
while (!previous_leaf->IsNullPosition() && !previous_leaf->IsLeaf()) {
previous_leaf =
previous_leaf->CreatePreviousAnchorPosition(abort_predicate);
}
DCHECK(previous_leaf);
return previous_leaf->AsLeafTextPosition();
}
// Creates a tree position using the next leaf node as its anchor.
// Nearly all of the text in the accessibility tree is contained in leaf
// nodes, so this method is mostly used to move through text nodes.
AXPositionInstance CreateNextLeafTreePosition(
const AbortMovePredicate& abort_predicate) const {
AXPositionInstance next_leaf =
AsTreePosition()->CreateNextAnchorPosition(abort_predicate);
while (!next_leaf->IsNullPosition() && !next_leaf->IsLeaf())
next_leaf = next_leaf->CreateNextAnchorPosition(abort_predicate);
DCHECK(next_leaf);
return next_leaf;
}
// Creates a tree position using the previous leaf node as its anchor.
// Nearly all of the text in the accessibility tree is contained in leaf
// nodes, so this method is mostly used to move through text nodes.
AXPositionInstance CreatePreviousLeafTreePosition(
const AbortMovePredicate& abort_predicate) const {
AXPositionInstance previous_leaf =
AsTreePosition()->CreatePreviousAnchorPosition(abort_predicate);
while (!previous_leaf->IsNullPosition() && !previous_leaf->IsLeaf()) {
previous_leaf =
previous_leaf->CreatePreviousAnchorPosition(abort_predicate);
}
DCHECK(previous_leaf);
return previous_leaf;
}
//
// Static helpers for lambda usage.
//
static bool AtStartOfPagePredicate(const AXPositionInstance& position) {
// If a page boundary is ignored, then it should not be exposed to assistive
// software.
return !position->IsIgnored() && position->AtStartOfPage();
}
static bool AtEndOfPagePredicate(const AXPositionInstance& position) {
// If a page boundary is ignored, then it should not be exposed to assistive
// software.
return !position->IsIgnored() && position->AtEndOfPage();
}
static bool AtStartOfParagraphPredicate(const AXPositionInstance& position) {
// Sometimes, nodes that are used to signify paragraph boundaries are
// ignored, e.g. <div aria-hidden="true"></div>". We make the design
// decision to expose such boundaries to assistive software. Their
// associated ignored nodes are still not exposed. This ensures that
// navigation keys in text fields, such as Ctrl+Up/Down, will behave the
// same way as related screen reader commands.
return position->AtStartOfParagraph();
}
static bool AtStartOfParagraphExcludingEmptyParagraphsPredicate(
const AXPositionInstance& position) {
// For UI Automation, empty lines after a paragraph should be merged into
// the preceding paragraph.
//
// See
// https://docs.microsoft.com/en-us/windows/win32/winauto/uiauto-uiautomationtextunits#paragraph
const bool is_empty_paragraph =
position->IsPointingToLineBreak() ||
(position->IsInLineBreakingObject() &&
(position->GetAnchor()->IsEmptyLeaf() || position->GetText().empty()));
return !is_empty_paragraph && AtStartOfParagraphPredicate(position);
}
static bool AtEndOfParagraphPredicate(const AXPositionInstance& position) {
// Sometimes, nodes that are used to signify paragraph boundaries are
// ignored, e.g. <div aria-hidden="true"></div>". We make the design
// decision to expose such boundaries to assistive software. Their
// associated ignored nodes are still not exposed. This ensures that
// navigation keys in text fields, such as Ctrl+Up/Down, will behave the
// same way as related screen reader commands.
return position->AtEndOfParagraph();
}
static bool AtStartOfLinePredicate(const AXPositionInstance& position) {
// Sometimes, nodes that are used to signify line boundaries are ignored,
// e.g. <span contenteditable="false"> <br role="presentation"></span> which
// is used to make a hard line break appear as a soft one. We make the
// design decision to expose such boundaries to assistive software. Their
// associated ignored nodes are still not exposed.
return position->AtStartOfLine();
}
static bool AtEndOfLinePredicate(const AXPositionInstance& position) {
// Sometimes, nodes that are used to signify line boundaries are ignored,
// e.g. <span contenteditable="false"> <br role="presentation"></span> which
// is used to make a hard line break appear as a soft one. We make the
// design decision to expose such boundaries to assistive software. Their
// associated ignored nodes are still not exposed.
return position->AtEndOfLine();
}
static bool AtStartOfSentencePredicate(const AXPositionInstance& position) {
// Sentence boundaries should be at specific text offsets that are "visible"
// to assistive software, hence not ignored. Ignored nodes are often used
// for additional layout information, such as line and paragraph boundaries.
// Their text is not currently processed.
return !position->IsIgnored() && position->AtStartOfSentence();
}
static bool AtEndOfSentencePredicate(const AXPositionInstance& position) {
// Sentence boundaries should be at specific text offsets that are "visible"
// to assistive software, hence not ignored. Ignored nodes are often used
// for additional layout information, such as line and paragraph boundaries.
// Their text is not currently processed.
return !position->IsIgnored() && position->AtEndOfSentence();
}
static bool AtStartOfFormatPredicate(const AXPositionInstance& position) {
return position->AtStartOfFormat();
}
static bool AtEndOfFormatPredicate(const AXPositionInstance& position) {
return position->AtEndOfFormat();
}
static bool AtStartOfWordPredicate(const AXPositionInstance& position) {
// Word boundaries should be at specific text offsets that are "visible" to
// assistive software, hence not ignored. Ignored nodes are often used for
// additional layout information, such as line and paragraph boundaries.
// Their text is not currently processed.
return !position->IsIgnored() && position->AtStartOfWord();
}
static bool AtEndOfWordPredicate(const AXPositionInstance& position) {
// Word boundaries should be at specific text offsets that are "visible" to
// assistive software, hence not ignored. Ignored nodes are often used for
// additional layout information, such as line and paragraph boundaries.
// Their text is not currently processed.
return !position->IsIgnored() && position->AtEndOfWord();
}
static bool DefaultAbortMovePredicate(const AXPosition& move_from,
const AXPosition& move_to,
const AXMoveType move_type,
const AXMoveDirection direction) {
// Default behavior is to never abort.
return false;
}
// AbortMovePredicate function used to detect format boundaries.
static bool AbortMoveAtFormatBoundary(const AXPosition& move_from,
const AXPosition& move_to,
const AXMoveType move_type,
const AXMoveDirection direction) {
if (move_from.IsNullPosition() || move_to.IsNullPosition() ||
move_from.IsInUnignoredEmptyObject() ||
move_to.IsInUnignoredEmptyObject()) {
return true;
}
// Treat moving into or out of nodes with certain roles as a format break.
ax::mojom::Role from_role = move_from.GetAnchorRole();
ax::mojom::Role to_role = move_to.GetAnchorRole();
if (from_role != to_role) {
if (IsFormatBoundary(from_role) || IsFormatBoundary(to_role))
return true;
}
// Stop moving when text attributes differ.
return move_from.AsLeafTreePosition()->GetTextAttributes() !=
move_to.AsLeafTreePosition()->GetTextAttributes();
}
static bool MoveCrossesLineBreakingObject(
const ax::mojom::TextBoundary paragraph_boundary,
const AXPosition& move_from,
const AXPosition& move_to,
const AXMoveType move_type,
const AXMoveDirection direction) {
const AXPosition* proceeding_position = &move_from;
const AXPosition* trailing_position = &move_to;
switch (direction) {
case AXMoveDirection::kNextInTree:
break;
case AXMoveDirection::kPreviousInTree:
std::swap(proceeding_position, trailing_position);
break;
}
switch (paragraph_boundary) {
case ax::mojom::TextBoundary::kParagraphEnd: {
const bool trailing_block = trailing_position->IsInLineBreakingObject();
const bool trailing_line_break =
trailing_position->IsPointingToLineBreak();
return trailing_block || trailing_line_break;
}
case ax::mojom::TextBoundary::kParagraphStart: {
// The trailing object does not need to be a block or a line break for
// it to represent a start of a new paragraph.
//
// 1. Preceding block before "world" creates a paragraph start:
// <div><p>hello</p>world</div>
// 2. Preceding line break before "world" creates a paragraph start:
// <div>Hello<br>world</div>
const bool preceding_block =
proceeding_position->IsInLineBreakingObject();
const bool preceding_line_break =
proceeding_position->IsPointingToLineBreak();
return preceding_block || preceding_line_break;
}
default:
NOTREACHED();
return false;
}
}
// AbortMovePredicate function used to detect paragraph boundaries.
static bool AbortMoveAtParagraphBoundary(
const ax::mojom::TextBoundary paragraph_boundary,
const AXPosition& move_from,
const AXPosition& move_to,
const AXMoveType move_type,
const AXMoveDirection direction) {
if (move_from.IsNullPosition() || move_to.IsNullPosition() ||
move_from.IsInUnignoredEmptyObject() ||
move_to.IsInUnignoredEmptyObject()) {
// We deliberately put empty objects, such as empty text fields, in their
// own paragraph for easier navigation. Otherwise, they could easily be
// missed by screen reader users.
return true;
}
return MoveCrossesLineBreakingObject(paragraph_boundary, move_from, move_to,
move_type, direction);
}
// AbortMovePredicate function used to detect page boundaries.
//
// Depending on the type of content, it might be separated into a number of
// pages. For example, a PDF document may expose multiple pages.
static bool AbortMoveAtPageBoundary(const AXPosition& move_from,
const AXPosition& move_to,
const AXMoveType move_type,
const AXMoveDirection direction) {
if (move_from.IsNullPosition() || move_to.IsNullPosition())
return true;
const bool move_from_break = move_from.GetAnchor()->GetBoolAttribute(
ax::mojom::BoolAttribute::kIsPageBreakingObject);
const bool move_to_break = move_to.GetAnchor()->GetBoolAttribute(
ax::mojom::BoolAttribute::kIsPageBreakingObject);
switch (move_type) {
case AXMoveType::kAncestor:
// For Ancestor moves, only abort when exiting a page break.
// We don't care if the ancestor is a page break or not, since the
// descendant is contained by it.
return move_from_break;
case AXMoveType::kDescendant:
// For Descendant moves, only abort when entering a page break
// descendant. We don't care if the ancestor is a page break or not,
// since the descendant is contained by it.
return move_to_break;
case AXMoveType::kSibling:
// For Sibling moves, abort if both of the siblings are a page break,
// because that would mean exiting and/or entering a page break.
return move_from_break && move_to_break;
}
}
// AbortMovePredicate function used to detect crossing through the boundaries
// of a window-like container, such as a webpage, a PDF, a dialog, the
// browser's UI (AKA Views), or the whole desktop. Window-like containers
// that are ignored should not cause us to abort. For example, a hidden dialog
// should not cause a break.
static bool AbortMoveAtRootBoundary(const AXPosition& move_from,
const AXPosition& move_to,
const AXMoveType move_type,
const AXMoveDirection direction) {
// Positions are null when moving past the whole content, therefore the root
// of a window-like container has certainly been crossed.
if (move_from.IsNullPosition() || move_to.IsNullPosition())
return true;
const ax::mojom::Role move_from_role = move_from.GetAnchorRole();
const ax::mojom::Role move_to_role = move_to.GetAnchorRole();
switch (move_type) {
case AXMoveType::kAncestor:
// For Ancestor moves, only abort when exiting an unignored window-like
// container. We don't care if the ancestor is the root of a window-like
// container or not, since the descendant is contained by it. However,
// we do care if the ancestor is an iframe because a webpage should be
// navigated as a single document together with all its iframes,
// (out-of-process or otherwise).
return IsRootLike(move_from_role) && !IsIframe(move_to_role) &&
!move_from.IsIgnored();
case AXMoveType::kDescendant:
// For Descendant moves, only abort when entering an unignored
// window-like container. We don't care if the ancestor is the root of a
// window-like container or not, since the descendant is contained by
// it. However, we do care if the ancestor is an iframe because a
// webpage should be navigated as a single document together with all
// its iframes, (out-of-process or otherwise).
return IsRootLike(move_to_role) && !IsIframe(move_from_role) &&
!move_to.IsIgnored();
case AXMoveType::kSibling:
// For Sibling moves, abort if both of the siblings are at the root of
// unignored window-like containers because that would mean exiting
// and/or entering a new window-like container. Iframes should not be
// present in this case because an iframe should never contain more than
// one kRootWebArea as its immediate child.
return IsRootLike(move_from_role) && IsRootLike(move_to_role) &&
!move_from.IsIgnored() && !move_to.IsIgnored();
}
}
static bool AbortMoveAtStartOfInlineBlock(const AXPosition& move_from,
const AXPosition& move_to,
const AXMoveType move_type,
const AXMoveDirection direction) {
if (move_from.IsNullPosition() || move_to.IsNullPosition())
return true;
// These will only be available if AXMode has kHTML set.
const bool move_from_is_inline_block =
move_from.GetAnchor()->GetStringAttribute(
ax::mojom::StringAttribute::kDisplay) == "inline-block";
const bool move_to_is_inline_block =
move_to.GetAnchor()->GetStringAttribute(
ax::mojom::StringAttribute::kDisplay) == "inline-block";
switch (direction) {
case AXMoveDirection::kNextInTree:
// When moving forward, break if we enter an inline block.
return move_to_is_inline_block &&
(move_type == AXMoveType::kDescendant ||
move_type == AXMoveType::kSibling);
case AXMoveDirection::kPreviousInTree:
// When moving backward, break if we exit an inline block.
return move_from_is_inline_block &&
(move_type == AXMoveType::kAncestor ||
move_type == AXMoveType::kSibling);
}
NOTREACHED();
return false;
}
static const std::vector<int32_t>& GetSentenceStartOffsetsFunc(
const AXPositionInstance& position) {
if (position->IsNullPosition()) {
static const base::NoDestructor<std::vector<int32_t>>
empty_sentence_starts;
return *empty_sentence_starts;
}
DCHECK(position->GetAnchor());
return position->GetAnchor()->GetIntListAttribute(
ax::mojom::IntListAttribute::kSentenceStarts);
}
static const std::vector<int32_t>& GetSentenceEndOffsetsFunc(
const AXPositionInstance& position) {
if (position->IsNullPosition()) {
static const base::NoDestructor<std::vector<int32_t>> empty_sentence_ends;
return *empty_sentence_ends;
}
DCHECK(position->GetAnchor());
return position->GetAnchor()->GetIntListAttribute(
ax::mojom::IntListAttribute::kSentenceEnds);
}
static const std::vector<int32_t>& GetWordStartOffsetsFunc(
const AXPositionInstance& position) {
return position->GetWordStartOffsets();
}
static const std::vector<int32_t>& GetWordEndOffsetsFunc(
const AXPositionInstance& position) {
return position->GetWordEndOffsets();
}
// Creates an ancestor equivalent position at the root node of this position's
// accessibility tree, e.g. at the root of the current iframe (out-of-process
// or not), PDF plugin, Views tree, dialog (native, ARIA or HTML), window, or
// the whole desktop.
//
// For a similar method that does not stop at all iframe boundaries, see
// `CreateRootAncestorPosition`.
//
// See `CreateParentPosition` for an explanation of the use of
// |move_direction|.
AXPositionInstance CreateAXTreeRootAncestorPosition(
ax::mojom::MoveDirection move_direction) const {
if (IsNullPosition())
return Clone();
AXPositionInstance root_position = Clone();
while (!IsRootLike(root_position->GetAnchorRole())) {
AXPositionInstance parent_position =
root_position->CreateParentPosition(move_direction);
if (parent_position->IsNullPosition())
break;
root_position = std::move(parent_position);
}
return root_position;
}
// Creates an ancestor equivalent position at the root node of all content,
// e.g. at the root of the whole webpage, PDF plugin, Views tree, dialog
// (native, ARIA or HTML), window, or the whole desktop.
//
// Note that this method will break out of an out-of-process iframe and return
// a position at the root of the top-level document, but it will not break
// into the Views tree if present. For a similar method that stops at all
// iframe boundaries, see `CreateAXTreeRootAncestorPosition`.
//
// See `CreateParentPosition` for an explanation of the use of
// |move_direction|.
AXPositionInstance CreateRootAncestorPosition(
ax::mojom::MoveDirection move_direction) const {
AXPositionInstance root_position =
CreateAXTreeRootAncestorPosition(move_direction);
AXPositionInstance web_root_position = CreateNullPosition();
for (; !root_position->IsNullPosition();
root_position =
root_position->CreateAXTreeRootAncestorPosition(move_direction)) {
// An "ax::mojom::Role::kRootWebArea" could also be present at the root of
// iframes or embedded objects, so we need to check that for that specific
// role the position is also at the top of the forest of accessibility
// trees making up the webpage. Note that the forest of accessibility
// trees would include Views and on Chrome OS the whole desktop, so in the
// case of a web root, checking if the parent position is the null
// position will not work.
if (root_position->GetAnchorRole() != ax::mojom::Role::kRootWebArea) {
if (web_root_position->IsNullPosition())
return root_position; // Original position is not in web contents.
// The previously saved web root is the shallowest in the forest of
// accessibility trees.
return web_root_position;
}
// Save this web root position and check if it is the shallowest in the
// forest of accessibility trees.
web_root_position = root_position->Clone();
root_position = root_position->CreateParentPosition(move_direction);
}
return web_root_position;
}
// Creates a text position that is in the same anchor as the current
// position, but starting from the current text offset, adjusts to the next
// or the previous boundary offset depending on the boundary direction. If
// there is no next / previous offset, the current text offset is unchanged.
AXPositionInstance CreatePositionAtNextOffsetBoundary(
ax::mojom::MoveDirection move_direction,
BoundaryTextOffsetsFunc get_offsets) const {
if (IsNullPosition() || get_offsets.is_null())
return Clone();
AXPositionInstance text_position = AsTextPosition();
const std::vector<int32_t>& boundary_offsets =
get_offsets.Run(text_position);
if (boundary_offsets.empty())
return text_position;
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward: {
auto offsets_iterator =
std::lower_bound(boundary_offsets.begin(), boundary_offsets.end(),
int32_t{text_position->text_offset_});
// If there is no previous offset, the current offset should be
// unchanged.
if (offsets_iterator > boundary_offsets.begin()) {
// Since we already checked if "boundary_offsets" are non-empty, we
// can safely move the iterator one position back, even if it's
// currently at the vector's end.
--offsets_iterator;
auto offsets_iterator_ref = *offsets_iterator;
text_position->text_offset_ = static_cast<int>(offsets_iterator_ref);
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
}
break;
}
case ax::mojom::MoveDirection::kForward: {
const auto offsets_iterator =
std::upper_bound(boundary_offsets.begin(), boundary_offsets.end(),
int32_t{text_position->text_offset_});
// If there is no next offset, the current offset should be unchanged.
if (offsets_iterator < boundary_offsets.end()) {
auto offsets_iterator_ref = *offsets_iterator;
text_position->text_offset_ = static_cast<int>(offsets_iterator_ref);
text_position->affinity_ = ax::mojom::TextAffinity::kDownstream;
}
break;
}
}
return text_position;
}
// Creates a text position that is in the same anchor as the current
// position, but adjusts its text offset to be either at the first or last
// offset boundary, based on the boundary direction. When moving forward,
// the text position is adjusted to point to the first offset boundary, or
// to the end of its anchor if there are no offset boundaries. When moving
// backward, it is adjusted to point to the last offset boundary, or to the
// start of its anchor if there are no offset boundaries.
AXPositionInstance CreatePositionAtFirstOffsetBoundary(
ax::mojom::MoveDirection move_direction,
BoundaryTextOffsetsFunc get_offsets) const {
if (IsNullPosition() || get_offsets.is_null())
return Clone();
AXPositionInstance text_position = AsTextPosition();
const std::vector<int32_t>& boundary_offsets =
get_offsets.Run(text_position);
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
if (boundary_offsets.empty()) {
return text_position->CreatePositionAtStartOfAnchor();
} else {
text_position->text_offset_ =
int{boundary_offsets[boundary_offsets.size() - 1]};
return text_position;
}
break;
case ax::mojom::MoveDirection::kForward:
if (boundary_offsets.empty()) {
return text_position->CreatePositionAtEndOfAnchor();
} else {
text_position->text_offset_ = int{boundary_offsets[0]};
return text_position;
}
break;
}
}
// Returns the next unignored leaf text position in the specified direction,
// also ensuring that *AsLeafTextPosition() !=
// *CreateAdjacentLeafTextPosition() is true; returns a null position if no
// adjacent position exists.
//
// This method is the first step for CreateBoundary[Start|End]Position to
// guarantee that the resulting position when using a boundary behavior other
// than `AXBoundaryBehavior::kStopAtAnchorBoundaryOrIfAlreadyAtBoundary` is
// not equivalent to the initial position. That's why ignored positions are
// also skipped. Otherwise, if a boundary is present on an ignored position,
// the search for the next or previous boundary would stop prematurely. Note
// that if there are multiple adjacent ignored positions and all of them
// create a boundary, we'll skip them all on purpose. For example, adjacent
// ignored paragraph boundaries could be created by using multiple aria-hidden
// divs next to one another. These should not contribute more than one
// paragraph boundary to the tree's text representation, otherwise this will
// create user confusion.
//
// Note that using the `CompareTo` method with text positions does not take
// into account position affinity or the order of their anchors in the tree:
// two text positions are considered equivalent if their offsets in the text
// representation of the entire AXTree are the same. As such, using
// Create[Next|Previous]LeafTextPosition is not enough to create adjacent
// positions, e.g. the end of an anchor and the start of the next one are
// equivalent; furthermore, there could be nodes with no text between them,
// all of them being equivalent too.
//
// IMPORTANT! This method basically moves the given position one character
// forward/backward, but it could end up at the middle of a grapheme cluster,
// so it shouldn't be used to move by ax::mojom::TextBoundary::kCharacter (for
// such a purpose use Create[Next|Previous]CharacterPosition instead).
AXPositionInstance CreateAdjacentLeafTextPosition(
ax::mojom::MoveDirection move_direction) const {
AXPositionInstance text_position = AsLeafTextPosition();
switch (move_direction) {
case ax::mojom::MoveDirection::kNone:
NOTREACHED();
return CreateNullPosition();
case ax::mojom::MoveDirection::kBackward:
// If we are at a text offset greater than 0, we will simply decrease
// the offset by one; otherwise, we will create a position at the end of
// the previous unignored leaf node with non-empty text and decrease its
// offset.
//
// Note that a position located at offset 0 of an empty text node is
// considered both at the start and at the end of its anchor, so the
// following loop skips over empty text leaf nodes, which is expected
// since those positions are equivalent to both the previous non-empty
// leaf node's end and the next non-empty leaf node's start.
while (text_position->AtStartOfAnchor() || text_position->IsIgnored()) {
text_position = text_position
->CreatePreviousLeafTextPosition(
base::BindRepeating(&AbortMoveAtRootBoundary))
->CreatePositionAtEndOfAnchor();
}
if (!text_position->IsNullPosition())
--text_position->text_offset_;
break;
case ax::mojom::MoveDirection::kForward:
// If we are at a text offset less than MaxTextOffset, we will simply
// increase the offset by one; otherwise, we will create a position at
// the start of the next unignored leaf node with non-empty text and
// increase its offset.
//
// Same as the comment above: using AtEndOfAnchor is enough to skip
// empty text nodes that are equivalent to the initial position.
while (text_position->AtEndOfAnchor() || text_position->IsIgnored()) {
text_position = text_position->CreateNextLeafTextPosition(
base::BindRepeating(&AbortMoveAtRootBoundary));
}
if (!text_position->IsNullPosition())
++text_position->text_offset_;
break;
}
DCHECK(text_position->IsValid());
return text_position;
}
AXPositionKind kind_;
// TODO(crbug.com/1362839): use weak pointers for the AXTree, so that
// AXPosition can be used without AXTreeManager support (and also faster than
// the slow AXTreeID).
AXTreeID tree_id_;
AXNodeID anchor_id_;
// For text positions, |child_index_| is initially set to |-1| and only
// computed on demand. The same with tree positions and |text_offset_|.
int child_index_;
// "text_offset_" represents the number of UTF16 code units before this
// position. It doesn't count grapheme clusters.
int text_offset_;
// Affinity is used to distinguish between two text positions that point to
// the same text offset, but which happens to fall on a soft line break. A
// soft line break doesn't insert any white space in the accessibility tree,
// so without affinity there would be no way to determine whether a text
// position is before or after the soft line break. An upstream affinity
// means that the position is before the soft line break, whilst a
// downstream affinity means that the position is after the soft line break.
//
// Please note that affinity could only be set to upstream for positions
// that are anchored to non-leaf nodes. When on a leaf node, there could
// never be an ambiguity as to which line a position points to because Blink
// creates separate inline text boxes for each line of text. Therefore, a
// leaf text position before the soft line break would be pointing to the
// end of its anchor node, whilst a leaf text position after the soft line
// break would be pointing to the start of the next node.
ax::mojom::TextAffinity affinity_;
//
// Cached members that should be lazily created on first use.
//
// In the case of a leaf position, its text content (in UTF16 format). Used
// for initializing a grapheme break iterator.
mutable std::u16string name_;
};
template <class AXPositionType, class AXNodeType>
const int AXPosition<AXPositionType, AXNodeType>::BEFORE_TEXT;
template <class AXPositionType, class AXNodeType>
const int AXPosition<AXPositionType, AXNodeType>::INVALID_INDEX;
template <class AXPositionType, class AXNodeType>
const int AXPosition<AXPositionType, AXNodeType>::INVALID_OFFSET;
template <class AXPositionType, class AXNodeType>
bool operator==(const AXPosition<AXPositionType, AXNodeType>& first,
const AXPosition<AXPositionType, AXNodeType>& second) {
const absl::optional<int> compare_to_optional = first.CompareTo(second);
return compare_to_optional.has_value() && compare_to_optional.value() == 0;
}
template <class AXPositionType, class AXNodeType>
bool operator!=(const AXPosition<AXPositionType, AXNodeType>& first,
const AXPosition<AXPositionType, AXNodeType>& second) {
const absl::optional<int> compare_to_optional = first.CompareTo(second);
// It makes sense to also return false if the positions are not comparable,
// because by definition non-comparable positions are uniqual. Positions are
// not comparable when one position is null and the other is not or if the
// positions do not have any common ancestor.
return !compare_to_optional.has_value() || compare_to_optional.value() != 0;
}
template <class AXPositionType, class AXNodeType>
bool operator<(const AXPosition<AXPositionType, AXNodeType>& first,
const AXPosition<AXPositionType, AXNodeType>& second) {
const absl::optional<int> compare_to_optional = first.CompareTo(second);
return compare_to_optional.has_value() && compare_to_optional.value() < 0;
}
template <class AXPositionType, class AXNodeType>
bool operator<=(const AXPosition<AXPositionType, AXNodeType>& first,
const AXPosition<AXPositionType, AXNodeType>& second) {
const absl::optional<int> compare_to_optional = first.CompareTo(second);
return compare_to_optional.has_value() && compare_to_optional.value() <= 0;
}
template <class AXPositionType, class AXNodeType>
bool operator>(const AXPosition<AXPositionType, AXNodeType>& first,
const AXPosition<AXPositionType, AXNodeType>& second) {
const absl::optional<int> compare_to_optional = first.CompareTo(second);
return compare_to_optional.has_value() && compare_to_optional.value() > 0;
}
template <class AXPositionType, class AXNodeType>
bool operator>=(const AXPosition<AXPositionType, AXNodeType>& first,
const AXPosition<AXPositionType, AXNodeType>& second) {
const absl::optional<int> compare_to_optional = first.CompareTo(second);
return compare_to_optional.has_value() && compare_to_optional.value() >= 0;
}
template <class AXPositionType, class AXNodeType>
void swap(AXPosition<AXPositionType, AXNodeType>& first,
AXPosition<AXPositionType, AXNodeType>& second) {
first.swap(second);
}
template <class AXPositionType, class AXNodeType>
std::ostream& operator<<(
std::ostream& stream,
const AXPosition<AXPositionType, AXNodeType>& position) {
return stream << position.ToString();
}
extern template class EXPORT_TEMPLATE_DECLARE(AX_EXPORT)
AXPosition<AXNodePosition, AXNode>;
} // namespace ui
#endif // UI_ACCESSIBILITY_AX_POSITION_H_
|