1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_ACCESSIBILITY_AX_RANGE_H_
#define UI_ACCESSIBILITY_AX_RANGE_H_
#include <memory>
#include <ostream>
#include <string>
#include <utility>
#include <vector>
#include "base/strings/utf_string_conversions.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "ui/accessibility/ax_clipping_behavior.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_node_position.h"
#include "ui/accessibility/ax_offscreen_result.h"
#include "ui/accessibility/ax_role_properties.h"
#include "ui/accessibility/ax_tree_manager_map.h"
namespace ui {
// Specifies how AXRange::GetText treats any formatting changes, such as
// paragraph breaks, that have been introduced by layout. For example, consider
// the following HTML snippet: "A<div>B</div>C".
enum class AXTextConcatenationBehavior {
// Preserve any introduced formatting, such as paragraph breaks, e.g. GetText
// = "A\nB\nC".
kWithParagraphBreaks,
// Ignore any introduced formatting, such as paragraph breaks, e.g. GetText =
// "ABC".
kWithoutParagraphBreaks
};
class AXRangeRectDelegate {
public:
virtual gfx::Rect GetInnerTextRangeBoundsRect(
AXTreeID tree_id,
AXNodeID node_id,
int start_offset,
int end_offset,
ui::AXClippingBehavior clipping_behavior,
AXOffscreenResult* offscreen_result) = 0;
virtual gfx::Rect GetBoundsRect(AXTreeID tree_id,
AXNodeID node_id,
AXOffscreenResult* offscreen_result) = 0;
};
// A range delimited by two positions in the AXTree.
//
// In order to avoid any confusion regarding whether a deep or a shallow copy is
// being performed, this class can be moved, but not copied.
template <class AXPositionType>
class AXRange {
public:
using AXPositionInstance = std::unique_ptr<AXPositionType>;
// Creates an `AXRange` encompassing the contents of the given `AXNode`.
static AXRange RangeOfContents(const AXNode& node) {
AXPositionInstance start_position = AXNodePosition::CreatePosition(
node, /* child_index_or_text_offset */ 0);
AXPositionInstance end_position =
start_position->CreatePositionAtEndOfAnchor();
return AXRange(std::move(start_position), std::move(end_position));
}
AXRange()
: anchor_(AXPositionType::CreateNullPosition()),
focus_(AXPositionType::CreateNullPosition()) {}
AXRange(AXPositionInstance anchor, AXPositionInstance focus) {
anchor_ = anchor ? std::move(anchor) : AXPositionType::CreateNullPosition();
focus_ = focus ? std::move(focus) : AXPositionType::CreateNullPosition();
}
AXRange(const AXRange& other) = delete;
AXRange(AXRange&& other) : AXRange() {
anchor_.swap(other.anchor_);
focus_.swap(other.focus_);
}
virtual ~AXRange() = default;
AXPositionType* anchor() const {
DCHECK(anchor_);
return anchor_.get();
}
AXPositionType* focus() const {
DCHECK(focus_);
return focus_.get();
}
AXRange& operator=(const AXRange& other) = delete;
AXRange& operator=(AXRange&& other) {
if (this != &other) {
anchor_ = AXPositionType::CreateNullPosition();
focus_ = AXPositionType::CreateNullPosition();
anchor_.swap(other.anchor_);
focus_.swap(other.focus_);
}
return *this;
}
bool operator==(const AXRange& other) const {
if (IsNull())
return other.IsNull();
return !other.IsNull() && *anchor_ == *other.anchor() &&
*focus_ == *other.focus();
}
bool operator!=(const AXRange& other) const { return !(*this == other); }
// Given a pair of AXPosition, determines how the first compares with the
// second, relative to the order they would be iterated over by using
// AXRange::Iterator to traverse all leaf text ranges in a tree.
//
// Notice that this method is different from using AXPosition::CompareTo since
// the following logic takes into account BOTH tree pre-order traversal and
// text offsets when both positions are located within the same anchor.
//
// Returns:
// 0 - If both positions are equivalent.
// <0 - If the first position would come BEFORE the second.
// >0 - If the first position would come AFTER the second.
// nullopt - If positions are not comparable (see AXPosition::CompareTo).
static absl::optional<int> CompareEndpoints(const AXPositionType* first,
const AXPositionType* second) {
DCHECK(first->IsValid());
DCHECK(second->IsValid());
absl::optional<int> tree_position_comparison =
first->AsTreePosition()->CompareTo(*second->AsTreePosition());
// When the tree comparison is nullopt, using value_or(1) forces a default
// value of 1, making the following statement return nullopt as well.
return (tree_position_comparison.value_or(1) != 0)
? tree_position_comparison
: first->CompareTo(*second);
}
AXRange AsForwardRange() const {
return (CompareEndpoints(anchor(), focus()).value_or(0) > 0)
? AXRange(focus_->Clone(), anchor_->Clone())
: AXRange(anchor_->Clone(), focus_->Clone());
}
AXRange AsBackwardRange() const {
return (CompareEndpoints(anchor(), focus()).value_or(0) < 0)
? AXRange(focus_->Clone(), anchor_->Clone())
: AXRange(anchor_->Clone(), focus_->Clone());
}
bool IsCollapsed() const { return !IsNull() && *anchor_ == *focus_; }
// We define a "leaf text range" as an AXRange whose endpoints are leaf text
// positions located within the same anchor of the AXTree.
bool IsLeafTextRange() const {
return !IsNull() && anchor_->GetAnchor() == focus_->GetAnchor() &&
anchor_->IsLeafTextPosition() && focus_->IsLeafTextPosition();
}
bool IsNull() const {
DCHECK(anchor_ && focus_);
return anchor_->IsNullPosition() || focus_->IsNullPosition();
}
std::string ToString() const {
return "Range\nAnchor:" + anchor_->ToString() +
"\nFocus:" + focus_->ToString();
}
// We can decompose any given AXRange into multiple "leaf text ranges".
// As an example, consider the following HTML code:
//
// <p>line with text<br><input type="checkbox">line with checkbox</p>
//
// It will produce the following AXTree; notice that the leaf text nodes
// (enclosed in parenthesis) compose its text representation:
//
// paragraph
// staticText name='line with text'
// (inlineTextBox name='line with text')
// lineBreak name='<newline>'
// (inlineTextBox name='<newline>')
// (checkBox)
// staticText name='line with checkbox'
// (inlineTextBox name='line with checkbox')
//
// Suppose we have an AXRange containing all elements from the example above.
// The text representation of such range, with AXRange's endpoints marked by
// opening and closing brackets, will look like the following:
//
// "[line with text\n{checkBox}line with checkbox]"
//
// Note that in the text representation {checkBox} is not visible, but it is
// effectively a "leaf text range", so we include it in the example above only
// to visualize how the iterator should work.
//
// Decomposing the AXRange above into its "leaf text ranges" would result in:
//
// "[line with text][\n][{checkBox}][line with checkbox]"
//
// This class allows AXRange to be iterated through all "leaf text ranges"
// contained between its endpoints, composing the entire range.
class Iterator {
public:
using iterator_category = std::input_iterator_tag;
using value_type = AXRange;
using difference_type = std::ptrdiff_t;
using pointer = AXRange*;
using reference = AXRange&;
Iterator()
: current_start_(AXPositionType::CreateNullPosition()),
iterator_end_(AXPositionType::CreateNullPosition()) {}
Iterator(AXPositionInstance start, AXPositionInstance end) {
if (end && !end->IsNullPosition()) {
current_start_ = !start ? AXPositionType::CreateNullPosition()
: start->AsLeafTextPosition();
iterator_end_ = end->AsLeafTextPosition();
} else {
current_start_ = AXPositionType::CreateNullPosition();
iterator_end_ = AXPositionType::CreateNullPosition();
}
}
Iterator(const Iterator& other) = delete;
Iterator(Iterator&& other)
: current_start_(std::move(other.current_start_)),
iterator_end_(std::move(other.iterator_end_)) {}
~Iterator() = default;
bool operator==(const Iterator& other) const {
return current_start_->GetAnchor() == other.current_start_->GetAnchor() &&
iterator_end_->GetAnchor() == other.iterator_end_->GetAnchor() &&
*current_start_ == *other.current_start_ &&
*iterator_end_ == *other.iterator_end_;
}
bool operator!=(const Iterator& other) const { return !(*this == other); }
// Only forward iteration is supported, so operator-- is not implemented.
Iterator& operator++() {
DCHECK(!current_start_->IsNullPosition());
if (current_start_->GetAnchor() == iterator_end_->GetAnchor()) {
current_start_ = AXPositionType::CreateNullPosition();
} else {
current_start_ = current_start_->CreateNextLeafTreePosition();
DCHECK_LE(*current_start_, *iterator_end_);
}
return *this;
}
AXRange operator*() const {
DCHECK(!current_start_->IsNullPosition());
AXPositionInstance current_end =
(current_start_->GetAnchor() != iterator_end_->GetAnchor())
? current_start_->CreatePositionAtEndOfAnchor()
: iterator_end_->Clone();
DCHECK_LE(*current_end, *iterator_end_);
AXRange current_leaf_text_range(current_start_->AsTextPosition(),
current_end->AsTextPosition());
DCHECK(current_leaf_text_range.IsLeafTextRange());
return std::move(current_leaf_text_range);
}
private:
AXPositionInstance current_start_;
AXPositionInstance iterator_end_;
};
Iterator begin() const {
if (IsNull())
return Iterator(nullptr, nullptr);
AXRange forward_range = AsForwardRange();
return Iterator(std::move(forward_range.anchor_),
std::move(forward_range.focus_));
}
Iterator end() const {
if (IsNull())
return Iterator(nullptr, nullptr);
AXRange forward_range = AsForwardRange();
return Iterator(nullptr, std::move(forward_range.focus_));
}
// Returns the concatenation of the accessible names of all text nodes
// contained between this AXRange's endpoints.
// Pass a |max_count| of -1 to retrieve all text in the AXRange.
// Note that if this AXRange has its anchor or focus located at an ignored
// position, we shrink the range to the closest unignored positions.
std::u16string GetText(
AXTextConcatenationBehavior concatenation_behavior =
AXTextConcatenationBehavior::kWithoutParagraphBreaks,
AXEmbeddedObjectBehavior embedded_object_behavior =
AXEmbeddedObjectBehavior::kExposeCharacterForHypertext,
int max_count = -1,
bool include_ignored = false,
std::vector<size_t>* appended_newlines_indices = nullptr) const {
if (max_count == 0 || IsNull())
return std::u16string();
absl::optional<int> endpoint_comparison =
CompareEndpoints(anchor(), focus());
if (!endpoint_comparison)
return std::u16string();
AXPositionInstance start = (endpoint_comparison.value() < 0)
? anchor_->AsLeafTextPosition()
: focus_->AsLeafTextPosition();
AXPositionInstance end = (endpoint_comparison.value() < 0)
? focus_->AsLeafTextPosition()
: anchor_->AsLeafTextPosition();
std::u16string range_text;
bool is_first_non_whitespace_leaf = true;
bool crossed_paragraph_boundary = false;
bool is_first_included_leaf = true;
bool found_trailing_newline = false;
while (!start->IsNullPosition()) {
DCHECK(start->IsLeafTextPosition());
DCHECK_GE(start->text_offset(), 0);
const bool start_is_unignored = !start->IsIgnored();
const bool start_is_in_white_space = start->IsInWhiteSpace();
if (include_ignored || start_is_unignored) {
if (concatenation_behavior ==
AXTextConcatenationBehavior::kWithParagraphBreaks &&
!start_is_in_white_space) {
if (is_first_non_whitespace_leaf && !is_first_included_leaf) {
// The first non-whitespace leaf in the range could be preceded by
// whitespace spanning even before the start of this range, we need
// to check such positions in order to correctly determine if this
// is a paragraph's start (see |AXPosition::AtStartOfParagraph|).
// However, if the first paragraph boundary in the range is ignored,
// e.g. <div aria-hidden="true"></div>, we do not take it into
// consideration even when `include_ignored` == true, because the
// beginning of the text range, as experienced by the user, is after
// any trailing ignored nodes.
crossed_paragraph_boundary =
start_is_unignored && start->AtStartOfParagraph();
}
// When preserving layout line breaks, don't append `\n` next if the
// previous leaf position was a <br> (already ending with a newline).
if (crossed_paragraph_boundary && !found_trailing_newline) {
range_text += u"\n";
if (appended_newlines_indices) {
appended_newlines_indices->push_back(range_text.length() - 1);
}
}
is_first_non_whitespace_leaf = false;
crossed_paragraph_boundary = false;
}
int current_end_offset =
(start->GetAnchor() != end->GetAnchor())
? start->MaxTextOffset(embedded_object_behavior)
: end->text_offset();
if (current_end_offset > start->text_offset()) {
int characters_to_append =
(max_count > 0)
? std::min(max_count - static_cast<int>(range_text.length()),
current_end_offset - start->text_offset())
: current_end_offset - start->text_offset();
std::u16string position_text =
start->GetText(embedded_object_behavior);
if (start->text_offset() < static_cast<int>(position_text.length())) {
range_text += position_text.substr(start->text_offset(),
characters_to_append);
}
// To minimize user confusion, collapse all whitespace following any
// line break unless it is a hard line break (<br> or a text node with
// a single '\n' character), or an empty object such as an empty text
// field.
found_trailing_newline =
start->GetAnchor()->IsLineBreak() ||
(found_trailing_newline && start_is_in_white_space);
}
DCHECK(max_count < 0 ||
static_cast<int>(range_text.length()) <= max_count);
is_first_included_leaf = false;
}
if (start->GetAnchor() == end->GetAnchor() ||
static_cast<int>(range_text.length()) == max_count) {
break;
}
ax::mojom::Role prev_role = start->GetAnchor()->GetRole();
start = start->CreateNextLeafTextPosition();
// We should not mark `cross_paragraph_boundary` as true if the start
// anchor is a `kListMarker` since there should be no newline added
// by default after the `kListMarker` node.
if (concatenation_behavior ==
AXTextConcatenationBehavior::kWithParagraphBreaks &&
!crossed_paragraph_boundary && !is_first_non_whitespace_leaf &&
prev_role != ax::mojom::Role::kListMarker) {
crossed_paragraph_boundary = start->AtStartOfParagraph();
}
}
return range_text;
}
// Appends rects of all anchor nodes that span between anchor_ and focus_.
// Rects outside of the viewport are skipped.
// Coordinate system is determined by the passed-in delegate.
std::vector<gfx::Rect> GetRects(AXRangeRectDelegate* delegate) const {
std::vector<gfx::Rect> rects;
AXPositionInstance range_start = anchor()->AsLeafTextPosition();
AXPositionInstance range_end = focus()->AsLeafTextPosition();
// For a degenerate range, we want to fetch unclipped bounding rect, because
// text with the same start and end off set (i.e. degenerate) will have an
// inner text bounding rect with height of the character and width of 0,
// which the browser platform will consider as an empty rect and ends up
// clipping it, resulting in size 0x1 rect.
// After we retrieve the unclipped bounding rect, we want to set its width
// to 1 to represent a caret/insertion point.
//
// Note: The caller of this function is only UIA TextPattern, so displaying
// bounding rects for degenerate range is only limited for UIA currently.
if (IsCollapsed() && range_start->IsInTextObject()) {
AXOffscreenResult offscreen_result;
gfx::Rect degenerate_range_rect = delegate->GetInnerTextRangeBoundsRect(
range_start->tree_id(), range_start->anchor_id(),
range_start->text_offset(), range_end->text_offset(),
ui::AXClippingBehavior::kUnclipped, &offscreen_result);
if (offscreen_result == AXOffscreenResult::kOnscreen) {
DCHECK(degenerate_range_rect.width() == 0);
degenerate_range_rect.set_width(1);
rects.push_back(degenerate_range_rect);
}
return rects;
}
for (const AXRange& leaf_text_range : *this) {
DCHECK(leaf_text_range.IsLeafTextRange());
AXPositionType* current_line_start = leaf_text_range.anchor();
AXPositionType* current_line_end = leaf_text_range.focus();
// We want to skip ranges from ignored nodes.
if (current_line_start->IsIgnored())
continue;
// For text anchors, we retrieve the bounding rectangles of its text
// content. For non-text anchors (such as checkboxes, images, etc.), we
// want to directly retrieve their bounding rectangles.
AXOffscreenResult offscreen_result;
gfx::Rect current_rect =
(current_line_start->GetAnchor()->IsLineBreak() ||
current_line_start->IsInTextObject())
? delegate->GetInnerTextRangeBoundsRect(
current_line_start->tree_id(),
current_line_start->anchor_id(),
current_line_start->text_offset(),
current_line_end->text_offset(),
ui::AXClippingBehavior::kClipped, &offscreen_result)
: delegate->GetBoundsRect(current_line_start->tree_id(),
current_line_start->anchor_id(),
&offscreen_result);
// If the bounding box of the current range is clipped because it lies
// outside an ancestor’s bounds, then the bounding box is pushed to the
// nearest edge of such ancestor's bounds, with its width and height
// forced to be 1, and the node will be marked as "offscreen".
//
// Only add rectangles that are not empty and not marked as "offscreen".
//
// See the documentation for how bounding boxes are calculated in AXTree:
// https://chromium.googlesource.com/chromium/src/+/HEAD/docs/accessibility/offscreen.md
if (!current_rect.IsEmpty() &&
offscreen_result == AXOffscreenResult::kOnscreen)
rects.push_back(current_rect);
}
return rects;
}
private:
AXPositionInstance anchor_;
AXPositionInstance focus_;
};
template <class AXPositionType>
std::ostream& operator<<(std::ostream& stream,
const AXRange<AXPositionType>& range) {
return stream << range.ToString();
}
} // namespace ui
#endif // UI_ACCESSIBILITY_AX_RANGE_H_
|