File: ax_table_info.cc

package info (click to toggle)
chromium 120.0.6099.224-1~deb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,112,112 kB
  • sloc: cpp: 32,907,025; ansic: 8,148,123; javascript: 3,679,536; python: 2,031,248; asm: 959,718; java: 804,675; xml: 617,256; sh: 111,417; objc: 100,835; perl: 88,443; cs: 53,032; makefile: 29,579; fortran: 24,137; php: 21,162; tcl: 21,147; sql: 20,809; ruby: 17,735; pascal: 12,864; yacc: 8,045; lisp: 3,388; lex: 1,323; ada: 727; awk: 329; jsp: 267; csh: 117; exp: 43; sed: 37
file content (764 lines) | stat: -rw-r--r-- 27,743 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/accessibility/ax_table_info.h"

#include <iostream>
#include <string>

#include "base/logging.h"
#include "base/observer_list.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"

#include "ui/accessibility/ax_constants.mojom.h"
#include "ui/accessibility/ax_enum_util.h"
#include "ui/accessibility/ax_enums.mojom-shared.h"
#include "ui/accessibility/ax_enums.mojom.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_node_id_forward.h"
#include "ui/accessibility/ax_role_properties.h"
#include "ui/accessibility/ax_tree.h"
#include "ui/accessibility/ax_tree_observer.h"
#include "ui/gfx/geometry/rect_f.h"

using ax::mojom::IntAttribute;

namespace ui {

namespace {

// Given a node representing a table row, search its children
// recursively to find any cells or table headers, and append
// them to |cells|.
//
// We recursively skip generic containers like <div> and any
// nodes that are ignored, but we don't skp any other roles
// in-between a table row and its cells.
void FindCellsInRow(AXNode* node, std::vector<AXNode*>* cell_nodes) {
  for (auto iter = node->UnignoredChildrenBegin();
       iter != node->UnignoredChildrenEnd(); ++iter) {
    AXNode* child = iter.get();
    if (child->GetRole() == ax::mojom::Role::kGenericContainer) {
      FindCellsInRow(child, cell_nodes);
    } else if (IsCellOrTableHeader(child->GetRole())) {
      cell_nodes->push_back(child);
    }
  }
}

bool isRowlessTable(AXNode* node) {
  for (auto iter = node->UnignoredChildrenBegin();
       iter != node->UnignoredChildrenEnd(); ++iter) {
    AXNode* child = iter.get();
    if (child->GetRole() == ax::mojom::Role::kGenericContainer ||
        child->GetRole() == ax::mojom::Role::kGroup ||
        child->GetRole() == ax::mojom::Role::kRowGroup) {
      return isRowlessTable(child);
    } else if (IsTableRow(child->GetRole())) {
      return false;
    } else if (child->GetRole() == ax::mojom::Role::kCell) {
      // A row will always be reached before a cell if the table is not rowless.
      return true;
    }
  }
  // If the table is empty we can use the default code path for a rowed table.
  return false;
}

// Given a node representing a table/grid, search its children
// to find any rows and append them to |row_node_list|.
//
// We only check for the following roles in between a table and
// its rows: generic containers like <div>, any nodes that are ignored, and
// table sections (which have Role::kRowGroup).
// Returns false if cells were found. We should not reach cells if rows are
// present.
void FindRows(AXNode* node,
              std::vector<AXNode*>* row_node_list,
              AXNodeID& caption_node_id) {
  for (auto iter = node->UnignoredChildrenBegin();
       iter != node->UnignoredChildrenEnd(); ++iter) {
    AXNode* child = iter.get();
    if (child->GetRole() == ax::mojom::Role::kGenericContainer ||
        child->GetRole() == ax::mojom::Role::kGroup ||
        child->GetRole() == ax::mojom::Role::kRowGroup) {
      FindRows(child, row_node_list, caption_node_id);
    } else if (IsTableRow(child->GetRole())) {
      row_node_list->push_back(child);
    } else if (child->GetRole() == ax::mojom::Role::kCaption) {
      caption_node_id = child->id();
    }
  }
}

// For each row find its cells and add them to |cell_nodes_per_row| as a
// 2-dimensional array.
void FindCells(std::vector<AXNode*>* row_node_list,
               std::vector<std::vector<AXNode*>>* cell_nodes_per_row) {
  for (auto* row : *row_node_list) {
    cell_nodes_per_row->emplace_back();
    FindCellsInRow(row, &cell_nodes_per_row->back());
  }
}

// Find all the cells in a container that does not contain rows as part of the
// encoding.
//
// Example:
//
// <Grid>
//    <Cell row=0,col=0>
//    <Cell row=0,col=1>
//    <Cell row=1,col=0>
//    <Cell row=1,col=1>
// </Grid>
//
// Would be equivalent to
//
// <Grid>
//    <Row>
//      <Cell col=0>
//      <Cell col=1>
//    <Row>
//    <Row>
//      <Cell col=0>
//      <Cell col=1>
//    <Row>
// </Grid>
void FindCellsForRowlessTable(
    AXNode* grid_node,
    std::vector<std::vector<AXNode*>>* cell_nodes_per_row) {
  int current_row = -1;
  int current_index = -1;
  base::queue<AXNode*> child_queue;
  for (auto iter = grid_node->UnignoredChildrenBegin();
       iter != grid_node->UnignoredChildrenEnd(); ++iter) {
    child_queue.push(iter.get());
    while (!child_queue.empty()) {
      auto* child = child_queue.front();
      child_queue.pop();
      if (child->GetRole() == ax::mojom::Role::kGenericContainer ||
          child->GetRole() == ax::mojom::Role::kGroup) {
        // Add children of the container to the queue
        for (auto container_itr = child->UnignoredChildrenBegin();
             container_itr != child->UnignoredChildrenEnd(); ++container_itr) {
          child_queue.push(container_itr.get());
        }
        continue;
      } else if (IsCellOrTableHeader(child->GetRole())) {
        const int rowIndex =
            child->GetIntAttribute(ax::mojom::IntAttribute::kTableCellRowIndex);
        if (current_row < rowIndex) {
          cell_nodes_per_row->emplace_back();
          current_row = rowIndex;
          current_index++;
        }
        auto& cell_nodes = cell_nodes_per_row->at(current_index);
        cell_nodes.push_back(child);
      }
    }
  }
}

size_t GetSizeTAttribute(const AXNode& node, IntAttribute attribute) {
  return base::saturated_cast<size_t>(node.GetIntAttribute(attribute));
}

}  // namespace

// static
AXTableInfo* AXTableInfo::Create(AXTree* tree, AXNode* table_node) {
  DCHECK(tree);
  DCHECK(table_node);

#if DCHECK_IS_ON()
  // Confidence check, make sure the node is in the tree.
  AXNode* node = table_node;
  while (node && node != tree->root()) {
    node = node->GetParent();
  }
  DCHECK_EQ(node, tree->root());
#endif

  if (!IsTableLike(table_node->GetRole()) || table_node->IsIgnored()) {
    return nullptr;
  }

  AXTableInfo* info = new AXTableInfo(tree, table_node);
  bool success = info->Update();
  DCHECK(success);

  return info;
}

bool AXTableInfo::Update() {
  if (!table_node_->IsTable()) {
    return false;
  }

  ClearVectors();

  std::vector<std::vector<AXNode*>> cell_nodes_per_row;
  caption_id = 0;

  // Get the optional row and column count from the table. If we encounter
  // a cell with an index or span larger than this, we'll update the
  // table row and column count to be large enough to fit all cells.
  row_count = GetSizeTAttribute(*table_node_, IntAttribute::kTableRowCount);
  col_count = GetSizeTAttribute(*table_node_, IntAttribute::kTableColumnCount);

  // Note - GetIntAttribute returns 0 if no value has been specified for the
  // attribute.
  aria_row_count =
      int{table_node_->GetIntAttribute(IntAttribute::kAriaRowCount)};
  aria_col_count =
      int{table_node_->GetIntAttribute(IntAttribute::kAriaColumnCount)};

  // Find all the rows.

  if (!isRowlessTable(table_node_)) {
    FindRows(table_node_, &row_nodes, caption_id);
    FindCells(&row_nodes, &cell_nodes_per_row);
    // Iterate over the cells and build up an array of CellData
    // entries, one for each cell. Compute the actual row and column
    BuildCellDataVectorFromRowAndCellNodes(row_nodes, cell_nodes_per_row);
    DCHECK_EQ(cell_nodes_per_row.size(), row_nodes.size());
  } else {
    FindCellsForRowlessTable(table_node_, &cell_nodes_per_row);
    BuildCellDataVectorFromCellNodes(cell_nodes_per_row);
  }

  // At this point we have computed valid row and column indices for
  // every cell in the table, and an accurate row and column count for the
  // whole table that fits every cell and its spans. The final step is to
  // fill in a 2-dimensional array that lets us look up an individual cell
  // by its (row, column) coordinates, plus arrays to hold row and column
  // headers.
  BuildCellAndHeaderVectorsFromCellData();

  // On Mac, we add a few extra nodes to the table - see comment
  // at the top of UpdateExtraMacNodes for details.
#if defined(AX_EXTRA_MAC_NODES)
  UpdateExtraMacNodes();
#endif

  // The table metadata is now valid, any table queries will now be
  // fast. Any time a node in the table is updated, we'll have to
  // recompute all of this.
  valid_ = true;
  return true;
}

void AXTableInfo::Invalidate() {
  valid_ = false;
}

void AXTableInfo::ClearVectors() {
  col_headers.clear();
  all_col_headers.clear();
  row_headers.clear();
  cell_ids.clear();
  unique_cell_ids.clear();
  cell_data_vector.clear();
  row_nodes.clear();
  cell_id_to_index.clear();
  row_id_to_index.clear();
  incremental_row_col_map_.clear();
}

void AXTableInfo::BuildCellData(AXNode* cell,
                                AXNode* row_or_first_cell,
                                CellBuildState& state) {
  // Fill in basic info in CellData.
  CellData cell_data;
  unique_cell_ids.push_back(cell->id());
  cell_id_to_index[cell->id()] = state.cell_index++;
  cell_data.cell = cell;

  // Get table cell accessibility attributes - note that these may
  // be missing or invalid, we'll correct them next.
  cell_data.row_index =
      GetSizeTAttribute(*cell, IntAttribute::kTableCellRowIndex);
  cell_data.row_span =
      GetSizeTAttribute(*cell, IntAttribute::kTableCellRowSpan);
  cell_data.aria_row_index =
      GetSizeTAttribute(*cell, IntAttribute::kAriaCellRowIndex);
  cell_data.col_index =
      GetSizeTAttribute(*cell, IntAttribute::kTableCellColumnIndex);
  cell_data.aria_col_index =
      GetSizeTAttribute(*cell, IntAttribute::kAriaCellColumnIndex);
  cell_data.col_span =
      GetSizeTAttribute(*cell, IntAttribute::kTableCellColumnSpan);

  // The col span and row span must be at least 1.
  cell_data.row_span = std::max(size_t{1}, cell_data.row_span);
  cell_data.col_span = std::max(size_t{1}, cell_data.col_span);

  // Ensure the column index must always be incrementing.
  cell_data.col_index = std::max(cell_data.col_index, state.current_col_index);

  // And update the spanned column index.
  state.spanned_col_index =
      std::max(state.spanned_col_index, cell_data.col_index);

  if (state.is_first_cell_in_row) {
    state.is_first_cell_in_row = false;

    // If it's the first cell in the row, ensure the row index is
    // incrementing. The rest of the cells in this row are forced to have
    // the same row index.
    if (cell_data.row_index > state.current_row_index) {
      state.current_row_index = cell_data.row_index;
    } else {
      cell_data.row_index = state.current_row_index;
    }

    // The starting ARIA row and column index might be specified in
    // the row node, we should check there.
    if (!cell_data.aria_row_index) {
      cell_data.aria_row_index = GetSizeTAttribute(
          *row_or_first_cell, IntAttribute::kAriaCellRowIndex);
    }
    if (!cell_data.aria_col_index) {
      cell_data.aria_col_index = GetSizeTAttribute(
          *row_or_first_cell, IntAttribute::kAriaCellColumnIndex);
    }
    cell_data.aria_row_index =
        std::max(cell_data.aria_row_index, state.current_aria_row_index);
    state.current_aria_row_index = cell_data.aria_row_index;
  } else {
    // Don't allow the row index to change after the beginning
    // of a row.
    cell_data.row_index = state.current_row_index;
    cell_data.aria_row_index = state.current_aria_row_index;
  }

  // Adjust the spanned col index by looking at the incremental row col map.
  // This map contains already filled in values, accounting for spans, of
  // all row, col indices. The map should have filled in all values we need
  // (upper left triangle of cells of the table).
  while (true) {
    const auto& row_it = incremental_row_col_map_.find(state.current_row_index);
    if (row_it == incremental_row_col_map_.end()) {
      break;
    } else {
      const auto& col_it = row_it->second.find(state.spanned_col_index);
      if (col_it == row_it->second.end()) {
        break;
      } else {
        // A pre-existing cell resides in our desired position. Make a
        // best-fit to the right of the existing span.
        const CellData& spanned_cell_data = col_it->second;
        state.spanned_col_index =
            spanned_cell_data.col_index + spanned_cell_data.col_span;

        // Adjust the actual col index to be the best fit with the existing
        // spanned cell data.
        cell_data.col_index = state.spanned_col_index;
      }
    }
  }

  // Memoize the cell data using our incremental row col map.
  for (size_t r = cell_data.row_index;
       r < (cell_data.row_index + cell_data.row_span); r++) {
    for (size_t c = cell_data.col_index;
         c < (cell_data.col_index + cell_data.col_span); c++) {
      incremental_row_col_map_[r][c] = cell_data;
    }
  }

  // Ensure the ARIA col index is incrementing.
  cell_data.aria_col_index =
      std::max(cell_data.aria_col_index, state.current_aria_col_index);
  state.current_aria_col_index = cell_data.aria_col_index;

  // Update the row count and col count for the whole table to make
  // sure they're large enough to fit this cell, including its spans.
  // The -1 in the ARIA calculations is because ARIA indices are 1-based,
  // whereas all other indices are zero-based.
  row_count = std::max(row_count, cell_data.row_index + cell_data.row_span);
  col_count = std::max(col_count, cell_data.col_index + cell_data.col_span);
  if (aria_row_count != ax::mojom::kUnknownAriaColumnOrRowCount) {
    aria_row_count = std::max((aria_row_count),
                              static_cast<int>(state.current_aria_row_index +
                                               cell_data.row_span - 1));
  }
  if (aria_col_count != ax::mojom::kUnknownAriaColumnOrRowCount) {
    aria_col_count = std::max((aria_col_count),
                              static_cast<int>(state.current_aria_col_index +
                                               cell_data.col_span - 1));
  }
  // Update |current_col_index| to reflect the next available index after
  // this cell including its colspan. The next column index in this row
  // must be at least this large. Same for the current ARIA col index.
  state.current_col_index = cell_data.col_index + cell_data.col_span;
  state.current_aria_col_index = cell_data.aria_col_index + cell_data.col_span;
  state.spanned_col_index = state.current_col_index;

  // Add this cell to our vector.
  cell_data_vector.push_back(cell_data);
}

void AXTableInfo::BuildCellDataVectorFromCellNodes(
    const std::vector<std::vector<AXNode*>>& cell_nodes_per_row) {
  // Iterate over the cells and build up an array of CellData
  // entries, one for each cell. Compute the actual row and column
  // indices for each cell by taking the specified row and column
  // index in the accessibility tree if legal, but replacing it with
  // valid table coordinates otherwise.
  CellBuildState state;
  state.cell_index = 0;
  state.current_aria_row_index = 1;
  for (auto& cells_in_row : cell_nodes_per_row) {
    AXNode* first_cell_node = cells_in_row[0];
    state.is_first_cell_in_row = true;
    state.current_col_index = 0;
    state.current_aria_col_index = 1;

    // Make sure the row index is always at least as high as the one reported by
    // the source tree.
    state.current_row_index = GetSizeTAttribute(
        *first_cell_node, ax::mojom::IntAttribute::kTableCellRowIndex);
    state.spanned_col_index = 0;
    for (AXNode* cell : cells_in_row) {
      BuildCellData(cell, first_cell_node, state);
    }

    // At the end of each row, increment |current_aria_row_index| to reflect the
    // next available index after this row. The next row index must be at least
    // this large. Also update |next_row_index|.
    state.current_aria_row_index++;
  }
}

void AXTableInfo::BuildCellDataVectorFromRowAndCellNodes(
    const std::vector<AXNode*>& row_node_list,
    const std::vector<std::vector<AXNode*>>& cell_nodes_per_row) {
  // Iterate over the cells and build up an array of CellData
  // entries, one for each cell. Compute the actual row and column
  // indices for each cell by taking the specified row and column
  // index in the accessibility tree if legal, but replacing it with
  // valid table coordinates otherwise.
  CellBuildState state;
  state.cell_index = 0;
  state.current_aria_row_index = 1;
  size_t next_row_index = 0;
  for (size_t i = 0; i < cell_nodes_per_row.size(); i++) {
    auto& cell_nodes_in_this_row = cell_nodes_per_row[i];
    AXNode* row_node = row_node_list[i];
    state.is_first_cell_in_row = true;
    state.current_col_index = 0;
    state.current_aria_col_index = 1;

    // Make sure the row index is always at least as high as the one reported by
    // the source tree.
    row_id_to_index[row_node->id()] =
        std::max(next_row_index,
                 GetSizeTAttribute(*row_node, IntAttribute::kTableRowIndex));
    state.current_row_index = row_id_to_index[row_node->id()];
    state.spanned_col_index = 0;
    for (AXNode* cell : cell_nodes_in_this_row) {
      BuildCellData(cell, row_node, state);
    }

    // At the end of each row, increment |current_aria_row_index| to reflect the
    // next available index after this row. The next row index must be at least
    // this large. Also update |next_row_index|.
    state.current_aria_row_index++;
    next_row_index = state.current_row_index + 1;
  }
}

void AXTableInfo::BuildCellAndHeaderVectorsFromCellData() {
  // Allocate space for the 2-D array of cell IDs and 1-D
  // arrays of row headers and column headers.
  row_headers.resize(row_count);
  col_headers.resize(col_count);
  // Fill in the arrays.
  //
  // At this point we have computed valid row and column indices for
  // every cell in the table, and an accurate row and column count for the
  // whole table that fits every cell and its spans. The final step is to
  // fill in a 2-dimensional array that lets us look up an individual cell
  // by its (row, column) coordinates, plus arrays to hold row and column
  // headers.

  // For cells.
  cell_ids.resize(row_count);
  for (size_t r = 0; r < row_count; r++) {
    cell_ids[r].resize(col_count);
    for (size_t c = 0; c < col_count; c++) {
      const auto& row_it = incremental_row_col_map_.find(r);
      if (row_it != incremental_row_col_map_.end()) {
        const auto& col_it = row_it->second.find(c);
        if (col_it != row_it->second.end()) {
          cell_ids[r][c] = col_it->second.cell->id();
        }
      }
    }
  }

  // No longer need this.
  incremental_row_col_map_.clear();

  // For relations.
  for (auto& cell_data : cell_data_vector) {
    for (size_t r = cell_data.row_index;
         r < cell_data.row_index + cell_data.row_span; r++) {
      DCHECK_LT(r, row_count);
      for (size_t c = cell_data.col_index;
           c < cell_data.col_index + cell_data.col_span; c++) {
        DCHECK_LT(c, col_count);
        AXNode* cell = cell_data.cell;
        if (cell->GetRole() == ax::mojom::Role::kColumnHeader) {
          // If this is a column header spanning vertically, we'll encounter
          // this cell multiple times as we scan down the column. Don't add it
          // twice just because it takes up more than one space in the table.
          if (!col_headers[c].empty() && col_headers[c].back() == cell->id()) {
            continue;
          }
          col_headers[c].push_back(cell->id());
          all_col_headers.push_back(cell->id());
        } else if (cell->GetRole() == ax::mojom::Role::kRowHeader) {
          // If this is a row header spanning horizontally, we'll encounter this
          // cell multiple times as we scan across the row.
          // Don't add it twice just because it takes up more than one space in
          // the table.
          if (!row_headers[r].empty() && row_headers[r].back() == cell->id()) {
            continue;
          }
          row_headers[r].push_back(cell->id());
        }
      }
    }
  }
}

void AXTableInfo::UpdateExtraMacNodes() {
  // On macOS, maintain additional AXNodes: one column node for each
  // column of the table, and one table header container.
  //
  // The nodes all set the table as the parent node, that way the Mac-specific
  // platform code can treat these nodes as additional children of the table
  // node.
  //
  // The columns have id -1, -2, -3, ... - this won't conflict with ids from
  // the source tree, which are all positive.
  //
  // Each column has the kColumnIndex attribute set, and then each of the cells
  // in that column gets added as an indirect ID. That exposes them as children
  // via Mac APIs but ensures we don't explore those nodes multiple times when
  // walking the tree. The column also has the ID of the first column header
  // set.
  //
  // The table header container is just a node with all of the headers in the
  // table as indirect children.

  // Delete old extra nodes.
  ClearExtraMacNodes();

  // There is one node for each column, and one more for the table header
  // container.
  size_t extra_node_count = col_count + 1;
  std::vector<AXNode*> new_extra_mac_nodes;
  new_extra_mac_nodes.reserve(extra_node_count);
  std::vector<AXTreeObserver::Change> changes;
  // Reserve room for the extra Mac nodes plus for the table itself.
  changes.reserve(extra_node_count + 1);

  for (size_t i = 0; i < col_count; i++) {
    new_extra_mac_nodes.push_back(CreateExtraMacColumnNode(i));
    changes.emplace_back(new_extra_mac_nodes[i],
                         AXTreeObserver::ChangeType::NODE_CREATED);
  }
  new_extra_mac_nodes.push_back(CreateExtraMacTableHeaderNode());
  changes.emplace_back(new_extra_mac_nodes[col_count],
                       AXTreeObserver::ChangeType::NODE_CREATED);

  {
    ScopedTreeUpdateInProgressStateSetter tree_update_in_progress(*tree_);

    // Add the newly created columns to the accessibility tree.
    extra_mac_nodes.swap(new_extra_mac_nodes);

    // Update the newly added columns to reflect the current state of the table.
    for (size_t i = 0; i < col_count; i++) {
      UpdateExtraMacColumnNodeAttributes(i);
    }

    // Update the table header container to contain all column headers. Row
    // headers should not be included, according to the Core-AAM 1.2 about the
    // table role.
    AXNodeData data = extra_mac_nodes[col_count]->data();
    data.intlist_attributes.clear();
    data.AddIntListAttribute(ax::mojom::IntListAttribute::kIndirectChildIds,
                             all_col_headers);
    extra_mac_nodes[col_count]->SetData(data);

  }  // tree_update_in_progress.

  changes.emplace_back(table_node_, AXTreeObserver::ChangeType::NODE_CHANGED);

  for (AXNode* node : extra_mac_nodes) {
    for (AXTreeObserver& observer : tree_->observers()) {
      observer.OnNodeCreated(tree_, node);
    }
  }

  for (AXTreeObserver& observer : tree_->observers()) {
    observer.OnAtomicUpdateFinished(tree_, /* root_changed= */ false, changes);
  }
}

AXNode* AXTableInfo::CreateExtraMacColumnNode(size_t col_index) {
  AXNodeID id = tree_->GetNextNegativeInternalNodeId();
  size_t index_in_parent = col_index + table_node_->children().size();
  int32_t unignored_index_in_parent =
      col_index + table_node_->GetUnignoredChildCount();
  AXNode* node = new AXNode(tree_, table_node_, id, index_in_parent,
                            unignored_index_in_parent);
  AXNodeData data;
  data.id = id;
  data.role = ax::mojom::Role::kColumn;
  node->SetData(data);
  return node;
}

AXNode* AXTableInfo::CreateExtraMacTableHeaderNode() {
  AXNodeID id = tree_->GetNextNegativeInternalNodeId();
  size_t index_in_parent = col_count + table_node_->children().size();
  int32_t unignored_index_in_parent =
      col_count + table_node_->GetUnignoredChildCount();
  AXNode* node = new AXNode(tree_, table_node_, id, index_in_parent,
                            unignored_index_in_parent);
  AXNodeData data;
  data.id = id;
  data.role = ax::mojom::Role::kTableHeaderContainer;
  node->SetData(data);
  return node;
}

void AXTableInfo::UpdateExtraMacColumnNodeAttributes(size_t col_index) {
  ui::AXNodeData data = extra_mac_nodes[col_index]->data();
  data.int_attributes.clear();

  // Update the column index.
  data.AddIntAttribute(IntAttribute::kTableColumnIndex,
                       static_cast<int32_t>(col_index));

  // Update the column header.
  if (!col_headers[col_index].empty()) {
    data.AddIntAttribute(IntAttribute::kTableColumnHeaderId,
                         col_headers[col_index][0]);
  }

  // Update the list of cells in the column.
  data.intlist_attributes.clear();
  std::vector<AXNodeID> col_nodes;
  AXNodeID last = 0;
  for (size_t row_index = 0; row_index < row_count; row_index++) {
    AXNodeID cell_id = cell_ids[row_index][col_index];
    if (cell_id != 0 && cell_id != last) {
      col_nodes.push_back(cell_id);
    }
    last = cell_id;
  }
  data.AddIntListAttribute(ax::mojom::IntListAttribute::kIndirectChildIds,
                           col_nodes);
  extra_mac_nodes[col_index]->SetData(data);
}

void AXTableInfo::ClearExtraMacNodes() {
  if (extra_mac_nodes.empty()) {
    return;
  }

  for (AXNode* extra_mac_node : extra_mac_nodes) {
    for (AXTreeObserver& observer : tree_->observers()) {
      observer.OnNodeWillBeDeleted(tree_, extra_mac_node);
    }
  }

  std::vector<AXNodeID> deleted_ids;
  {
    ScopedTreeUpdateInProgressStateSetter tree_update_in_progress(*tree_);

    for (AXNode* extra_mac_node : extra_mac_nodes) {
      AXNodeID deleted_id = extra_mac_node->id();
      deleted_ids.push_back(deleted_id);
      delete extra_mac_node;
    }

    extra_mac_nodes.clear();

  }  // tree_update_in_progress.

  for (AXNodeID deleted_id : deleted_ids) {
    for (AXTreeObserver& observer : tree_->observers()) {
      observer.OnNodeDeleted(tree_, deleted_id);
    }
  }

  for (AXTreeObserver& observer : tree_->observers()) {
    observer.OnAtomicUpdateFinished(
        tree_, /* root_changed= */ false,
        {{table_node_, AXTreeObserver::ChangeType::NODE_CHANGED}});
  }
}

// The first cell in a row is important because it stores the ARIA row index.
// We recursively check generic containers like <div> and any
// nodes that are ignored, but we don't search any other roles
// in-between a table row and its cells.
const AXNode* AXTableInfo::GetFirstCellInRow(const AXNode* row) const {
  const AXNode* child = row;
  while (true) {
    child = child->GetUnignoredChildAtIndex(0);
    if (!child) {
      return nullptr;
    }
    if (child->GetRole() != ax::mojom::Role::kGenericContainer) {
      break;
    }
  }
  return IsCellOrTableHeader(child->GetRole()) ? child : nullptr;
}

std::string AXTableInfo::ToString() const {
  // First, scan through to get the length of the largest id.
  int padding = 0;
  for (size_t r = 0; r < row_count; r++) {
    for (size_t c = 0; c < col_count; c++) {
      // Extract the length of the id for padding purposes.
      padding = std::max(padding, static_cast<int>(log10(cell_ids[r][c])));
    }
  }

  std::string result;
  for (size_t r = 0; r < row_count; r++) {
    result += "|";
    for (size_t c = 0; c < col_count; c++) {
      int cell_id = cell_ids[r][c];
      result += base::NumberToString(cell_id);
      int cell_padding = padding;
      if (cell_id != 0) {
        cell_padding = padding - static_cast<int>(log10(cell_id));
      }
      result += std::string(cell_padding, ' ') + '|';
    }
    result += "\n";
  }
  return result;
}

AXTableInfo::AXTableInfo(AXTree* tree, AXNode* table_node)
    : tree_(tree), table_node_(table_node) {}

AXTableInfo::~AXTableInfo() {
  ClearExtraMacNodes();
}

}  // namespace ui