1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/tree_generator.h"
#include "ui/accessibility/ax_serializable_tree.h"
#include "ui/accessibility/ax_tree.h"
#include "ui/accessibility/ax_tree_data.h"
#include "ui/accessibility/ax_tree_id.h"
namespace ui {
TreeGenerator::TreeGenerator(int max_node_count, bool permutations)
: max_node_count_(max_node_count),
permutations_(permutations),
total_unique_tree_count_(0) {
unique_tree_count_by_size_.push_back(0);
for (int i = 1; i <= max_node_count; ++i) {
int unique_tree_count = UniqueTreeCountForNodeCount(i, permutations);
unique_tree_count_by_size_.push_back(unique_tree_count);
total_unique_tree_count_ += unique_tree_count;
}
}
TreeGenerator::~TreeGenerator() {
}
int TreeGenerator::UniqueTreeCount() const {
return total_unique_tree_count_;
}
void TreeGenerator::BuildUniqueTree(int tree_index, AXTree* out_tree) const {
AXTreeUpdate update;
BuildUniqueTreeUpdate(tree_index, &update);
CHECK(out_tree->Unserialize(update)) << out_tree->error();
}
int TreeGenerator::IgnoredPermutationCountPerUniqueTree(int tree_index) const {
int unique_tree_count_so_far = 0;
for (int node_count = 1; node_count <= max_node_count_; ++node_count) {
int unique_tree_count = unique_tree_count_by_size_[node_count];
if (tree_index - unique_tree_count_so_far < unique_tree_count) {
// Each node other than the root can be either ignored or not,
// so return 2 ^ (node_count - 1)
return 1 << (node_count - 1);
}
unique_tree_count_so_far += unique_tree_count;
}
NOTREACHED();
return 0;
}
void TreeGenerator::BuildUniqueTreeWithIgnoredNodes(
int tree_index,
int ignored_index,
absl::optional<int> focused_node,
AXTree* out_tree) const {
// Enable the behavior whereby all focused nodes will be exposed to the
// platform accessibility layer. This behavior is currently disabled in
// production code, but is enabled in tests so that it could be tested
// thoroughly before it is turned on for all code.
//
// TODO(nektar): Turn this on in a followup patch.
// AXTree::SetFocusedNodeShouldNeverBeIgnored();
AXTreeUpdate update;
BuildUniqueTreeUpdate(tree_index, &update);
int node_count = static_cast<int>(update.nodes.size());
CHECK_GE(ignored_index, 0);
CHECK_LT(ignored_index, 1 << (node_count - 1));
CHECK(!focused_node || *focused_node >= 0);
CHECK(!focused_node || *focused_node < node_count);
for (int i = 0; i < node_count - 1; i++) {
if (ignored_index & (1 << i))
update.nodes[i + 1].AddState(ax::mojom::State::kIgnored);
}
if (focused_node) {
AXTreeData tree_data;
tree_data.tree_id = AXTreeID::CreateNewAXTreeID();
tree_data.focused_tree_id = tree_data.tree_id;
tree_data.focus_id = update.nodes[*focused_node].id;
update.has_tree_data = true;
update.tree_data = tree_data;
}
CHECK(out_tree->Unserialize(update)) << out_tree->error();
}
void TreeGenerator::BuildUniqueTreeUpdate(int tree_index,
AXTreeUpdate* out_update) const {
CHECK_LT(tree_index, total_unique_tree_count_);
int unique_tree_count_so_far = 0;
for (int node_count = 1; node_count <= max_node_count_; ++node_count) {
int unique_tree_count = unique_tree_count_by_size_[node_count];
if (tree_index - unique_tree_count_so_far < unique_tree_count) {
BuildUniqueTreeUpdateWithSize(
node_count, tree_index - unique_tree_count_so_far, out_update);
return;
}
unique_tree_count_so_far += unique_tree_count;
}
}
void TreeGenerator::BuildUniqueTreeUpdateWithSize(
int node_count,
int tree_index,
AXTreeUpdate* out_update) const {
std::vector<int> indices;
std::vector<int> permuted;
int unique_tree_count = unique_tree_count_by_size_[node_count];
CHECK_LT(tree_index, unique_tree_count);
if (permutations_) {
// Use the first few bits of |tree_index| to permute the indices.
for (int i = 0; i < node_count; ++i)
indices.push_back(i + 1);
for (int i = 0; i < node_count; ++i) {
int p = (node_count - i);
int index = tree_index % p;
tree_index /= p;
permuted.push_back(indices[index]);
indices.erase(indices.begin() + index);
}
} else {
for (int i = 0; i < node_count; ++i)
permuted.push_back(i + 1);
}
// Build an AXTreeUpdate. The first two nodes of the tree always
// go in the same place.
out_update->root_id = permuted[0];
out_update->nodes.resize(node_count);
out_update->nodes[0].id = permuted[0];
if (node_count > 1) {
out_update->nodes[0].child_ids.push_back(permuted[1]);
out_update->nodes[1].id = permuted[1];
}
// The remaining nodes are assigned based on their parent
// selected from the next bits from |tree_index|.
for (int i = 2; i < node_count; ++i) {
out_update->nodes[i].id = permuted[i];
int parent_index = (tree_index % i);
tree_index /= i;
out_update->nodes[parent_index].child_ids.push_back(permuted[i]);
}
}
} // namespace ui
|