1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gl/dc_layer_tree.h"
#include <d3d11_1.h>
#include <utility>
#include "base/check_is_test.h"
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/histogram_functions.h"
#include "base/trace_event/trace_event.h"
#include "ui/gfx/color_space_win.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/transform_util.h"
#include "ui/gl/direct_composition_child_surface_win.h"
#include "ui/gl/direct_composition_support.h"
#include "ui/gl/gl_angle_util_win.h"
#include "ui/gl/gl_switches.h"
#include "ui/gl/swap_chain_presenter.h"
namespace gl {
namespace {
constexpr size_t kVideoProcessorDimensionsWindowSize = 100;
bool NeedSwapChainPresenter(const DCLayerOverlayParams* overlay) {
if (overlay->background_color.has_value()) {
return false;
}
CHECK(overlay->overlay_image);
return overlay->overlay_image->type() !=
DCLayerOverlayType::kDCompVisualContent;
}
// Unconditionally get a IDCompositionVisual2 as a IDCompositionVisual3.
//
// |IDCompositionVisual3| should be available since Windows 8.1, but we noticed
// crashes due to unconditionally casting to the interface on the earliest
// versions of Windows 10. This should only be used for features that are
// conditionally run above those versions of Windows.
//
// See: https://crbug.com/1455666
Microsoft::WRL::ComPtr<IDCompositionVisual3> CheckedCastToVisual3(
const Microsoft::WRL::ComPtr<IDCompositionVisual2>& visual2) {
Microsoft::WRL::ComPtr<IDCompositionVisual3> visual3;
HRESULT hr = visual2.As(&visual3);
CHECK_EQ(hr, S_OK);
CHECK(visual3);
return visual3;
}
D2D_MATRIX_3X2_F TransformToD2D_MATRIX_3X2_F(const gfx::Transform& transform) {
DCHECK(transform.Is2dTransform());
// See |TransformToD2D_MATRIX_4X4_F| for notes.
return D2D1::Matrix3x2F(transform.rc(0, 0), transform.rc(1, 0),
transform.rc(0, 1), transform.rc(1, 1),
transform.rc(0, 3), transform.rc(1, 3));
}
D2D_MATRIX_4X4_F TransformToD2D_MATRIX_4X4_F(const gfx::Transform& transform) {
// D2D matrices are stored with the translation portion in the last row,
// whereas Skia matrices are stored with the translation in the last column.
// We need to transpose the matrix during the conversion to account for this
// difference.
const gfx::Transform& t = transform;
return D2D1::Matrix4x4F(t.rc(0, 0), t.rc(1, 0), t.rc(2, 0), t.rc(3, 0),
t.rc(0, 1), t.rc(1, 1), t.rc(2, 1), t.rc(3, 1),
t.rc(0, 2), t.rc(1, 2), t.rc(2, 2), t.rc(3, 2),
t.rc(0, 3), t.rc(1, 3), t.rc(2, 3), t.rc(3, 3));
}
// The size the surfaces in the pool. Used in |VisualSubtree::Update| to
// determine how to scale the background color visual. This can be any size
// since we need a non-empty surface to display the background fill, so 1x1
// is fine.
constexpr gfx::Size kSolidColorSurfaceSize = gfx::Size(1, 1);
#if DCHECK_IS_ON()
bool VisualTreeValid(
std::vector<absl::optional<size_t>>& subtree_index_to_overlay,
const std::vector<bool>& prev_subtree_is_attached_to_root) {
for (size_t i = 0; i < subtree_index_to_overlay.size(); i++) {
// Unused subtrees must be removed from the root.
if (!subtree_index_to_overlay[i] && prev_subtree_is_attached_to_root[i]) {
return false;
}
}
return true;
}
#endif // DCHECK_IS_ON()
} // namespace
VideoProcessorWrapper::VideoProcessorWrapper() = default;
VideoProcessorWrapper::~VideoProcessorWrapper() = default;
VideoProcessorWrapper::VideoProcessorWrapper(VideoProcessorWrapper&& other) =
default;
VideoProcessorWrapper& VideoProcessorWrapper::operator=(
VideoProcessorWrapper&& other) = default;
// Owns a |IDCompositionSurface| filled with a solid color.
class SolidColorSurface final {
public:
SolidColorSurface() = delete;
SolidColorSurface(SolidColorSurface&&) = default;
SolidColorSurface& operator=(SolidColorSurface&&) = default;
~SolidColorSurface() = default;
IDCompositionSurface* surface() const { return surface_.Get(); }
private:
friend class SolidColorSurfacePool;
explicit SolidColorSurface(
Microsoft::WRL::ComPtr<IDCompositionSurface> surface)
: surface_(std::move(surface)) {
CHECK(surface_);
}
// Fill the surface with the opaque part of |color|.
bool FillColor(ID3D11Device* d3d11_device, SkColor4f color) {
HRESULT hr = S_OK;
RECT update_rect = D2D1::Rect(0, 0, kSolidColorSurfaceSize.width(),
kSolidColorSurfaceSize.height());
Microsoft::WRL::ComPtr<ID3D11Texture2D> draw_texture;
POINT update_offset;
hr = surface_->BeginDraw(&update_rect, IID_PPV_ARGS(&draw_texture),
&update_offset);
if (FAILED(hr)) {
LOG(ERROR) << "BeginDraw failed: "
<< logging::SystemErrorCodeToString(hr);
return false;
}
Microsoft::WRL::ComPtr<ID3D11RenderTargetView> rtv;
hr =
d3d11_device->CreateRenderTargetView(draw_texture.Get(), nullptr, &rtv);
if (FAILED(hr)) {
LOG(ERROR) << "CreateRenderTargetView failed: "
<< logging::SystemErrorCodeToString(hr);
return false;
}
Microsoft::WRL::ComPtr<ID3D11DeviceContext> immediate_context;
d3d11_device->GetImmediateContext(&immediate_context);
immediate_context->ClearRenderTargetView(rtv.Get(),
color.makeOpaque().vec());
hr = surface_->EndDraw();
if (FAILED(hr)) {
LOG(ERROR) << "EndDraw failed: " << logging::SystemErrorCodeToString(hr);
return false;
}
color_ = color;
return true;
}
// A surface with |DXGI_ALPHA_MODE_IGNORE|, filled with the opaque parts of
// |color_|.
Microsoft::WRL::ComPtr<IDCompositionSurface> surface_;
// Only set if |surface_| was successfully filled to this color.
absl::optional<SkColor4f> color_;
};
SolidColorSurfacePool::SolidColorSurfacePool(
Microsoft::WRL::ComPtr<ID3D11Device> d3d11_device,
Microsoft::WRL::ComPtr<IDCompositionDevice3> dcomp_device)
: d3d11_device_(std::move(d3d11_device)),
dcomp_device_(std::move(dcomp_device)) {
CHECK(d3d11_device_);
CHECK(dcomp_device_);
}
SolidColorSurfacePool::~SolidColorSurfacePool() = default;
IDCompositionSurface* SolidColorSurfacePool::GetSolidColorSurface(
const SkColor4f& color) {
stats_since_last_trim_.num_surfaces_requested += 1;
HRESULT hr = S_OK;
auto first_unused_surface_it =
std::next(tracked_surfaces_.begin(), num_used_this_frame_);
if (auto found_color_it = base::ranges::find(tracked_surfaces_, color,
&SolidColorSurface::color_);
found_color_it != tracked_surfaces_.end()) {
// We found an existing surface in the pool that already has the requested
// color.
if (found_color_it >= first_unused_surface_it) {
// If the surface is in the "unused" portion of |tracked_surfaces_|, make
// it be tracked now.
std::swap(*first_unused_surface_it, *found_color_it);
found_color_it = first_unused_surface_it;
num_used_this_frame_++;
} else {
// The surface is already used by another overlay in this frame, so we can
// just share it with no extra work.
}
return found_color_it->surface();
}
// There is no surface that already contains the requested |color|, so we'll
// need to fill one.
auto surface_to_fill_it = first_unused_surface_it;
if (surface_to_fill_it == tracked_surfaces_.end()) {
// If there are no existing allocations, we'll need to create a new one.
Microsoft::WRL::ComPtr<IDCompositionSurface> dcomp_surface;
hr = dcomp_device_->CreateSurface(
kSolidColorSurfaceSize.width(), kSolidColorSurfaceSize.height(),
gfx::ColorSpaceWin::GetDXGIFormat(gfx::ColorSpace::CreateSRGB()),
DXGI_ALPHA_MODE_IGNORE, &dcomp_surface);
if (FAILED(hr)) {
LOG(ERROR) << "CreateSurface failed: "
<< logging::SystemErrorCodeToString(hr);
return nullptr;
}
surface_to_fill_it = tracked_surfaces_.insert(
first_unused_surface_it, SolidColorSurface(std::move(dcomp_surface)));
}
// The surface we want to use doesn't have the right color at this point.
if (!surface_to_fill_it->FillColor(d3d11_device_.Get(), color)) {
LOG(ERROR) << "Failed to fill solid color surface with color.";
return nullptr;
}
// Update the partitioning index after |FillColor| succeeds. In the case of
// failure, |tracked_surfaces_[num_used_this_frame_]| will still have a valid
// surface, just not filled to any color yet.
num_used_this_frame_++;
stats_since_last_trim_.num_surfaces_recolored += 1;
return surface_to_fill_it->surface();
}
void SolidColorSurfacePool::TrimAfterCommit() {
// The is the maximum number of solid color surfaces (both in use and not in
// use) that we will retain between frames. If we are actively using more than
// this, this value will be ignored.
//
// The value is copied from gbm_surfaceless_wayland.cc's
// |kMaxSolidColorBuffers|, which picks this value based on observationally
// seeing max 9 in-flight buffers + some margin. However, this can be any
// value. If the value is smaller than the number of overlays commonly seen
// in a frame, we may thrash on allocations. If the value is too large, we
// will end up wasting space.
static constexpr size_t kMaxSolidColorSurfacesToRetain = 12;
// Preserve up to |kMaxSolidColorSurfacesToRetain| surfaces, even if they
// aren't used this frame.
size_t trim_target_size =
std::max(num_used_this_frame_, kMaxSolidColorSurfacesToRetain);
// Protect against the case where there are fewer tracked surfaces than
// |kMaxSolidColorSurfacesToRetain|.
trim_target_size = std::min(trim_target_size, tracked_surfaces_.size());
DVLOG(1) << "SolidColorSurfacePool stats before trim: "
<< "requested=" << stats_since_last_trim_.num_surfaces_requested
<< ", "
<< "recolored=" << stats_since_last_trim_.num_surfaces_recolored
<< ", "
<< "in-use/total=" << num_used_this_frame_ << "/"
<< tracked_surfaces_.size()
<< (num_used_this_frame_ > kMaxSolidColorSurfacesToRetain
? " (in-use exceeds kMaxSolidColorSurfacesToRetain)"
: "")
<< ", will trim to " << trim_target_size;
auto first_surface_to_remove =
std::next(tracked_surfaces_.begin(), trim_target_size);
tracked_surfaces_.erase(first_surface_to_remove, tracked_surfaces_.end());
// Reset for the next frame.
num_used_this_frame_ = 0;
stats_since_last_trim_ = {};
}
size_t SolidColorSurfacePool::GetNumSurfacesInPoolForTesting() const {
CHECK_IS_TEST();
return tracked_surfaces_.size();
}
DCLayerTree::DCLayerTree(bool disable_nv12_dynamic_textures,
bool disable_vp_auto_hdr,
bool disable_vp_scaling,
bool disable_vp_super_resolution,
bool force_dcomp_triple_buffer_video_swap_chain,
bool no_downscaled_overlay_promotion)
: disable_nv12_dynamic_textures_(disable_nv12_dynamic_textures),
disable_vp_auto_hdr_(disable_vp_auto_hdr),
disable_vp_scaling_(disable_vp_scaling),
disable_vp_super_resolution_(disable_vp_super_resolution),
force_dcomp_triple_buffer_video_swap_chain_(
force_dcomp_triple_buffer_video_swap_chain),
no_downscaled_overlay_promotion_(no_downscaled_overlay_promotion),
max_video_processor_input_height_(kVideoProcessorDimensionsWindowSize),
max_video_processor_input_width_(kVideoProcessorDimensionsWindowSize),
max_video_processor_output_height_(kVideoProcessorDimensionsWindowSize),
max_video_processor_output_width_(kVideoProcessorDimensionsWindowSize),
ink_renderer_(std::make_unique<DelegatedInkRenderer>()) {}
DCLayerTree::~DCLayerTree() = default;
bool DCLayerTree::Initialize(
HWND window,
Microsoft::WRL::ComPtr<ID3D11Device> d3d11_device) {
window_ = window;
DCHECK(window_);
d3d11_device_ = std::move(d3d11_device);
DCHECK(d3d11_device_);
dcomp_device_ = GetDirectCompositionDevice();
DCHECK(dcomp_device_);
solid_color_surface_pool_ =
std::make_unique<SolidColorSurfacePool>(d3d11_device_, dcomp_device_);
Microsoft::WRL::ComPtr<IDCompositionDesktopDevice> desktop_device;
dcomp_device_.As(&desktop_device);
DCHECK(desktop_device);
HRESULT hr =
desktop_device->CreateTargetForHwnd(window_, TRUE, &dcomp_target_);
if (FAILED(hr)) {
DLOG(ERROR) << "CreateTargetForHwnd failed with error 0x" << std::hex << hr;
return false;
}
hr = dcomp_device_->CreateVisual(&dcomp_root_visual_);
CHECK_EQ(hr, S_OK);
if (base::FeatureList::IsEnabled(features::kDCompDebugVisualization)) {
Microsoft::WRL::ComPtr<IDCompositionDeviceDebug> debug_device;
hr = dcomp_device_.As(&debug_device);
CHECK_EQ(hr, S_OK);
CHECK(debug_device);
DLOG(WARNING) << "DComp debug counters enabled, visible in the top right.";
DLOG(WARNING) << " - left: The composition engine FPS, averaged over the "
"last 60 composition frames";
DLOG(WARNING) << " - right: The overall CPU usage of the composition "
"thread, in milliseconds";
hr = debug_device->EnableDebugCounters();
CHECK_EQ(hr, S_OK);
Microsoft::WRL::ComPtr<IDCompositionVisualDebug> debug_visual;
hr = dcomp_root_visual_.As(&debug_visual);
CHECK_EQ(hr, S_OK);
CHECK(debug_visual);
hr = debug_visual->EnableRedrawRegions();
CHECK_EQ(hr, S_OK);
}
dcomp_target_->SetRoot(dcomp_root_visual_.Get());
// A visual inherits the interpolation mode of the parent visual by default.
// If no visuals set the interpolation mode, the default for the entire visual
// tree is nearest neighbor interpolation.
// Set the interpolation mode to Linear to get a better upscaling quality.
dcomp_root_visual_->SetBitmapInterpolationMode(
DCOMPOSITION_BITMAP_INTERPOLATION_MODE_LINEAR);
hdr_metadata_helper_ = std::make_unique<HDRMetadataHelperWin>(d3d11_device_);
return true;
}
VideoProcessorWrapper* DCLayerTree::InitializeVideoProcessor(
const gfx::Size& input_size,
const gfx::Size& output_size,
bool& video_processor_recreated) {
video_processor_recreated = false;
if (!video_processor_wrapper_.video_device) {
// This can fail if the D3D device is "Microsoft Basic Display Adapter".
if (FAILED(d3d11_device_.As(&video_processor_wrapper_.video_device))) {
DLOG(ERROR) << "Failed to retrieve video device from D3D11 device";
DCHECK(false);
DisableDirectCompositionOverlays();
return nullptr;
}
DCHECK(video_processor_wrapper_.video_device);
Microsoft::WRL::ComPtr<ID3D11DeviceContext> context;
d3d11_device_->GetImmediateContext(&context);
DCHECK(context);
context.As(&video_processor_wrapper_.video_context);
DCHECK(video_processor_wrapper_.video_context);
}
// Calculate input and output size to be maximum in a sliding window.
max_video_processor_input_width_.AddSample(input_size.width());
max_video_processor_input_height_.AddSample(input_size.height());
max_video_processor_output_width_.AddSample(output_size.width());
max_video_processor_output_height_.AddSample(output_size.height());
gfx::Size effective_input_size(max_video_processor_input_width_.Max(),
max_video_processor_input_height_.Max());
gfx::Size effective_output_size(max_video_processor_output_width_.Max(),
max_video_processor_output_height_.Max());
// Reuse existing video processor only if it has exactly the computed size.
// Even if it may have bigger dimensions and may be reusable for requested
// sizes we will recreate it to reduce resource usage. Sliding window max
// above guarantees that this reduction will only happen after prolonged usage
// with smaller texture sizes.
if (video_processor_wrapper_.video_processor &&
video_processor_wrapper_.video_input_size == effective_input_size &&
video_processor_wrapper_.video_output_size == effective_output_size) {
return &video_processor_wrapper_;
}
TRACE_EVENT2("gpu", "DCLayerTree::InitializeVideoProcessor", "input_size",
input_size.ToString(), "output_size", output_size.ToString());
video_processor_wrapper_.video_input_size = effective_input_size;
video_processor_wrapper_.video_output_size = effective_output_size;
video_processor_wrapper_.video_processor.Reset();
video_processor_wrapper_.video_processor_enumerator.Reset();
D3D11_VIDEO_PROCESSOR_CONTENT_DESC desc = {};
desc.InputFrameFormat = D3D11_VIDEO_FRAME_FORMAT_PROGRESSIVE;
desc.InputFrameRate.Numerator = 60;
desc.InputFrameRate.Denominator = 1;
desc.InputWidth = input_size.width();
desc.InputHeight = input_size.height();
desc.OutputFrameRate.Numerator = 60;
desc.OutputFrameRate.Denominator = 1;
desc.OutputWidth = output_size.width();
desc.OutputHeight = output_size.height();
desc.Usage = D3D11_VIDEO_USAGE_PLAYBACK_NORMAL;
HRESULT hr =
video_processor_wrapper_.video_device->CreateVideoProcessorEnumerator(
&desc, &video_processor_wrapper_.video_processor_enumerator);
if (FAILED(hr)) {
DLOG(ERROR) << "CreateVideoProcessorEnumerator failed with error 0x"
<< std::hex << hr;
// It might fail again next time. Disable overlay support so
// overlay processor will stop sending down overlay frames.
DisableDirectCompositionOverlays();
return nullptr;
}
hr = video_processor_wrapper_.video_device->CreateVideoProcessor(
video_processor_wrapper_.video_processor_enumerator.Get(), 0,
&video_processor_wrapper_.video_processor);
if (FAILED(hr)) {
DLOG(ERROR) << "CreateVideoProcessor failed with error 0x" << std::hex
<< hr;
// It might fail again next time. Disable overlay support so
// overlay processor will stop sending down overlay frames.
DisableDirectCompositionOverlays();
return nullptr;
}
// Auto stream processing (the default) can hurt power consumption.
video_processor_wrapper_.video_context
->VideoProcessorSetStreamAutoProcessingMode(
video_processor_wrapper_.video_processor.Get(), 0, FALSE);
video_processor_recreated = true;
return &video_processor_wrapper_;
}
Microsoft::WRL::ComPtr<IDXGISwapChain1>
DCLayerTree::GetLayerSwapChainForTesting(size_t index) const {
CHECK_IS_TEST();
if (index < video_swap_chains_.size())
return video_swap_chains_[index]->swap_chain();
return nullptr;
}
// Return properties of non root swap chain at given index.
void DCLayerTree::GetSwapChainVisualInfoForTesting(size_t index,
gfx::Transform* transform,
gfx::Point* offset,
gfx::Rect* clip_rect) const {
CHECK_IS_TEST();
if (visual_tree_) {
visual_tree_->GetSwapChainVisualInfoForTesting(index, transform, // IN-TEST
offset, clip_rect);
}
}
DCLayerTree::VisualTree::VisualSubtree::VisualSubtree() = default;
DCLayerTree::VisualTree::VisualSubtree::~VisualSubtree() = default;
bool DCLayerTree::VisualTree::VisualSubtree::Update(
IDCompositionDevice3* dcomp_device,
Microsoft::WRL::ComPtr<IUnknown> dcomp_visual_content,
uint64_t dcomp_surface_serial,
const gfx::Size& image_size,
const gfx::RectF& content_rect,
Microsoft::WRL::ComPtr<IDCompositionSurface> background_color_surface,
const SkColor4f& background_color,
const gfx::Rect& quad_rect,
bool nearest_neighbor_filter,
const gfx::Transform& quad_to_root_transform,
const gfx::RRectF& rounded_corner_bounds,
float opacity,
const absl::optional<gfx::Rect>& clip_rect_in_root) {
bool needs_commit = false;
// Helper function to set |field| to |parameter| and return whether it
// changed.
auto SetField = [&needs_commit](auto& field, auto& parameter) -> bool {
const bool changed = field != parameter;
if (changed) {
field = std::move(parameter);
// We assume that any change to the input of |Update| will result in some
// visual property change that requires a commit. If this is not true, an
// input is not needed.
needs_commit = true;
}
return changed;
};
// Fields on |VisualSubtree| should map 1:1 with parameters to |Update| (with
// the exception of the DComp device pointer, DComp visuals, and Z-order). To
// avoid issues with incremental computation, set fields to input parameters
// here with the helper function and read the member fields below only if
// guarded by the corresponding |*_changed| variable.
const bool dcomp_visual_content_changed =
SetField(dcomp_visual_content_, dcomp_visual_content);
const bool dcomp_surface_serial_changed =
SetField(dcomp_surface_serial_, dcomp_surface_serial);
const bool image_size_changed = SetField(image_size_, image_size);
const bool content_rect_changed = SetField(content_rect_, content_rect);
const bool background_color_surface_changed =
SetField(background_color_surface_, background_color_surface);
const bool background_color_changed =
SetField(background_color_, background_color);
const bool quad_rect_changed = SetField(quad_rect_, quad_rect);
const bool nearest_neighbor_filter_changed =
SetField(nearest_neighbor_filter_, nearest_neighbor_filter);
const bool quad_to_root_transform_changed =
SetField(quad_to_root_transform_, quad_to_root_transform);
const bool rounded_corner_bounds_changed =
SetField(rounded_corner_bounds_, rounded_corner_bounds);
const bool opacity_changed = SetField(opacity_, opacity);
const bool clip_rect_in_root_changed =
SetField(clip_rect_in_root_, clip_rect_in_root);
// Methods that update the visual tree can only fail with OOM. We'll assert
// success in this function to aid in debugging.
HRESULT hr = S_OK;
// All the visual are created together on the first |Update|.
if (!clip_visual_) {
needs_commit = true;
CHECK(!rounded_corners_visual_);
CHECK(!transform_visual_);
CHECK(!background_color_visual_);
CHECK(!content_visual_);
hr = dcomp_device->CreateVisual(&clip_visual_);
CHECK_EQ(hr, S_OK);
hr = dcomp_device->CreateVisual(&rounded_corners_visual_);
CHECK_EQ(hr, S_OK);
hr = dcomp_device->CreateVisual(&transform_visual_);
CHECK_EQ(hr, S_OK);
hr = dcomp_device->CreateVisual(&background_color_visual_);
CHECK_EQ(hr, S_OK);
hr = dcomp_device->CreateVisual(&content_visual_);
CHECK_EQ(hr, S_OK);
hr = clip_visual_->AddVisual(rounded_corners_visual_.Get(), FALSE, nullptr);
CHECK_EQ(hr, S_OK);
hr = rounded_corners_visual_->AddVisual(transform_visual_.Get(), FALSE,
nullptr);
CHECK_EQ(hr, S_OK);
hr = transform_visual_->AddVisual(background_color_visual_.Get(), FALSE,
nullptr);
CHECK_EQ(hr, S_OK);
hr = transform_visual_->AddVisual(content_visual_.Get(), FALSE, nullptr);
CHECK_EQ(hr, S_OK);
// The default state for the border mode is INHERIT, so we need to force it
// to HARD.
hr = transform_visual_->SetBorderMode(DCOMPOSITION_BORDER_MODE_HARD);
CHECK_EQ(hr, S_OK);
}
if (clip_rect_in_root_changed) {
if (clip_rect_in_root_.has_value()) {
// DirectComposition clips happen in the pre-transform visual space, while
// cc/ clips happen post-transform. So the clip needs to go on a separate
// parent visual that's untransformed.
const gfx::Rect& clip_rect = clip_rect_in_root_.value();
hr = clip_visual_->SetClip(D2D1::RectF(
clip_rect.x(), clip_rect.y(), clip_rect.right(), clip_rect.bottom()));
CHECK_EQ(hr, S_OK);
} else {
hr = clip_visual_->SetClip(nullptr);
CHECK_EQ(hr, S_OK);
}
}
if (opacity_changed) {
if (opacity_ != 1) {
hr = CheckedCastToVisual3(clip_visual_)->SetOpacity(opacity_);
CHECK_EQ(hr, S_OK);
// Let all of this subtree's visuals blend as one, instead of
// individually
hr = clip_visual_->SetOpacityMode(DCOMPOSITION_OPACITY_MODE_LAYER);
CHECK_EQ(hr, S_OK);
} else {
hr = CheckedCastToVisual3(clip_visual_)->SetOpacity(1.0);
CHECK_EQ(hr, S_OK);
hr = clip_visual_->SetOpacityMode(DCOMPOSITION_OPACITY_MODE_MULTIPLY);
CHECK_EQ(hr, S_OK);
}
}
if (rounded_corner_bounds_changed) {
if (!rounded_corner_bounds_.IsEmpty()) {
Microsoft::WRL::ComPtr<IDCompositionRectangleClip> clip;
hr = dcomp_device->CreateRectangleClip(&clip);
CHECK_EQ(hr, S_OK);
CHECK(clip);
const gfx::RectF rect = rounded_corner_bounds_.rect();
hr = clip->SetLeft(rect.x());
CHECK_EQ(hr, S_OK);
hr = clip->SetRight(rect.right());
CHECK_EQ(hr, S_OK);
hr = clip->SetBottom(rect.bottom());
CHECK_EQ(hr, S_OK);
hr = clip->SetTop(rect.y());
CHECK_EQ(hr, S_OK);
const gfx::Vector2dF top_left = rounded_corner_bounds_.GetCornerRadii(
gfx::RRectF::Corner::kUpperLeft);
hr = clip->SetTopLeftRadiusX(top_left.x());
CHECK_EQ(hr, S_OK);
hr = clip->SetTopLeftRadiusY(top_left.y());
CHECK_EQ(hr, S_OK);
const gfx::Vector2dF top_right = rounded_corner_bounds_.GetCornerRadii(
gfx::RRectF::Corner::kUpperRight);
hr = clip->SetTopRightRadiusX(top_right.x());
CHECK_EQ(hr, S_OK);
hr = clip->SetTopRightRadiusY(top_right.y());
CHECK_EQ(hr, S_OK);
const gfx::Vector2dF bottom_left = rounded_corner_bounds_.GetCornerRadii(
gfx::RRectF::Corner::kLowerLeft);
hr = clip->SetBottomLeftRadiusX(bottom_left.x());
CHECK_EQ(hr, S_OK);
hr = clip->SetBottomLeftRadiusY(bottom_left.y());
CHECK_EQ(hr, S_OK);
const gfx::Vector2dF bottom_right = rounded_corner_bounds_.GetCornerRadii(
gfx::RRectF::Corner::kLowerRight);
hr = clip->SetBottomRightRadiusX(bottom_right.x());
CHECK_EQ(hr, S_OK);
hr = clip->SetBottomRightRadiusY(bottom_right.y());
CHECK_EQ(hr, S_OK);
hr = rounded_corners_visual_->SetClip(clip.Get());
CHECK_EQ(hr, S_OK);
// Enable anti-aliasing of the rounded corners.
hr =
rounded_corners_visual_->SetBorderMode(DCOMPOSITION_BORDER_MODE_SOFT);
CHECK_EQ(hr, S_OK);
} else {
hr = rounded_corners_visual_->SetClip(nullptr);
CHECK_EQ(hr, S_OK);
hr = rounded_corners_visual_->SetBorderMode(
DCOMPOSITION_BORDER_MODE_INHERIT);
CHECK_EQ(hr, S_OK);
}
}
if (quad_to_root_transform_changed) {
if (quad_to_root_transform_.Is2dTransform()) {
const D2D_MATRIX_3X2_F matrix =
TransformToD2D_MATRIX_3X2_F(quad_to_root_transform_);
hr = Microsoft::WRL::ComPtr<IDCompositionVisual>(transform_visual_)
->SetTransform(matrix);
CHECK_EQ(hr, S_OK);
} else {
const D2D_MATRIX_4X4_F matrix =
TransformToD2D_MATRIX_4X4_F(quad_to_root_transform_);
hr = CheckedCastToVisual3(transform_visual_)->SetTransform(matrix);
CHECK_EQ(hr, S_OK);
}
}
if (nearest_neighbor_filter_changed) {
hr = transform_visual_->SetBitmapInterpolationMode(
nearest_neighbor_filter_
? DCOMPOSITION_BITMAP_INTERPOLATION_MODE_NEAREST_NEIGHBOR
: DCOMPOSITION_BITMAP_INTERPOLATION_MODE_LINEAR);
CHECK_EQ(hr, S_OK);
}
if (image_size_changed || content_rect_changed || quad_rect_changed) {
if (content_rect_.Contains(gfx::RectF(image_size_))) {
// No need to set clip to content if the whole image is inside the content
// rect region.
hr = content_visual_->SetClip(nullptr);
CHECK_EQ(hr, S_OK);
} else {
// Exclude content outside the content rect region.
const auto content_clip =
D2D1::RectF(content_rect_.x(), content_rect_.y(),
content_rect_.right(), content_rect_.bottom());
hr = content_visual_->SetClip(content_clip);
CHECK_EQ(hr, S_OK);
}
// Transform the (clipped) content so that it fills |quad_rect_|'s bounds.
// |quad_rect_|'s offset is handled below, so we exclude it from the matrix.
const bool needs_offset = !content_rect_.OffsetFromOrigin().IsZero();
const bool needs_scale =
static_cast<float>(quad_rect_.width()) != content_rect_.width() ||
static_cast<float>(quad_rect_.height()) != content_rect_.height();
if (needs_offset || needs_scale) {
const float scale_x =
static_cast<float>(quad_rect_.width()) / content_rect_.width();
const float scale_y =
static_cast<float>(quad_rect_.height()) / content_rect_.height();
const D2D_MATRIX_3X2_F matrix =
D2D1::Matrix3x2F::Translation(-content_rect_.x(),
-content_rect_.y()) *
D2D1::Matrix3x2F::Scale(scale_x, scale_y);
hr = Microsoft::WRL::ComPtr<IDCompositionVisual>(content_visual_)
->SetTransform(matrix);
CHECK_EQ(hr, S_OK);
} else {
hr = content_visual_->SetTransform(nullptr);
CHECK_EQ(hr, S_OK);
}
// Visual offset is applied after transform so it is affected by the
// transform, which is consistent with how the compositor maps quad rects to
// their target space.
hr = content_visual_->SetOffsetX(quad_rect_.x());
CHECK_EQ(hr, S_OK);
hr = content_visual_->SetOffsetY(quad_rect_.y());
CHECK_EQ(hr, S_OK);
}
if (dcomp_visual_content_changed) {
hr = content_visual_->SetContent(dcomp_visual_content_.Get());
CHECK_EQ(hr, S_OK);
}
if (dcomp_surface_serial_changed) {
// The DComp surface has been drawn to and needs a commit to show its
// update. No visual changes are needed in this case.
}
if (quad_rect_changed || background_color_surface_changed ||
background_color_changed) {
if (!background_color_surface_ || background_color.fA == 0.0) {
// A fully transparent color is the same as no background fill.
hr = background_color_visual_->SetContent(nullptr);
CHECK_EQ(hr, S_OK);
} else {
const D2D_MATRIX_3X2_F matrix =
TransformToD2D_MATRIX_3X2_F(gfx::TransformBetweenRects(
gfx::RectF(kSolidColorSurfaceSize), gfx::RectF(quad_rect_)));
hr = Microsoft::WRL::ComPtr<IDCompositionVisual>(background_color_visual_)
->SetTransform(matrix);
CHECK_EQ(hr, S_OK);
hr =
background_color_visual_->SetContent(background_color_surface_.Get());
CHECK_EQ(hr, S_OK);
hr = CheckedCastToVisual3(background_color_visual_)
->SetOpacity(background_color.fA);
CHECK_EQ(hr, S_OK);
}
}
if (quad_to_root_transform_changed || quad_rect_changed) {
const float kNeedsSoftBorderTolerance = 0.001;
const bool content_soft_borders =
!quad_to_root_transform_.Preserves2dAxisAlignment() ||
!gfx::IsNearestRectWithinDistance(
quad_to_root_transform_.MapRect(gfx::RectF(quad_rect_)),
kNeedsSoftBorderTolerance);
// The border mode of the transform visual is set (instead of the content
// visual), so this setting can affect both the content and the background
// color, since both are are children of the transform visual.
hr = transform_visual_->SetBorderMode(content_soft_borders
? DCOMPOSITION_BORDER_MODE_SOFT
: DCOMPOSITION_BORDER_MODE_HARD);
CHECK_EQ(hr, S_OK);
}
return needs_commit;
}
void DCLayerTree::VisualTree::VisualSubtree::GetSwapChainVisualInfoForTesting(
gfx::Transform* transform,
gfx::Point* offset,
gfx::Rect* clip_rect) const {
CHECK_IS_TEST();
*transform = quad_to_root_transform_;
*offset = quad_rect_.origin();
*clip_rect = clip_rect_in_root_.value_or(gfx::Rect());
}
DCLayerTree::VisualTree::VisualTree(DCLayerTree* dc_layer_tree)
: dc_layer_tree_(dc_layer_tree) {}
DCLayerTree::VisualTree::~VisualTree() = default;
bool DCLayerTree::VisualTree::BuildTreeDefault(
const std::vector<std::unique_ptr<DCLayerOverlayParams>>& overlays,
bool needs_rebuild_visual_tree) {
DCHECK(!base::FeatureList::IsEnabled(features::kDCompVisualTreeOptimization));
CHECK(subtree_map_.empty());
// Grow or shrink list of visual subtrees to match pending overlays.
size_t old_visual_subtrees_size = visual_subtrees_.size();
if (old_visual_subtrees_size != overlays.size()) {
needs_rebuild_visual_tree = true;
}
// Visual for root surface. Cache it to add DelegatedInk visual if needed.
Microsoft::WRL::ComPtr<IDCompositionVisual2> root_surface_visual;
bool needs_commit = false;
std::vector<std::unique_ptr<VisualSubtree>> visual_subtrees;
visual_subtrees.resize(overlays.size());
// Build or update visual subtree for each overlay.
for (size_t i = 0; i < overlays.size(); ++i) {
const bool is_root_plane = overlays[i]->z_order == 0;
if (!is_root_plane && overlays[i]->overlay_image) {
TRACE_EVENT2(
"gpu", "DCLayerTree::VisualTree::UpdateOverlay", "image_type",
DCLayerOverlayTypeToString(overlays[i]->overlay_image->type()),
"size", overlays[i]->content_rect.size().ToString());
}
IUnknown* dcomp_visual_content =
overlays[i]->overlay_image
? overlays[i]->overlay_image->dcomp_visual_content()
: nullptr;
// Find matching subtree for each overlay. If subtree is found, move it
// from visual subtrees of previous frame to visual subtrees of this frame.
auto it = std::find_if(
visual_subtrees_.begin(), visual_subtrees_.end(),
[dcomp_visual_content](const std::unique_ptr<VisualSubtree>& subtree) {
return subtree &&
subtree->dcomp_visual_content() == dcomp_visual_content;
});
if (it == visual_subtrees_.end()) {
// This overlay's visual content does not present in the old visual tree.
// Instantiate a new visual subtree.
visual_subtrees[i] = std::make_unique<VisualSubtree>();
visual_subtrees[i]->set_z_order(overlays[i]->z_order);
needs_rebuild_visual_tree = true;
} else {
// Move visual subtree from the old subtrees to new subtrees.
visual_subtrees[i] = std::move(*it);
if (visual_subtrees[i]->z_order() != overlays[i]->z_order) {
visual_subtrees[i]->set_z_order(overlays[i]->z_order);
// Z-order is a property of the root visual's child list, not any
// property on the subtree's nodes. If it changes, we need to rebuild
// the tree.
needs_rebuild_visual_tree = true;
}
}
const uint64_t dcomp_surface_serial =
overlays[i]->overlay_image.has_value()
? overlays[i]->overlay_image->dcomp_surface_serial()
: 0;
const gfx::Size image_size = overlays[i]->overlay_image.has_value()
? overlays[i]->overlay_image->size()
: gfx::Size();
// Only get a background color surface if we have a non-transparent
// background color.
IDCompositionSurface* background_color_surface = nullptr;
if (overlays[i]->background_color &&
overlays[i]->background_color->fA != 0.0) {
background_color_surface =
dc_layer_tree_->solid_color_surface_pool_->GetSolidColorSurface(
overlays[i]->background_color.value());
if (!background_color_surface) {
DLOG(ERROR) << "Could not get solid color surface.";
return false;
}
}
// We don't need to set |needs_rebuild_visual_tree| here since that is only
// needed when the root visual's children need to be reordered. |Update|
// only affects the subtree for each child, so only a commit is needed in
// this case.
needs_commit |= visual_subtrees[i]->Update(
dc_layer_tree_->dcomp_device_.Get(), dcomp_visual_content,
dcomp_surface_serial, image_size, overlays[i]->content_rect,
background_color_surface,
overlays[i]->background_color.value_or(SkColors::kTransparent),
overlays[i]->quad_rect, overlays[i]->nearest_neighbor_filter,
overlays[i]->transform, overlays[i]->rounded_corner_bounds,
overlays[i]->opacity, overlays[i]->clip_rect);
// Zero z_order represents root layer.
if (overlays[i]->z_order == 0) {
// Verify we have single root visual layer.
DCHECK(!root_surface_visual);
root_surface_visual = visual_subtrees[i]->content_visual();
}
}
// Update visual_subtrees_ with new values.
visual_subtrees_ = std::move(visual_subtrees);
// Note: needs_rebuild_visual_tree might be set in this method,
// |DCLayerTree::CommitAndClearPendingOverlays|, and can also be set in
// |DCLayerTree::SetDelegatedInkTrailStartPoint| to add a delegated ink visual
// into the root surface's visual.
if (needs_rebuild_visual_tree) {
TRACE_EVENT0(
"gpu", "DCLayerTree::CommitAndClearPendingOverlays::ReBuildVisualTree");
// Rebuild root visual's child list.
dc_layer_tree_->dcomp_root_visual_->RemoveAllVisuals();
for (size_t i = 0; i < visual_subtrees_.size(); ++i) {
// We call AddVisual with insertAbove FALSE and referenceVisual nullptr
// which is equivalent to saying that the visual should be below no
// other visual, or in other words it should be above all other visuals.
dc_layer_tree_->dcomp_root_visual_->AddVisual(
visual_subtrees_[i]->container_visual(), FALSE, nullptr);
}
if (root_surface_visual) {
dc_layer_tree_->AddDelegatedInkVisualToTreeIfNeeded(
root_surface_visual.Get());
}
needs_commit = true;
}
if (needs_commit) {
TRACE_EVENT0("gpu", "DCLayerTree::CommitAndClearPendingOverlays::Commit");
HRESULT hr = dc_layer_tree_->dcomp_device_->Commit();
if (FAILED(hr)) {
DLOG(ERROR) << "Commit failed with error 0x" << std::hex << hr;
return false;
}
}
return true;
}
bool DCLayerTree::VisualTree::BuildTreeOptimized(
const std::vector<std::unique_ptr<DCLayerOverlayParams>>& overlays,
bool needs_rebuild_visual_tree) {
DCHECK(base::FeatureList::IsEnabled(features::kDCompVisualTreeOptimization));
// For optimized tree |needs_rebuild_visual_tree| means that we may need to
// add/re-add a delegated ink visual into the root surface's visual.
// TODO(http://crbug.com/1380822): Clean up needs_rebuild_visual_tree
// and use dedicated add_delegated_ink_visual flag instead.
const bool add_delegated_ink_visual = needs_rebuild_visual_tree;
// Index into the subtree from the previous frame that is being reused in the
// current frame for the given overlay index.
// |overlay_index_to_reused_subtree| has an entry for every overlay in the
// current frame. Each entry indexes into |visual_subtrees_|, which are the
// subtrees for the previous frame. Initialized with absl::nullopt,
// meaning not reused.
std::vector<absl::optional<size_t>> overlay_index_to_reused_subtree(
overlays.size(), absl::nullopt);
// Index into the current frame overlay that uses the subtree of the previous
// frame for the given subtree index. |subtree_index_to_overlay| has an entry
// for every subtree in the previous frame. Each entry indexes into |overlays|
// of the current frame. Initialized with absl::nullopt, meaning the subtree
// is not being reused in the current frame.
std::vector<absl::optional<size_t>> subtree_index_to_overlay(
visual_subtrees_.size(), absl::nullopt);
// |visual_subtrees| will become |visual_subtrees_| of the current frame;
std::vector<std::unique_ptr<VisualSubtree>> visual_subtrees;
visual_subtrees.resize(overlays.size());
// Populate the map with visual content and assign matching subtrees to the
// overlays.
VisualSubtreeMap subtree_map = BuildMapAndAssignMatchingSubtrees(
overlays, visual_subtrees, overlay_index_to_reused_subtree,
subtree_index_to_overlay);
// Assign unused subtrees to the overlays that don't have a match.
const size_t first_prev_frame_subtree_unused_index =
ReuseUnmatchedSubtrees(visual_subtrees, overlay_index_to_reused_subtree,
subtree_index_to_overlay);
// Status for each subtree of the previous frame if it's attached to the root.
// Initialized with true, meaning attached.
std::vector<bool> prev_subtree_is_attached_to_root(visual_subtrees_.size(),
true);
bool needs_commit = DetachUnusedSubtreesFromRoot(
first_prev_frame_subtree_unused_index, prev_subtree_is_attached_to_root);
// Remove unused subtrees from the root that need repositioning.
needs_commit |= DetachReusedSubtreesThatNeedRepositioningFromRoot(
visual_subtrees, overlay_index_to_reused_subtree,
subtree_index_to_overlay, prev_subtree_is_attached_to_root);
#if DCHECK_IS_ON()
VisualTreeValid(subtree_index_to_overlay, prev_subtree_is_attached_to_root);
#endif // DCHECK_IS_ON()
// Visual for root surface. Cache it to add DelegatedInk visual if needed.
Microsoft::WRL::ComPtr<IDCompositionVisual2> root_surface_visual;
IDCompositionVisual2* left_sibling_visual = nullptr;
// This loop walks the overlays and builds or updates the visual subtree for
// each overlay. |left_sibling_visual| is required to properly stack visual
// subtrees that are detached from the root visual.
for (unsigned int i = 0; i < overlays.size(); i++) {
const bool is_root_plane = overlays[i]->z_order == 0;
if (!is_root_plane && overlays[i]->overlay_image) {
TRACE_EVENT2(
"gpu", "DCLayerTree::VisualTree::UpdateOverlay", "image_type",
DCLayerOverlayTypeToString(overlays[i]->overlay_image->type()),
"size", overlays[i]->content_rect.size().ToString());
}
bool subtree_attached_to_root = false;
if (visual_subtrees[i]) {
DCHECK(overlay_index_to_reused_subtree[i]);
subtree_attached_to_root =
prev_subtree_is_attached_to_root[overlay_index_to_reused_subtree[i]
.value()];
} else {
// This overlay does not reuse a subtree from the previous frame.
// Instantiate a new one.
visual_subtrees[i] = std::make_unique<VisualSubtree>();
}
const uint64_t dcomp_surface_serial =
overlays[i]->overlay_image.has_value()
? overlays[i]->overlay_image->dcomp_surface_serial()
: 0;
const gfx::Size image_size = overlays[i]->overlay_image.has_value()
? overlays[i]->overlay_image->size()
: gfx::Size();
// Only get a background color surface if we have a non-transparent
// background color.
IDCompositionSurface* background_color_surface = nullptr;
if (overlays[i]->background_color &&
overlays[i]->background_color->fA != 0.0) {
background_color_surface =
dc_layer_tree_->solid_color_surface_pool_->GetSolidColorSurface(
overlays[i]->background_color.value());
if (!background_color_surface) {
DLOG(ERROR) << "Could not get solid color surface.";
// TODO(http://crbug.com/1380822): Refactor to remove early exits. They
// may leave visual_subtrees_ corrupted.
return false;
}
}
VisualSubtree* visual_subtree = visual_subtrees[i].get();
visual_subtree->set_z_order(overlays[i]->z_order);
IUnknown* dcomp_visual_content =
overlays[i]->overlay_image
? overlays[i]->overlay_image->dcomp_visual_content()
: nullptr;
needs_commit |= visual_subtrees[i]->Update(
dc_layer_tree_->dcomp_device_.Get(), dcomp_visual_content,
dcomp_surface_serial, image_size, overlays[i]->content_rect,
background_color_surface,
overlays[i]->background_color.value_or(SkColors::kTransparent),
overlays[i]->quad_rect, overlays[i]->nearest_neighbor_filter,
overlays[i]->transform, overlays[i]->rounded_corner_bounds,
overlays[i]->opacity, overlays[i]->clip_rect);
if (!subtree_attached_to_root) {
HRESULT hr = dc_layer_tree_->dcomp_root_visual_.Get()->AddVisual(
visual_subtree->container_visual(), TRUE, left_sibling_visual);
CHECK_EQ(hr, S_OK);
needs_commit = true;
}
left_sibling_visual = visual_subtree->container_visual();
// Zero z_order represents root layer.
if (visual_subtree->z_order() == 0) {
// Verify we have single root visual layer.
DCHECK(!root_surface_visual);
root_surface_visual = visual_subtree->content_visual();
}
}
// Update subtree_map_ and visual_subtrees_ with new values.
subtree_map_ = std::move(subtree_map);
visual_subtrees_ = std::move(visual_subtrees);
if (add_delegated_ink_visual) {
needs_commit |= dc_layer_tree_->AddDelegatedInkVisualToTreeIfNeeded(
root_surface_visual.Get());
}
if (needs_commit) {
TRACE_EVENT0("gpu", "DCLayerTree::CommitAndClearPendingOverlays::Commit");
HRESULT hr = dc_layer_tree_->dcomp_device_->Commit();
if (FAILED(hr)) {
DLOG(ERROR) << "Commit failed with error 0x" << std::hex << hr;
return false;
}
}
return true;
}
DCLayerTree::VisualTree::VisualSubtreeMap
DCLayerTree::VisualTree::BuildMapAndAssignMatchingSubtrees(
const std::vector<std::unique_ptr<DCLayerOverlayParams>>& overlays,
std::vector<std::unique_ptr<VisualSubtree>>& new_visual_subtrees,
std::vector<absl::optional<size_t>>& overlay_index_to_reused_subtree,
std::vector<absl::optional<size_t>>& subtree_index_to_overlay) {
CHECK_EQ(overlay_index_to_reused_subtree.size(), overlays.size());
CHECK_EQ(new_visual_subtrees.size(), overlays.size());
CHECK_EQ(subtree_index_to_overlay.size(), visual_subtrees_.size());
// Contains {visual content, overlay index} pairs for this frame overlays.
// This structure has entries for overlays that have visual content.
// No entry is inserted for the overlays with no visual content.
std::vector<std::pair<raw_ptr<IUnknown>, size_t>> map_results;
// For each overlay populate |map_results| with visual content and indices
// of overlays from this frame and find the matching subtree from the
// previous frame.
for (size_t i = 0; i < overlays.size(); i++) {
if (!overlays[i]->overlay_image) {
continue;
}
IUnknown* dcomp_visual_content =
overlays[i]->overlay_image->dcomp_visual_content();
if (!dcomp_visual_content) {
continue;
}
map_results.emplace_back(dcomp_visual_content, i);
// Find matching visual content from the previous frame.
auto it = subtree_map_.find(dcomp_visual_content);
if (it == subtree_map_.end()) {
continue;
}
size_t matched_index = it->second;
if (visual_subtrees_[matched_index]) {
// Assign the matched index to the corresponding overlay.
overlay_index_to_reused_subtree[i] = matched_index;
// Assign overlay index to the matched subtree.
subtree_index_to_overlay[matched_index] = i;
// Move visual subtree from the old subtrees to new subtrees.
new_visual_subtrees[i] = std::move(visual_subtrees_[matched_index]);
}
}
// This converts to a flat_map on returning. We're doing this on purpose to
// go from O(N^2) to O(N*logN) for building the map.
return map_results;
}
size_t DCLayerTree::VisualTree::ReuseUnmatchedSubtrees(
std::vector<std::unique_ptr<VisualSubtree>>& new_visual_subtrees,
std::vector<absl::optional<size_t>>& overlay_index_to_reused_subtree,
std::vector<absl::optional<size_t>>& subtree_index_to_overlay) {
CHECK_EQ(new_visual_subtrees.size(), overlay_index_to_reused_subtree.size());
CHECK_EQ(subtree_index_to_overlay.size(), visual_subtrees_.size());
// No further actions are needed if the previous frame is empty.
if (visual_subtrees_.empty()) {
return 0;
}
// Index into |visual_subtrees_|.
size_t prev_frame_subtree_index = 0;
// Assign unused subtrees from previous frames to overlays that don't have
// a match.
for (size_t i = 0; i < new_visual_subtrees.size() &&
prev_frame_subtree_index < visual_subtrees_.size();
i++) {
if (new_visual_subtrees[i]) {
// Skip overlay that has a match.
continue;
}
// Find next unused subtree and assign it to the overlay at index |i|.
for (; prev_frame_subtree_index < visual_subtrees_.size();
prev_frame_subtree_index++) {
if (!visual_subtrees_[prev_frame_subtree_index]) {
continue;
}
// Assign the found index to the corresponding overlay.
overlay_index_to_reused_subtree[i] = prev_frame_subtree_index;
// Assign the overlay index to the found subtree.
subtree_index_to_overlay[prev_frame_subtree_index] = i;
// Move visual subtree from the old subtrees to new subtrees.
new_visual_subtrees[i] =
std::move(visual_subtrees_[prev_frame_subtree_index]);
prev_frame_subtree_index++;
break;
}
}
return prev_frame_subtree_index;
}
bool DCLayerTree::VisualTree::DetachUnusedSubtreesFromRoot(
size_t first_prev_frame_subtree_unused_index,
std::vector<bool>& prev_subtree_is_attached_to_root) {
CHECK_EQ(prev_subtree_is_attached_to_root.size(), visual_subtrees_.size());
bool needs_commit = false;
// Detach the remaining unused subtrees from the root.
for (size_t i = first_prev_frame_subtree_unused_index;
i < visual_subtrees_.size(); i++) {
if (!visual_subtrees_[i]) {
continue;
}
DetachSubtreeFromRoot(visual_subtrees_[i].get());
prev_subtree_is_attached_to_root[i] = false;
needs_commit = true;
}
return needs_commit;
}
bool DCLayerTree::VisualTree::DetachReusedSubtreesThatNeedRepositioningFromRoot(
const std::vector<std::unique_ptr<VisualSubtree>>& new_visual_subtrees,
const std::vector<absl::optional<size_t>>& overlay_index_to_reused_subtree,
const std::vector<absl::optional<size_t>>& subtree_index_to_overlay,
std::vector<bool>& prev_subtree_is_attached_to_root) {
CHECK_EQ(new_visual_subtrees.size(), overlay_index_to_reused_subtree.size());
CHECK_EQ(subtree_index_to_overlay.size(), visual_subtrees_.size());
CHECK_EQ(prev_subtree_is_attached_to_root.size(), visual_subtrees_.size());
// No further actions are needed if the previous frame is empty.
if (visual_subtrees_.empty()) {
return false;
}
bool needs_commit = false;
// Index into |visual_subtrees_|.
size_t prev_frame_subtree_index = 0;
// This loop walks the overlay indices and detaches from the root any
// subtrees that need repositioning in the current frame.
for (size_t i = 0; i < overlay_index_to_reused_subtree.size(); i++) {
if (!overlay_index_to_reused_subtree[i]) {
continue;
}
size_t reused_subtree_index = overlay_index_to_reused_subtree[i].value();
DCHECK_EQ(i, subtree_index_to_overlay[reused_subtree_index].value());
// If the overlay at index |i| has a match, detach from the root any
// subtrees that appear before the matching subtree and the previous match.
for (; prev_frame_subtree_index < reused_subtree_index;
prev_frame_subtree_index++) {
if (!prev_subtree_is_attached_to_root[prev_frame_subtree_index]) {
continue;
}
VisualSubtree* subtree =
new_visual_subtrees[subtree_index_to_overlay[prev_frame_subtree_index]
.value()]
.get();
DetachSubtreeFromRoot(subtree);
prev_subtree_is_attached_to_root[prev_frame_subtree_index] = false;
needs_commit = true;
}
if (reused_subtree_index == prev_frame_subtree_index) {
++prev_frame_subtree_index;
}
#if DCHECK_IS_ON()
new_visual_subtrees[i]->attached_to_root_from_previous_frame_ =
prev_subtree_is_attached_to_root[reused_subtree_index];
#endif // DCHECK_IS_ON()
}
return needs_commit;
}
void DCLayerTree::VisualTree::DetachSubtreeFromRoot(VisualSubtree* subtree) {
HRESULT hr = dc_layer_tree_->dcomp_root_visual_.Get()->RemoveVisual(
subtree->container_visual());
CHECK_EQ(hr, S_OK);
}
void DCLayerTree::VisualTree::GetSwapChainVisualInfoForTesting(
size_t index,
gfx::Transform* transform,
gfx::Point* offset,
gfx::Rect* clip_rect) const {
CHECK_IS_TEST();
for (size_t i = 0, swapchain_i = 0; i < visual_subtrees_.size(); ++i) {
// Skip root layer.
if (visual_subtrees_[i]->z_order() == 0) {
continue;
}
if (swapchain_i == index) {
visual_subtrees_[i]->GetSwapChainVisualInfoForTesting( // IN-TEST
transform, offset, clip_rect);
return;
}
swapchain_i++;
}
}
bool DCLayerTree::CommitAndClearPendingOverlays(
DirectCompositionChildSurfaceWin* root_surface) {
TRACE_EVENT1("gpu", "DCLayerTree::CommitAndClearPendingOverlays",
"num_pending_overlays", pending_overlays_.size());
DCHECK(!needs_rebuild_visual_tree_ || ink_renderer_->HasBeenInitialized());
{
Microsoft::WRL::ComPtr<IDXGISwapChain1> root_swap_chain;
Microsoft::WRL::ComPtr<IDCompositionSurface> root_dcomp_surface;
if (root_surface) {
root_swap_chain = root_surface->swap_chain();
root_dcomp_surface = root_surface->dcomp_surface();
Microsoft::WRL::ComPtr<IUnknown> root_visual_content;
if (root_swap_chain) {
root_visual_content = root_swap_chain;
} else {
root_visual_content = root_dcomp_surface;
}
// Add a placeholder overlay for the root surface, at a z-order of 0.
auto root_params = std::make_unique<DCLayerOverlayParams>();
root_params->z_order = 0;
root_params->overlay_image = DCLayerOverlayImage(
root_surface->GetSize(), std::move(root_visual_content),
root_surface->dcomp_surface_serial());
root_params->content_rect =
gfx::RectF(root_params->overlay_image->size());
root_params->quad_rect = gfx::Rect(root_params->overlay_image->size());
ScheduleDCLayer(std::move(root_params));
} else {
auto it = std::find_if(
pending_overlays_.begin(), pending_overlays_.end(),
[](const std::unique_ptr<DCLayerOverlayParams>& overlay) {
return overlay->z_order == 0;
});
if (it != pending_overlays_.end() && (*it)->overlay_image) {
Microsoft::WRL::ComPtr<IUnknown> root_visual_content =
(*it)->overlay_image->dcomp_visual_content();
HRESULT hr = root_visual_content.As(&root_swap_chain);
if (hr == E_NOINTERFACE) {
DCHECK_EQ(nullptr, root_swap_chain);
hr = root_visual_content.As(&root_dcomp_surface);
}
CHECK_EQ(S_OK, hr);
} else {
// Note: this is allowed in tests, but not expected otherwise.
DLOG(WARNING) << "No root surface in overlay list";
}
}
if (root_swap_chain != root_swap_chain_ ||
root_dcomp_surface != root_dcomp_surface_) {
DCHECK(!(root_swap_chain && root_dcomp_surface));
root_swap_chain_ = std::move(root_swap_chain);
root_dcomp_surface_ = std::move(root_dcomp_surface);
needs_rebuild_visual_tree_ = true;
}
}
std::vector<std::unique_ptr<DCLayerOverlayParams>> overlays;
std::swap(pending_overlays_, overlays);
// Grow or shrink list of swap chain presenters to match pending overlays.
const size_t num_swap_chain_presenters =
std::count_if(overlays.begin(), overlays.end(), [](const auto& overlay) {
return NeedSwapChainPresenter(overlay.get());
});
// Grow or shrink list of swap chain presenters to match pending overlays.
if (video_swap_chains_.size() != num_swap_chain_presenters) {
video_swap_chains_.resize(num_swap_chain_presenters);
// If we need to grow or shrink swap chain presenters, we'll need to add or
// remove visuals.
needs_rebuild_visual_tree_ = true;
}
// Sort layers by z-order.
std::sort(overlays.begin(), overlays.end(),
[](const auto& a, const auto& b) -> bool {
return a->z_order < b->z_order;
});
// |overlays| and |video_swap_chains_| do not have a 1:1 mapping because the
// root surface placeholder overlay does not have SwapChainPresenter, so there
// is one less element in |video_swap_chains_| than |overlays|.
auto video_swap_iter = video_swap_chains_.begin();
// Populate |overlays| with information required to build dcomp visual tree.
for (auto& overlay : overlays) {
if (NeedSwapChainPresenter(overlay.get())) {
// Present to swap chain and update the overlay with transform, clip
// and content.
auto& video_swap_chain = *(video_swap_iter++);
if (!video_swap_chain) {
// TODO(sunnyps): Try to find a matching swap chain based on size, type
// of swap chain, gl image, etc.
video_swap_chain = std::make_unique<SwapChainPresenter>(
this, d3d11_device_, dcomp_device_);
if (frame_rate_ > 0) {
video_swap_chain->SetFrameRate(frame_rate_);
}
}
gfx::Transform transform;
gfx::Rect clip_rect;
if (!video_swap_chain->PresentToSwapChain(*overlay, &transform,
&clip_rect)) {
DLOG(ERROR) << "PresentToSwapChain failed";
return false;
}
// |SwapChainPresenter| may have changed the size of the overlay's quad
// rect, e.g. to present to a swap chain exactly the size of the display
// rect when the source video is larger.
overlay->transform = transform;
overlay->quad_rect.set_size(video_swap_chain->content_size());
if (overlay->clip_rect.has_value()) {
overlay->clip_rect = clip_rect;
}
overlay->overlay_image = DCLayerOverlayImage(
video_swap_chain->content_size(), video_swap_chain->content());
overlay->content_rect = gfx::RectF(video_swap_chain->content_size());
}
}
bool status = BuildVisualTreeHelper(overlays, needs_rebuild_visual_tree_);
needs_rebuild_visual_tree_ = false;
// Clean up excess surfaces so the pool will not grow unbounded.
solid_color_surface_pool_->TrimAfterCommit();
return status;
}
bool DCLayerTree::BuildVisualTreeHelper(
const std::vector<std::unique_ptr<DCLayerOverlayParams>>& overlays,
bool needs_rebuild_visual_tree) {
const bool use_visual_tree_optimization =
base::FeatureList::IsEnabled(features::kDCompVisualTreeOptimization);
if (!visual_tree_) {
visual_tree_ = std::make_unique<VisualTree>(this);
}
if (use_visual_tree_optimization) {
return visual_tree_->BuildTreeOptimized(overlays,
needs_rebuild_visual_tree);
} else {
return visual_tree_->BuildTreeDefault(overlays, needs_rebuild_visual_tree);
}
}
bool DCLayerTree::ScheduleDCLayer(
std::unique_ptr<DCLayerOverlayParams> params) {
pending_overlays_.push_back(std::move(params));
return true;
}
size_t DCLayerTree::GetNumSurfacesInPoolForTesting() const {
CHECK_IS_TEST();
return solid_color_surface_pool_
->GetNumSurfacesInPoolForTesting(); // IN-TEST
}
#if DCHECK_IS_ON()
bool DCLayerTree::GetAttachedToRootFromPreviousFrameForTesting(
size_t index) const {
CHECK_IS_TEST();
return visual_tree_
? visual_tree_
->GetAttachedToRootFromPreviousFrameForTesting( // IN-TEST
index)
: false;
}
#endif // DCHECK_IS_ON()
void DCLayerTree::SetFrameRate(float frame_rate) {
frame_rate_ = frame_rate;
for (size_t ii = 0; ii < video_swap_chains_.size(); ++ii)
video_swap_chains_[ii]->SetFrameRate(frame_rate);
}
bool DCLayerTree::SupportsDelegatedInk() {
return ink_renderer_->DelegatedInkIsSupported(dcomp_device_);
}
bool DCLayerTree::InitializeInkRenderer() {
return ink_renderer_->Initialize(dcomp_device_, root_swap_chain_);
}
bool DCLayerTree::AddDelegatedInkVisualToTreeIfNeeded(
IDCompositionVisual2* root_surface_visual) {
// Only add the ink visual to the tree if it has already been initialized.
// It will only have been initialized if delegated ink has been used, so
// this ensures the visual is only added when it is needed. The ink renderer
// must be updated so that if the root swap chain or dcomp device have
// changed the ink visual and delegated ink object can be updated
// accordingly.
if (!ink_renderer_->HasBeenInitialized()) {
return false;
}
// Reinitialize the ink renderer in case the root swap chain or dcomp
// device changed since initialization.
if (!InitializeInkRenderer()) {
return false;
}
DCHECK(SupportsDelegatedInk());
root_surface_visual->AddVisual(ink_renderer_->GetInkVisual(), FALSE, nullptr);
// Adding the ink visual to a new visual tree invalidates all previously set
// properties. Therefore, force update.
ink_renderer_->SetNeedsDcompPropertiesUpdate();
return true;
}
void DCLayerTree::SetDelegatedInkTrailStartPoint(
std::unique_ptr<gfx::DelegatedInkMetadata> metadata) {
DCHECK(SupportsDelegatedInk());
if (!ink_renderer_->HasBeenInitialized()) {
if (!InitializeInkRenderer())
return;
// This ensures that the delegated ink visual is added to the tree after
// the root visual is created, during
// DCLayerTree::CommitAndClearPendingOverlays
needs_rebuild_visual_tree_ = true;
}
ink_renderer_->SetDelegatedInkTrailStartPoint(std::move(metadata));
}
void DCLayerTree::InitDelegatedInkPointRendererReceiver(
mojo::PendingReceiver<gfx::mojom::DelegatedInkPointRenderer>
pending_receiver) {
DCHECK(SupportsDelegatedInk());
ink_renderer_->InitMessagePipeline(std::move(pending_receiver));
}
} // namespace gl
|