File: sync_control_vsync_provider.cc

package info (click to toggle)
chromium 120.0.6099.224-1~deb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 6,112,112 kB
  • sloc: cpp: 32,907,025; ansic: 8,148,123; javascript: 3,679,536; python: 2,031,248; asm: 959,718; java: 804,675; xml: 617,256; sh: 111,417; objc: 100,835; perl: 88,443; cs: 53,032; makefile: 29,579; fortran: 24,137; php: 21,162; tcl: 21,147; sql: 20,809; ruby: 17,735; pascal: 12,864; yacc: 8,045; lisp: 3,388; lex: 1,323; ada: 727; awk: 329; jsp: 267; csh: 117; exp: 43; sed: 37
file content (169 lines) | stat: -rw-r--r-- 6,743 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gl/sync_control_vsync_provider.h"

#include <math.h>

#include "base/logging.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"

#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
// These constants define a reasonable range for a calculated refresh interval.
// Calculating refreshes out of this range will be considered a fatal error.
const int64_t kMinVsyncIntervalUs = base::Time::kMicrosecondsPerSecond / 400;
const int64_t kMaxVsyncIntervalUs = base::Time::kMicrosecondsPerSecond / 10;

// How much noise we'll tolerate between successive computed intervals before
// we think the latest computed interval is invalid (noisey due to
// monitor configuration change, moving a window between monitors, etc.).
const double kRelativeIntervalDifferenceThreshold = 0.05;
#endif

namespace gl {

SyncControlVSyncProvider::SyncControlVSyncProvider() : gfx::VSyncProvider() {
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
  // On platforms where we can't get an accurate reading on the refresh
  // rate we fall back to the assumption that we're displaying 60 frames
  // per second.
  last_good_interval_ = base::Seconds(1) / 60;
#endif
}

SyncControlVSyncProvider::~SyncControlVSyncProvider() {}

void SyncControlVSyncProvider::GetVSyncParameters(
    UpdateVSyncCallback callback) {
  base::TimeTicks timebase;
  base::TimeDelta interval;
  if (GetVSyncParametersIfAvailable(&timebase, &interval))
    std::move(callback).Run(timebase, interval);
}

bool SyncControlVSyncProvider::GetVSyncParametersIfAvailable(
    base::TimeTicks* timebase_out,
    base::TimeDelta* interval_out) {
  TRACE_EVENT0("gpu", "SyncControlVSyncProvider::GetVSyncParameters");
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
  // The actual clock used for the system time returned by glXGetSyncValuesOML
  // is unspecified. In practice, the clock used is likely to be either
  // CLOCK_REALTIME or CLOCK_MONOTONIC, so we compare the returned time to the
  // current time according to both clocks, and assume that the returned time
  // was produced by the clock whose current time is closest to it, subject
  // to the restriction that the returned time must not be in the future
  // (since it is the time of a vblank that has already occurred).
  int64_t system_time;
  int64_t media_stream_counter;
  int64_t swap_buffer_counter;
  if (!GetSyncValues(&system_time, &media_stream_counter, &swap_buffer_counter))
    return false;

  // Both Intel and Mali drivers will return TRUE for GetSyncValues
  // but a value of 0 for MSC if they cannot access the CRTC data structure
  // associated with the surface. crbug.com/231945
  invalid_msc_ = (media_stream_counter == 0);
  if (invalid_msc_)
    return false;

  struct timespec real_time;
  clock_gettime(CLOCK_REALTIME, &real_time);
  // Note: A thread context switch could happen here, between the sampling of
  // the two different clocks.
  const base::TimeTicks monotonic_time = base::TimeTicks::Now();
  DCHECK_EQ(base::TimeTicks::GetClock(),
            base::TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);

  int64_t real_time_in_microseconds =
      base::TimeDelta::FromTimeSpec(real_time).InMicroseconds();
  int64_t monotonic_time_in_microseconds =
      monotonic_time.since_origin().InMicroseconds();

  // We need the time according to CLOCK_MONOTONIC, so if we've been given
  // a time from CLOCK_REALTIME, we need to convert.
  bool time_conversion_needed =
      llabs(system_time - real_time_in_microseconds) <
      llabs(system_time - monotonic_time_in_microseconds);

  if (time_conversion_needed)
    system_time += monotonic_time_in_microseconds - real_time_in_microseconds;

  // Return if |system_time| is more than 1 frames in the future.
  int64_t interval_in_microseconds = last_good_interval_.InMicroseconds();
  if (system_time > monotonic_time_in_microseconds + interval_in_microseconds)
    return false;

  // If |system_time| is slightly in the future, adjust it to the previous
  // frame and use the last frame counter to prevent issues in the callback.
  if (system_time > monotonic_time_in_microseconds) {
    system_time -= interval_in_microseconds;
    media_stream_counter--;
  }
  if (monotonic_time_in_microseconds - system_time >
      base::Time::kMicrosecondsPerSecond)
    return false;

  const base::TimeTicks timebase =
      base::TimeTicks() + base::Microseconds(system_time);

  // Only need the previous calculated interval for our filtering.
  while (last_computed_intervals_.size() > 1)
    last_computed_intervals_.pop();

  int32_t numerator, denominator;
  if (GetMscRate(&numerator, &denominator) && numerator) {
    last_computed_intervals_.push(base::Seconds(denominator) / numerator);
  } else if (!last_timebase_.is_null()) {
    base::TimeDelta timebase_diff = timebase - last_timebase_;
    int64_t counter_diff = media_stream_counter - last_media_stream_counter_;
    if (counter_diff > 0 && timebase > last_timebase_)
      last_computed_intervals_.push(timebase_diff / counter_diff);
  }

  if (last_computed_intervals_.size() == 2) {
    const base::TimeDelta& old_interval = last_computed_intervals_.front();
    const base::TimeDelta& new_interval = last_computed_intervals_.back();

    double relative_change =
        fabs(old_interval.InMillisecondsF() - new_interval.InMillisecondsF()) /
        new_interval.InMillisecondsF();
    if (relative_change < kRelativeIntervalDifferenceThreshold) {
      if (new_interval.InMicroseconds() < kMinVsyncIntervalUs ||
          new_interval.InMicroseconds() > kMaxVsyncIntervalUs) {
        // For ChromeOS, we get the refresh interval from DRM through Ozone.
        // For Linux, we could use XRandR.
        // http://crbug.com/340851
        LOG(ERROR)
            << "Calculated bogus refresh interval=" << new_interval
            << ", last_timebase_=" << last_timebase_
            << ", timebase=" << timebase
            << ", last_media_stream_counter_=" << last_media_stream_counter_
            << ", media_stream_counter=" << media_stream_counter;
      } else {
        last_good_interval_ = new_interval;
      }
    }
  }

  last_timebase_ = timebase;
  last_media_stream_counter_ = media_stream_counter;
  *timebase_out = timebase;
  *interval_out = last_good_interval_;
  return true;
#else
  return false;
#endif  // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
}

bool SyncControlVSyncProvider::SupportGetVSyncParametersIfAvailable() const {
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
  return true;
#else
  return false;
#endif
}

}  // namespace gl