1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/vr/renderers/textured_quad_renderer.h"
#include "device/vr/vr_gl_util.h"
#include "ui/gfx/geometry/transform.h"
namespace vr {
namespace {
// clang-format off
//
// A rounded rect is subdivided into a number of triangles.
// _______________
// | / _,-' \ |
// |/_,,-'______\|
// | /|
// | / |
// | / |
// | / |
// | / |
// | / |
// | / |
// | / |
// | / |
// | / |
// | / |
// | / |
// |/____________|
// |\ _,-'' /|
// |_\ ,-'____ /_|
//
// Most of these do not contain an arc. To simplify the rendering of those
// that do, we include a "corner position" attribute. The corner position is
// the distance from the center of the nearest "corner circle". Only those
// triangles containing arcs have a non-zero corner position set. The result
// is that for interior triangles, their corner position is uniformly (0, 0).
// I.e., they are always deemed "inside".
//
// A further complication is that different corner radii will require these
// various triangles to be sized differently relative to one another. We
// would prefer not no continually recreate our vertex buffer, so we include
// another attribute, the "offset scalars". These scalars are only ever 1.0,
// 0.0, or -1.0 and control the addition or subtraction of the horizontal
// and vertical corner offset. This lets the corners of the triangles be
// computed in the vertex shader dynamically. It also happens that the
// texture coordinates can also be easily computed in the vertex shader.
//
// So if the the corner offsets are vr and hr where
// vr = corner_radius / height;
// hr = corner_radius / width;
//
// Then the full position is then given by
// p = (x + osx * hr, y + osy * vr, 0.0, 1.0)
//
// And the full texture coordinate is given by
// (0.5 + p[0], 0.5 - p[1])
//
static constexpr float kVertices[120] = {
// x y osx osy cpx cpy
-0.5f, 0.5f, 0.0, -1.0, 0.0, 0.0,
-0.5f, 0.5f, 1.0, 0.0, 0.0, 0.0,
0.5f, 0.5f, -1.0, 0.0, 0.0, 0.0,
0.5f, 0.5f, 0.0, -1.0, 0.0, 0.0,
-0.5f, -0.5f, 0.0, 1.0, 0.0, 0.0,
0.5f, -0.5f, 0.0, 1.0, 0.0, 0.0,
-0.5f, -0.5f, 1.0, 0.0, 0.0, 0.0,
0.5f, -0.5f, -1.0, 0.0, 0.0, 0.0,
// These are the corner triangles (note the non-zero cpx and cpy).
-0.5f, 0.5f, 0.0, -1.0, 1.0, 0.0,
-0.5f, 0.5f, 0.0, 0.0, 1.0, 1.0,
-0.5f, 0.5f, 1.0, 0.0, 0.0, 1.0,
0.5f, 0.5f, -1.0, 0.0, 0.0, 1.0,
0.5f, 0.5f, 0.0, 0.0, 1.0, 1.0,
0.5f, 0.5f, 0.0, -1.0, 1.0, 0.0,
-0.5f, -0.5f, 0.0, 0.0, 1.0, 1.0,
-0.5f, -0.5f, 0.0, 1.0, 1.0, 0.0,
-0.5f, -0.5f, 1.0, 0.0, 0.0, 1.0,
0.5f, -0.5f, -1.0, 0.0, 0.0, 1.0,
0.5f, -0.5f, 0.0, 1.0, 1.0, 0.0,
0.5f, -0.5f, 0.0, 0.0, 1.0, 1.0,
};
static constexpr GLushort kIndices[30] = {
// This is the top trapezoid.
0, 2, 1,
0, 3, 2,
// These are the central triangles (the only triangles that matter if our
// corner radius is zero).
4, 3, 0,
4, 5, 3,
// This is the bottom trapezoid.
4, 6, 5,
6, 7, 5,
// These are the corners.
8, 10, 9,
11, 13, 12,
14, 16, 15,
17, 19, 18,
};
static constexpr int kPositionDataSize = 2;
static constexpr size_t kPositionDataOffset = 0;
static constexpr int kOffsetScaleDataSize = 2;
static constexpr size_t kOffsetScaleDataOffset = 2 * sizeof(float);
static constexpr int kCornerPositionDataSize = 2;
static constexpr size_t kCornerPositionDataOffset = 4 * sizeof(float);
static constexpr size_t kDataStride = 6 * sizeof(float);
static constexpr size_t kInnerRectOffset = 6 * sizeof(GLushort);
static constexpr char const* kVertexShader = SHADER(
precision mediump float;
uniform mat4 u_ModelViewProjMatrix;
uniform vec2 u_CornerOffset;
attribute vec4 a_Position;
attribute vec2 a_CornerPosition;
attribute vec2 a_OffsetScale;
varying vec2 v_TexCoordinate;
varying vec2 v_CornerPosition;
uniform bool u_UsesOverlay;
void main() {
v_CornerPosition = a_CornerPosition;
vec4 position = vec4(
a_Position[0] + u_CornerOffset[0] * a_OffsetScale[0],
a_Position[1] + u_CornerOffset[1] * a_OffsetScale[1],
a_Position[2],
a_Position[3]);
v_TexCoordinate = vec2(0.5 + position[0], 0.5 - position[1]);
gl_Position = u_ModelViewProjMatrix * position;
}
);
static constexpr char const* kFragmentShader = SHADER(
precision highp float;
uniform sampler2D u_Texture;
uniform sampler2D u_OverlayTexture;
uniform vec2 u_ClipRect[2];
varying vec2 v_TexCoordinate;
varying vec2 v_CornerPosition;
uniform mediump float u_Opacity;
uniform mediump float u_OverlayOpacity;
void main() {
vec2 s = step(u_ClipRect[0], v_TexCoordinate)
- step(u_ClipRect[1], v_TexCoordinate);
float insideClip = s.x * s.y;
lowp vec4 color = texture2D(u_Texture, v_TexCoordinate);
float mask = 1.0 - step(1.0, length(v_CornerPosition));
gl_FragColor = insideClip * color * u_Opacity * mask;
}
);
// clang-format on
} // namespace
TexturedQuadRenderer::TexturedQuadRenderer()
: TexturedQuadRenderer(kVertexShader, kFragmentShader) {}
TexturedQuadRenderer::TexturedQuadRenderer(const char* vertex_src,
const char* fragment_src)
: BaseRenderer(vertex_src, fragment_src) {
model_view_proj_matrix_handle_ =
glGetUniformLocation(program_handle_, "u_ModelViewProjMatrix");
corner_offset_handle_ =
glGetUniformLocation(program_handle_, "u_CornerOffset");
corner_position_handle_ =
glGetAttribLocation(program_handle_, "a_CornerPosition");
offset_scale_handle_ = glGetAttribLocation(program_handle_, "a_OffsetScale");
opacity_handle_ = glGetUniformLocation(program_handle_, "u_Opacity");
overlay_opacity_handle_ =
glGetUniformLocation(program_handle_, "u_OverlayOpacity");
texture_handle_ = glGetUniformLocation(program_handle_, "u_Texture");
overlay_texture_handle_ =
glGetUniformLocation(program_handle_, "u_OverlayTexture");
uses_overlay_handle_ = glGetUniformLocation(program_handle_, "u_UsesOverlay");
}
TexturedQuadRenderer::~TexturedQuadRenderer() = default;
void TexturedQuadRenderer::AddQuad(int texture_data_handle,
int overlay_texture_data_handle,
const gfx::Transform& model_view_proj_matrix,
const gfx::RectF& clip_rect,
float opacity,
const gfx::SizeF& element_size,
float corner_radius,
bool blend) {
if (!clip_rect.Intersects(gfx::RectF(1.0f, 1.0f)))
return;
QuadData quad;
quad.texture_data_handle = texture_data_handle;
quad.overlay_texture_data_handle = overlay_texture_data_handle;
quad.model_view_proj_matrix = model_view_proj_matrix;
quad.clip_rect = clip_rect;
quad.opacity = opacity;
quad.element_size = element_size;
quad.corner_radius = corner_radius;
quad.blend = blend;
quad_queue_.push(quad);
}
void TexturedQuadRenderer::Flush() {
if (quad_queue_.empty())
return;
int last_texture = -1;
int last_overlay_texture = -1;
float last_opacity = -1.0f;
gfx::SizeF last_element_size;
float last_corner_radius = -1.0f;
gfx::RectF last_clip_rect;
bool last_blend = true; // All elements blend by default.
// Set up GL state that doesn't change between draw calls.
glUseProgram(program_handle_);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_buffer_);
// Link texture data with texture unit.
glUniform1i(texture_handle_, 0);
glUniform1i(overlay_texture_handle_, 1);
// Set up position attribute.
glVertexAttribPointer(position_handle_, kPositionDataSize, GL_FLOAT, false,
kDataStride, VOID_OFFSET(kPositionDataOffset));
glEnableVertexAttribArray(position_handle_);
// Set up offset scale attribute.
glVertexAttribPointer(offset_scale_handle_, kOffsetScaleDataSize, GL_FLOAT,
false, kDataStride,
VOID_OFFSET(kOffsetScaleDataOffset));
glEnableVertexAttribArray(offset_scale_handle_);
// Set up corner position attribute.
glVertexAttribPointer(corner_position_handle_, kCornerPositionDataSize,
GL_FLOAT, false, kDataStride,
VOID_OFFSET(kCornerPositionDataOffset));
glEnableVertexAttribArray(corner_position_handle_);
glUniform1i(uses_overlay_handle_, false);
// TODO(bajones): This should eventually be changed to use instancing so that
// the entire queue can be processed in one draw call. For now this still
// significantly reduces the amount of state changes made per draw.
while (!quad_queue_.empty()) {
const QuadData& quad = quad_queue_.front();
if (last_blend != quad.blend) {
last_blend = quad.blend;
if (quad.blend) {
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glDisable(GL_BLEND);
}
}
// Only change texture ID or opacity when they differ between quads.
if (last_texture != quad.texture_data_handle) {
last_texture = quad.texture_data_handle;
glActiveTexture(GL_TEXTURE0);
glBindTexture(TextureType(), last_texture);
SetTexParameters(TextureType());
}
if (last_overlay_texture != quad.overlay_texture_data_handle) {
last_overlay_texture = quad.overlay_texture_data_handle;
glUniform1i(uses_overlay_handle_, quad.overlay_texture_data_handle != 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(TextureType(), last_overlay_texture);
SetTexParameters(TextureType());
glUniform1f(overlay_opacity_handle_, last_overlay_texture ? 1.0f : 0.0f);
}
if (last_opacity != quad.opacity) {
last_opacity = quad.opacity;
glUniform1f(opacity_handle_, last_opacity);
}
bool corner_attributes_changed = quad.corner_radius != last_corner_radius ||
quad.element_size != last_element_size;
if (corner_attributes_changed) {
last_corner_radius = quad.corner_radius;
last_element_size = quad.element_size;
if (quad.corner_radius == 0.0f) {
glUniform2f(corner_offset_handle_, 0.0, 0.0);
} else {
glUniform2f(corner_offset_handle_,
quad.corner_radius / quad.element_size.width(),
quad.corner_radius / quad.element_size.height());
}
}
// Pass in model view project matrix.
glUniformMatrix4fv(model_view_proj_matrix_handle_, 1, false,
MatrixToGLArray(quad.model_view_proj_matrix).data());
if (last_clip_rect != quad.clip_rect) {
last_clip_rect = quad.clip_rect;
const GLfloat clip_rect_data[4] = {quad.clip_rect.x(), quad.clip_rect.y(),
quad.clip_rect.right(),
quad.clip_rect.bottom()};
glUniform2fv(clip_rect_handle_, 2, clip_rect_data);
}
if (quad.corner_radius == 0.0f) {
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT,
VOID_OFFSET(kInnerRectOffset));
} else {
glDrawElements(GL_TRIANGLES, std::size(kIndices), GL_UNSIGNED_SHORT, 0);
}
quad_queue_.pop();
}
if (!last_blend) {
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
glDisableVertexAttribArray(position_handle_);
glDisableVertexAttribArray(offset_scale_handle_);
glDisableVertexAttribArray(corner_position_handle_);
}
GLuint TexturedQuadRenderer::vertex_buffer_ = 0;
GLuint TexturedQuadRenderer::index_buffer_ = 0;
void TexturedQuadRenderer::CreateBuffers() {
GLuint buffers[2];
glGenBuffers(2, buffers);
vertex_buffer_ = buffers[0];
index_buffer_ = buffers[1];
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_);
glBufferData(GL_ARRAY_BUFFER, std::size(kVertices) * sizeof(float), kVertices,
GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_buffer_);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, std::size(kIndices) * sizeof(GLushort),
kIndices, GL_STATIC_DRAW);
}
GLenum TexturedQuadRenderer::TextureType() const {
return GL_TEXTURE_2D;
}
const char* TexturedQuadRenderer::VertexShader() {
return kVertexShader;
}
GLuint TexturedQuadRenderer::VertexBuffer() {
return vertex_buffer_;
}
GLuint TexturedQuadRenderer::IndexBuffer() {
return index_buffer_;
}
int TexturedQuadRenderer::NumQuadIndices() {
return std::size(kIndices);
}
} // namespace vr
|