1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
#include "chrome/updater/certificate_tag.h"
#include <cstdint>
#include <cstring>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <variant>
#include <vector>
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/containers/span.h"
#include "base/functional/overloaded.h"
#include "chrome/updater/certificate_tag_internal.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/crypto.h"
namespace updater::tagging {
namespace internal {
namespace {
// Variants returned by `ParseTagImpl()`.
struct FailedParse {};
struct SuccessfulEmptyParse {};
using SuccessfulParse = base::span<const uint8_t>;
// Parses the `signed_data` PKCS7 object to find the final certificate in the
// list and see whether it has an extension with `kTagOID`, and if so, returns a
// `base::span` of the tag within this `signed_data`. `success` is set to `true`
// if there were no parse errors, even if a tag could not be found.
std::variant<FailedParse, SuccessfulEmptyParse, SuccessfulParse> ParseTagImpl(
base::span<const uint8_t> signed_data) {
CBS content_info = CBSFromSpan(signed_data);
CBS pkcs7, certs;
// See https://tools.ietf.org/html/rfc2315#section-7
if (!CBS_get_asn1(&content_info, &content_info, CBS_ASN1_SEQUENCE) ||
// type
!CBS_get_asn1(&content_info, nullptr, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&content_info, &pkcs7,
0 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC) ||
// See https://tools.ietf.org/html/rfc2315#section-9.1
!CBS_get_asn1(&pkcs7, &pkcs7, CBS_ASN1_SEQUENCE) ||
// version
!CBS_get_asn1(&pkcs7, nullptr, CBS_ASN1_INTEGER) ||
// digests
!CBS_get_asn1(&pkcs7, nullptr, CBS_ASN1_SET) ||
// contentInfo
!CBS_get_asn1(&pkcs7, nullptr, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&pkcs7, &certs,
0 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC)) {
return FailedParse{};
}
bool have_last_cert = false;
CBS last_cert;
while (CBS_len(&certs) > 0) {
if (!CBS_get_asn1(&certs, &last_cert, CBS_ASN1_SEQUENCE)) {
return FailedParse{};
}
have_last_cert = true;
}
if (!have_last_cert) {
return FailedParse{};
}
// See https://tools.ietf.org/html/rfc5280#section-4.1 for the X.509 structure
// being parsed here.
CBS tbs_cert, outer_extensions;
int has_extensions = 0;
if (!CBS_get_asn1(&last_cert, &tbs_cert, CBS_ASN1_SEQUENCE) ||
// version
!CBS_get_optional_asn1(
&tbs_cert, nullptr, nullptr,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
// serialNumber
!CBS_get_asn1(&tbs_cert, nullptr, CBS_ASN1_INTEGER) ||
// signature algorithm
!CBS_get_asn1(&tbs_cert, nullptr, CBS_ASN1_SEQUENCE) ||
// issuer
!CBS_get_asn1(&tbs_cert, nullptr, CBS_ASN1_SEQUENCE) ||
// validity
!CBS_get_asn1(&tbs_cert, nullptr, CBS_ASN1_SEQUENCE) ||
// subject
!CBS_get_asn1(&tbs_cert, nullptr, CBS_ASN1_SEQUENCE) ||
// subjectPublicKeyInfo
!CBS_get_asn1(&tbs_cert, nullptr, CBS_ASN1_SEQUENCE) ||
// issuerUniqueID
!CBS_get_optional_asn1(&tbs_cert, nullptr, nullptr,
CBS_ASN1_CONTEXT_SPECIFIC | 1) ||
// subjectUniqueID
!CBS_get_optional_asn1(&tbs_cert, nullptr, nullptr,
CBS_ASN1_CONTEXT_SPECIFIC | 2) ||
!CBS_get_optional_asn1(
&tbs_cert, &outer_extensions, &has_extensions,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 3)) {
return FailedParse{};
}
if (!has_extensions) {
return FailedParse{};
}
CBS extensions;
if (!CBS_get_asn1(&outer_extensions, &extensions, CBS_ASN1_SEQUENCE)) {
return FailedParse{};
}
while (CBS_len(&extensions) > 0) {
CBS extension, oid, contents;
if (!CBS_get_asn1(&extensions, &extension, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&extension, &oid, CBS_ASN1_OBJECT) ||
(CBS_peek_asn1_tag(&extension, CBS_ASN1_BOOLEAN) &&
!CBS_get_asn1(&extension, nullptr, CBS_ASN1_BOOLEAN)) ||
!CBS_get_asn1(&extension, &contents, CBS_ASN1_OCTETSTRING) ||
CBS_len(&extension) != 0) {
return FailedParse{};
}
if (CBS_len(&oid) == sizeof(kTagOID) &&
memcmp(CBS_data(&oid), kTagOID, sizeof(kTagOID)) == 0) {
return SpanFromCBS(&contents);
}
}
return SuccessfulEmptyParse{};
}
} // namespace
CBS CBSFromSpan(base::span<const uint8_t> span) {
CBS cbs;
CBS_init(&cbs, span.data(), span.size());
return cbs;
}
base::span<const uint8_t> SpanFromCBS(const CBS* cbs) {
// SAFETY: this is how a span is made from `cbs`.
return UNSAFE_BUFFERS(base::span<const uint8_t>(CBS_data(cbs), CBS_len(cbs)));
}
PEBinary::PEBinary(const PEBinary&) = default;
PEBinary::~PEBinary() = default;
// static
std::unique_ptr<PEBinary> PEBinary::Parse(base::span<const uint8_t> binary) {
// Parse establishes some offsets into |binary| for structures that |GetTag|
// and |SetTag| will both need.
// kPEHeaderOffsetOffset is the offset into the binary where the offset of the
// PE header is found.
static constexpr size_t kPEHeaderOffsetOffset = 0x3c;
static constexpr uint32_t kPEMagic = 0x4550; // "PE\x00\x00"
// These are a subset of the known COFF "characteristic" flags.
static constexpr uint16_t kCOFFCharacteristicExecutableImage = 2;
static constexpr uint16_t kCOFFCharacteristicDLL = 0x2000;
static constexpr int kPE32Magic = 0x10b;
static constexpr int kPE32PlusMagic = 0x20b;
static constexpr size_t kCertificateTableIndex = 4;
static constexpr size_t kFileHeaderSize = 20;
CBS bin = CBSFromSpan(binary);
CBS bin_for_offset = bin;
CBS bin_for_header = bin;
uint32_t pe_offset = 0, pe_magic = 0;
uint16_t size_of_optional_header = 0, characteristics = 0,
optional_header_magic = 0;
CBS optional_header;
// See the IMAGE_FILE_HEADER structure from
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms680313(v=vs.85).aspx.
if (!CBS_skip(&bin_for_offset, kPEHeaderOffsetOffset) ||
!CBS_get_u32le(&bin_for_offset, &pe_offset) ||
!CBS_skip(&bin_for_header, pe_offset) ||
!CBS_get_u32le(&bin_for_header, &pe_magic) || pe_magic != kPEMagic ||
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms680313(v=vs.85).aspx
!CBS_skip(&bin_for_header, 16) ||
!CBS_get_u16le(&bin_for_header, &size_of_optional_header) ||
!CBS_get_u16le(&bin_for_header, &characteristics) ||
(characteristics & kCOFFCharacteristicExecutableImage) == 0 ||
(characteristics & kCOFFCharacteristicDLL) != 0 ||
// See the IMAGE_OPTIONAL_HEADER structure from
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms680339(v=vs.85).aspx.
!CBS_get_bytes(&bin_for_header, &optional_header,
size_of_optional_header) ||
!CBS_get_u16le(&optional_header, &optional_header_magic)) {
return {};
}
size_t address_size = 0, extra_header_bytes = 0;
switch (optional_header_magic) {
case kPE32PlusMagic:
address_size = 8;
break;
case kPE32Magic:
address_size = 4;
// PE32 contains an additional field in the optional header.
extra_header_bytes = 4;
break;
default:
return {};
}
// Skip the Windows-specific header section up until the number of data
// directory entries.
const size_t to_skip =
22 + extra_header_bytes + address_size + 40 + address_size * 4 + 4;
uint32_t num_directory_entries = 0, cert_entry_virtual_addr = 0,
cert_entry_size = 0;
if (!CBS_skip(&optional_header, to_skip) ||
// Read the number of directory entries, which is also the last value
// in the Windows-specific header.
!CBS_get_u32le(&optional_header, &num_directory_entries) ||
num_directory_entries > 4096 ||
num_directory_entries <= kCertificateTableIndex ||
!CBS_skip(&optional_header, kCertificateTableIndex * 8) ||
// See the IMAGE_DATA_DIRECTORY structure from
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms680305(v=vs.85).aspx.
!CBS_get_u32le(&optional_header, &cert_entry_virtual_addr) ||
!CBS_get_u32le(&optional_header, &cert_entry_size) ||
size_t{cert_entry_virtual_addr} + cert_entry_size < cert_entry_size ||
size_t{cert_entry_virtual_addr} + cert_entry_size != CBS_len(&bin)) {
return {};
}
CBS bin_for_certs = bin;
CBS certs;
if (!CBS_skip(&bin_for_certs, cert_entry_virtual_addr) ||
!CBS_get_bytes(&bin_for_certs, &certs, cert_entry_size)) {
return {};
}
// See the WIN_CERTIFICATE structure from
// http://msdn.microsoft.com/en-us/library/ms920091.aspx.
uint32_t certs_len = 0;
uint16_t revision = 0, certs_type = 0;
CBS signed_data;
const size_t expected_certs_len = CBS_len(&certs);
if (!CBS_get_u32le(&certs, &certs_len) || certs_len != expected_certs_len ||
!CBS_get_u16le(&certs, &revision) ||
revision != kAttributeCertificateRevision ||
!CBS_get_u16le(&certs, &certs_type) ||
certs_type != kAttributeCertificateTypePKCS7SignedData ||
!CBS_get_asn1_element(&certs, &signed_data, CBS_ASN1_SEQUENCE)) {
return {};
}
auto ret = std::make_unique<PEBinary>();
ret->certs_size_offset_ =
pe_offset + 4 + kFileHeaderSize + size_of_optional_header -
8 * (num_directory_entries - kCertificateTableIndex) + 4;
// Double-check that the calculated |certs_size_offset_| is correct by reading
// from that location and checking that the value is as expected.
uint32_t cert_entry_size_duplicate = 0;
CBS bin_for_check = bin;
if (!CBS_skip(&bin_for_check, ret->certs_size_offset_) ||
!CBS_get_u32le(&bin_for_check, &cert_entry_size_duplicate) ||
cert_entry_size_duplicate != cert_entry_size) {
return {};
}
ret->binary_ = binary;
ret->content_info_ = SpanFromCBS(&signed_data);
ret->attr_cert_offset_ = cert_entry_virtual_addr;
if (!ret->ParseTag()) {
return {};
}
return ret;
}
std::optional<std::vector<uint8_t>> PEBinary::tag() const {
return tag_;
}
bool AddName(CBB* cbb, const char* common_name) {
// kCommonName is the DER-enabled OID for common names.
static constexpr uint8_t kCommonName[] = {0x55, 0x04, 0x03};
CBB name, rdns, rdn, oid, str;
if (!CBB_add_asn1(cbb, &name, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&name, &rdns, CBS_ASN1_SET) ||
!CBB_add_asn1(&rdns, &rdn, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&rdn, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, kCommonName, sizeof(kCommonName)) ||
!CBB_add_asn1(&rdn, &str, CBS_ASN1_UTF8STRING) ||
!CBB_add_bytes(&str, reinterpret_cast<const uint8_t*>(common_name),
strlen(common_name)) ||
!CBB_flush(cbb)) {
return false;
}
return true;
}
bool CopyASN1(CBB* out, CBS* in) {
CBS element;
return CBS_get_any_asn1_element(in, &element, nullptr, nullptr) == 1 &&
CBB_add_bytes(out, CBS_data(&element), CBS_len(&element)) == 1;
}
std::optional<std::vector<uint8_t>> SetTagImpl(
base::span<const uint8_t> signed_data,
base::span<const uint8_t> tag) {
bssl::ScopedCBB cbb;
if (!CBB_init(cbb.get(), signed_data.size() + 1024)) {
return std::nullopt;
}
// Walk the PKCS SignedData structure from the input and copy elements to the
// output until the list of certificates is reached.
CBS content_info = CBSFromSpan(signed_data);
CBS pkcs7, certs;
CBB content_info_cbb, outer_pkcs7_cbb, pkcs7_cbb, certs_cbb;
if (!CBS_get_asn1(&content_info, &content_info, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(cbb.get(), &content_info_cbb, CBS_ASN1_SEQUENCE) ||
// See https://tools.ietf.org/html/rfc2315#section-7
// type
!CopyASN1(&content_info_cbb, &content_info) ||
!CBS_get_asn1(&content_info, &pkcs7,
0 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC) ||
!CBB_add_asn1(&content_info_cbb, &outer_pkcs7_cbb,
0 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC) ||
// See https://tools.ietf.org/html/rfc2315#section-9.1
!CBS_get_asn1(&pkcs7, &pkcs7, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&outer_pkcs7_cbb, &pkcs7_cbb, CBS_ASN1_SEQUENCE) ||
// version
!CopyASN1(&pkcs7_cbb, &pkcs7) ||
// digests
!CopyASN1(&pkcs7_cbb, &pkcs7) ||
// contentInfo
!CopyASN1(&pkcs7_cbb, &pkcs7) ||
!CBS_get_asn1(&pkcs7, &certs,
0 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC) ||
!CBB_add_asn1(&pkcs7_cbb, &certs_cbb,
0 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC)) {
return std::nullopt;
}
// Copy the certificates from the input to the output, potentially omitting
// the last one if it's a superfluous cert.
bool have_last_cert = false;
CBS last_cert;
while (CBS_len(&certs) > 0) {
if ((have_last_cert && !CBB_add_bytes(&certs_cbb, CBS_data(&last_cert),
CBS_len(&last_cert))) ||
!CBS_get_asn1_element(&certs, &last_cert, CBS_ASN1_SEQUENCE)) {
return std::nullopt;
}
have_last_cert = true;
}
if (!have_last_cert) {
return std::nullopt;
}
// If there's not already a tag then we need to keep the last certificate.
// Otherwise it's the certificate with the tag in and we're going to replace
// it.
{
const auto result = ParseTagImpl(signed_data);
if (!std::holds_alternative<SuccessfulParse>(result) &&
!CBB_add_bytes(&certs_cbb, CBS_data(&last_cert), CBS_len(&last_cert))) {
return std::nullopt;
}
}
// These values are DER-encoded OIDs needed in the X.509 certificate that's
// constructed below.
static constexpr uint8_t kSHA256WithRSA[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x0b};
static constexpr uint8_t kECPublicKey[] = {0x2a, 0x86, 0x48, 0xce,
0x3d, 0x02, 0x01};
static constexpr uint8_t kP256[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07,
};
static constexpr uint8_t kSHA256RSAEncryption[] = {
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x0b,
};
// kPublicKeyPoint is a X9.62, uncompressed P-256 point where x = 0.
static constexpr uint8_t kPublicKeyPoint[] = {
0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x66, 0x48, 0x5c, 0x78, 0x0e, 0x2f, 0x83, 0xd7, 0x24, 0x33, 0xbd,
0x5d, 0x84, 0xa0, 0x6b, 0xb6, 0x54, 0x1c, 0x2a, 0xf3, 0x1d, 0xae,
0x87, 0x17, 0x28, 0xbf, 0x85, 0x6a, 0x17, 0x4f, 0x93, 0xf4,
};
// Create a mock certificate with an extension containing the tag. See
// https://tools.ietf.org/html/rfc5280#section-4.1 for the structure that's
// being created here.
CBB cert, tbs_cert, version, spki, sigalg, sigalg_oid, validity, not_before,
not_after, key_params, public_key, extensions_tag, extensions, extension,
critical_flag, tag_cbb, oid, null, signature;
uint8_t* cbb_data = nullptr;
size_t cbb_len = 0;
if (!CBB_add_asn1(&certs_cbb, &cert, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&cert, &tbs_cert, CBS_ASN1_SEQUENCE) ||
// version
!CBB_add_asn1(&tbs_cert, &version,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
!CBB_add_asn1_uint64(&version,
2 /* version 3, because X.509 is off by one. */) ||
// serialNumber
!CBB_add_asn1_uint64(&tbs_cert, 1) ||
// signature algorithm
!CBB_add_asn1(&tbs_cert, &sigalg, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&sigalg, &sigalg_oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&sigalg_oid, kSHA256WithRSA, sizeof(kSHA256WithRSA)) ||
!CBB_add_asn1(&sigalg, &null, CBS_ASN1_NULL) ||
// issuer
!AddName(&tbs_cert, "Dummy issuer") ||
!CBB_add_asn1(&tbs_cert, &validity, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&validity, ¬_before, CBS_ASN1_UTCTIME) ||
!CBB_add_bytes(¬_before,
reinterpret_cast<const uint8_t*>("130101100000Z"), 13) ||
!CBB_add_asn1(&validity, ¬_after, CBS_ASN1_UTCTIME) ||
!CBB_add_bytes(¬_after,
reinterpret_cast<const uint8_t*>("130401100000Z"), 13) ||
// subject
!AddName(&tbs_cert, "Dummy certificate") ||
// subjectPublicKeyInfo
!CBB_add_asn1(&tbs_cert, &spki, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&spki, &key_params, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&key_params, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, kECPublicKey, sizeof(kECPublicKey)) ||
!CBB_add_asn1(&key_params, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, kP256, sizeof(kP256)) ||
!CBB_add_asn1(&spki, &public_key, CBS_ASN1_BITSTRING) ||
// Zero unused bits in BITSTRING.
!CBB_add_bytes(&public_key, reinterpret_cast<const uint8_t*>(""), 1) ||
!CBB_add_bytes(&public_key, kPublicKeyPoint, sizeof(kPublicKeyPoint)) ||
!CBB_add_asn1(&tbs_cert, &extensions_tag,
3 | CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC) ||
!CBB_add_asn1(&extensions_tag, &extensions, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&extensions, &extension, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&extension, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, kTagOID, sizeof(kTagOID)) ||
!CBB_add_asn1(&extension, &critical_flag, CBS_ASN1_BOOLEAN) ||
// Not critical.
!CBB_add_bytes(&critical_flag, reinterpret_cast<const uint8_t*>(""), 1) ||
!CBB_add_asn1(&extension, &tag_cbb, CBS_ASN1_OCTETSTRING) ||
!CBB_add_bytes(&tag_cbb, tag.data(), tag.size()) ||
!CBB_add_asn1(&cert, &sigalg, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&sigalg, &sigalg_oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&sigalg_oid, kSHA256RSAEncryption,
sizeof(kSHA256RSAEncryption)) ||
!CBB_add_asn1(&sigalg, &null, CBS_ASN1_NULL) ||
!CBB_add_asn1(&cert, &signature, CBS_ASN1_BITSTRING) ||
// Dummy, 1-byte signature.
!CBB_add_bytes(&signature, reinterpret_cast<const uint8_t*>("\x00"), 2) ||
// Copy signerInfos from the input PKCS#7 structure.
!CopyASN1(&pkcs7_cbb, &pkcs7) || CBS_len(&pkcs7) != 0 ||
!CBB_finish(cbb.get(), &cbb_data, &cbb_len)) {
return std::nullopt;
}
// Copy the CBB result into a std::vector, padding to 8-byte alignment.
// SAFETY: the CBB data comes in from boringssl as a memory buffer.
std::vector<uint8_t> ret;
const size_t padding = (8 - cbb_len % 8) % 8;
ret.reserve(cbb_len + padding);
UNSAFE_BUFFERS(ret.insert(ret.begin(), cbb_data, cbb_data + cbb_len));
ret.insert(ret.end(), padding, 0);
OPENSSL_free(cbb_data);
return ret;
}
std::optional<std::vector<uint8_t>> PEBinary::SetTag(
base::span<const uint8_t> tag) {
std::optional<std::vector<uint8_t>> ret = SetTagImpl(content_info_, tag);
if (!ret) {
return std::nullopt;
}
// Recreate the header for the `WIN_CERTIFICATE` structure.
static constexpr size_t kSizeofWinCertificateHeader = 8;
std::vector<uint8_t> win_certificate_header(kSizeofWinCertificateHeader);
const uint32_t certs_size = kSizeofWinCertificateHeader + ret->size();
memcpy(&win_certificate_header[0], &certs_size, sizeof(certs_size));
memcpy(&win_certificate_header[4], &kAttributeCertificateRevision,
sizeof(kAttributeCertificateRevision));
memcpy(&win_certificate_header[6], &kAttributeCertificateTypePKCS7SignedData,
sizeof(kAttributeCertificateTypePKCS7SignedData));
ret->insert(ret->begin(), win_certificate_header.begin(),
win_certificate_header.end());
// SAFETY: test that `attr_cert_offset_` does not exceed the size of the
// `binary_` span.
CHECK_LE(attr_cert_offset_, binary_.size_bytes());
ret->insert(ret->begin(), binary_.data(),
UNSAFE_BUFFERS(binary_.data() + attr_cert_offset_));
// Inject the updated length in the `IMAGE_DATA_DIRECTORY` structure that
// delineates the `WIN_CERTIFICATE` structure.
// SAFETY: byte manipulation of a C data structure.
memcpy(UNSAFE_BUFFERS(ret->data() + certs_size_offset_), &certs_size,
sizeof(certs_size));
return ret;
}
PEBinary::PEBinary() = default;
bool PEBinary::ParseTag() {
return std::visit(base::Overloaded{
[](FailedParse unused) { return false; },
[](SuccessfulEmptyParse unused) { return true; },
[this](SuccessfulParse tag) {
tag_ = std::vector<uint8_t>(tag.begin(), tag.end());
return true;
},
},
ParseTagImpl(content_info_));
}
std::optional<SectorFormat> NewSectorFormat(uint16_t sector_shift) {
const uint64_t sector_size = 1 << sector_shift;
if (sector_size != 4096 && sector_size != 512) {
// Unexpected msi sector shift.
return {};
}
return SectorFormat{sector_size, static_cast<int>(sector_size / 4)};
}
bool IsLastInSector(const SectorFormat& format, int index) {
return index > kNumDifatHeaderEntries &&
(index - kNumDifatHeaderEntries + 1) % format.ints == 0;
}
MSIDirEntry::MSIDirEntry(const MSIDirEntry&) = default;
MSIDirEntry::MSIDirEntry() = default;
MSIDirEntry::~MSIDirEntry() = default;
MSIHeader::MSIHeader(const MSIHeader&) = default;
MSIHeader::MSIHeader() = default;
MSIHeader::~MSIHeader() = default;
std::vector<uint8_t> MSIBinary::ReadStream(const std::string& name,
uint32_t start,
uint64_t stream_size,
bool force_fat,
bool free_data) {
uint64_t sector_size = sector_format_.size;
std::optional<std::vector<uint32_t>> mini_fat_entries;
std::optional<std::vector<uint8_t>> mini_contents;
// Code that manages mini fat will probably not run in prod.
if (!force_fat && stream_size < kMiniStreamCutoffSize) {
// Load the mini fat.
std::vector<uint8_t> stream = ReadStream(
"mini fat", header_.first_mini_fat_sector,
header_.num_mini_fat_sectors * sector_format_.size, true, false);
mini_fat_entries = std::vector<uint32_t>();
for (size_t offset = 0; offset < stream.size(); offset += 4) {
mini_fat_entries->push_back(
*reinterpret_cast<uint32_t*>(&stream[offset]));
}
// Load the mini stream, the root directory's stream. root must be dir entry
// zero.
MSIDirEntry root;
const uint64_t offset = header_.first_dir_sector * sector_format_.size;
std::memcpy(&root, &contents_[offset], sizeof(MSIDirEntry));
mini_contents = ReadStream("mini stream", root.stream_first_sector,
root.stream_size, true, false);
sector_size = kMiniStreamSectorSize;
}
std::vector<uint32_t>* fat_entries =
mini_fat_entries ? &*mini_fat_entries : &fat_entries_;
std::vector<uint8_t>* contents = mini_contents ? &*mini_contents : &contents_;
uint32_t sector = start;
uint64_t size = stream_size;
std::vector<uint8_t> stream;
while (size > 0) {
if (sector == kFatEndOfChain || sector == kFatFreeSector) {
// Ran out of sectors in copying stream.
return {};
}
uint64_t n = size;
if (n > sector_size) {
n = sector_size;
}
const uint64_t offset = sector_size * sector;
stream.insert(stream.end(), contents->begin() + offset,
contents->begin() + offset + n);
size -= n;
// Zero out the existing stream bytes, if requested.
// For example, new signedData will be written at the end of the file, which
// may be where the existing stream is, but this works regardless. The
// stream bytes could be left as unused junk, but unused bytes in an MSI
// file are typically zeroed. Set the data in the sector to zero.
if (free_data) {
for (uint64_t i = 0; i < n; ++i) {
(*contents)[offset + i] = 0;
}
}
// Find the next sector, then free the fat entry of the current sector.
uint32_t old = sector;
sector = (*fat_entries)[sector];
if (free_data) {
(*fat_entries)[old] = kFatFreeSector;
}
}
return stream;
}
void MSIBinary::PopulateFatEntries() {
std::vector<uint32_t> fat_entries;
for (size_t i = 0; i < difat_entries_.size(); ++i) {
const uint32_t sector = difat_entries_[i];
// The last entry in a difat sector is a chaining entry.
if (sector == kFatFreeSector || sector == kFatEndOfChain ||
IsLastInSector(sector_format_, i)) {
continue;
}
const uint64_t offset = sector * sector_format_.size;
for (int j = 0; j < sector_format_.ints; ++j) {
fat_entries.push_back(
*reinterpret_cast<uint32_t*>(&contents_[offset + j * 4]));
}
}
fat_entries_ = fat_entries;
}
void MSIBinary::PopulateDifatEntries() {
std::vector<uint32_t> difat_entries(kNumDifatHeaderEntries);
difat_entries.reserve(kNumDifatHeaderEntries +
header_.num_difat_sectors * sector_format_.ints);
for (int i = 0; i < kNumDifatHeaderEntries; ++i) {
difat_entries[i] = *reinterpret_cast<uint32_t*>(
&header_bytes_[kNumHeaderContentBytes + i * 4]);
}
// Code here that manages additional difat sectors will probably not run in
// prod, but is implemented to avoid a scaling limit. (109 difat sector
// entries) x (1024 fat sector entries/difat sector) x (4096
// bytes/ fat sector)
// => files greater than ~457 MB in size require additional difat sectors.
std::vector<uint32_t> difat_sectors;
for (uint32_t i = 0; i < header_.num_difat_sectors; ++i) {
uint32_t sector = 0;
sector = i == 0 ? header_.first_difat_sector
: difat_entries[difat_entries.size() - 1];
difat_sectors.push_back(sector);
uint64_t start = sector * sector_format_.size;
for (int j = 0; j < sector_format_.ints; ++j) {
difat_entries.push_back(
*reinterpret_cast<uint32_t*>(&contents_[start + j * 4]));
}
}
difat_entries_ = difat_entries;
difat_sectors_ = difat_sectors;
}
// SAFETY: byte manipulation of a C data structure.
SignedDataDir MSIBinary::SignedDataDirFromSector(uint64_t dir_sector) {
MSIDirEntry sig_dir_entry;
for (uint64_t i = 0; i < sector_format_.size / kNumDirEntryBytes; ++i) {
const uint64_t offset =
dir_sector * sector_format_.size + i * kNumDirEntryBytes;
std::memcpy(&sig_dir_entry, &contents_[offset], sizeof(MSIDirEntry));
if (std::equal(
sig_dir_entry.name,
UNSAFE_BUFFERS(sig_dir_entry.name + sig_dir_entry.num_name_bytes),
std::begin(kSignatureName))) {
return {sig_dir_entry, offset, true};
}
}
return {};
}
bool MSIBinary::PopulateSignatureDirEntry() {
uint64_t dir_sector = header_.first_dir_sector;
while (true) {
const auto [sig_dir_entry, offset, found] =
SignedDataDirFromSector(dir_sector);
if (found) {
sig_dir_entry_ = sig_dir_entry;
sig_dir_offset_ = offset;
return true;
}
// Did not find the entry, go to the next directory sector.
dir_sector = fat_entries_[dir_sector];
if (dir_sector == kFatEndOfChain) {
// Did not find signature stream in MSI file.
return false;
}
}
}
void MSIBinary::PopulateSignedData() {
signed_data_bytes_ = ReadStream(
"signedData", sig_dir_entry_.stream_first_sector,
header_.dll_version != 3 ? sig_dir_entry_.stream_size
: sig_dir_entry_.stream_size & 0x7FFFFFFF,
false, true);
}
void MSIBinary::AssignDifatEntry(uint64_t fat_sector) {
EnsureFreeDifatEntry();
// Find first free entry at end of list.
int i = difat_entries_.size() - 1;
// If there are sectors, `i` could be pointing to a fat end-of-chain marker,
// but in that case it is guaranteed by `EnsureFreeDifatEntry()` that the
// prior element is a free sector, and the following loop works.
// As long as the prior element is a free sector, decrement `i`.
// If the prior element is at the end of a difat sector, skip over it.
while (difat_entries_[i - 1] == kFatFreeSector ||
(IsLastInSector(sector_format_, i - 1) &&
difat_entries_[i - 2] == kFatFreeSector)) {
--i;
}
difat_entries_[i] = fat_sector;
}
void MSIBinary::EnsureFreeDifatEntry() {
// By construction, `difat_entries_` is at least `kNumDifatHeaderEntries`
// long.
int i = difat_entries_.size() - 1;
if (difat_entries_[i] == kFatEndOfChain) {
--i;
}
if (difat_entries_[i] == kFatFreeSector) {
return;
}
const int old_difat_tail = difat_entries_.size() - 1;
// Allocate another sector of difat entries.
for (i = 0; i < sector_format_.ints; ++i) {
difat_entries_.push_back(kFatFreeSector);
}
difat_entries_[difat_entries_.size() - 1] = kFatEndOfChain;
// Assign the new difat sector in the fat.
uint64_t sector = EnsureFreeFatEntries(1);
fat_entries_[sector] = kFatDifSector;
// Assign the "next sector" pointer in the previous sector or header.
if (!header_.num_difat_sectors) {
header_.first_difat_sector = sector;
} else {
difat_entries_[old_difat_tail] = sector;
}
++header_.num_difat_sectors;
difat_sectors_.push_back(sector);
}
// static
uint64_t MSIBinary::FirstFreeFatEntry(const std::vector<uint32_t>& entries) {
uint64_t first_free_index = entries.size();
while (entries[first_free_index - 1] == kFatFreeSector) {
--first_free_index;
}
return first_free_index;
}
uint64_t MSIBinary::FirstFreeFatEntry() {
return FirstFreeFatEntry(fat_entries_);
}
uint64_t MSIBinary::EnsureFreeFatEntries(uint64_t n) {
uint64_t size_fat = fat_entries_.size();
uint64_t first_free_index = FirstFreeFatEntry();
if (size_fat - first_free_index >= n) {
// Nothing to do, there were already enough free sectors.
return first_free_index;
}
// Append another fat sector.
for (int i = 0; i < sector_format_.ints; ++i) {
fat_entries_.push_back(kFatFreeSector);
}
// `first_free_index` is free; assign it to the created fat sector.
// Do not change the order of these calls, since `AssignDifatEntry()` could
// invalidate `first_free_index`.
fat_entries_[first_free_index] = kFatFatSector;
AssignDifatEntry(first_free_index);
// Update the MSI header.
++header_.num_fat_sectors;
// If n is large enough, it is possible adding an additional sector was
// insufficient. This will not happen for our use case, but the call to verify
// or fix it is cheap.
EnsureFreeFatEntries(n);
return FirstFreeFatEntry();
}
MSIBinary::MSIBinary(const MSIBinary&) = default;
MSIBinary::MSIBinary() = default;
MSIBinary::~MSIBinary() = default;
// static
std::unique_ptr<MSIBinary> MSIBinary::Parse(
base::span<const uint8_t> file_contents) {
if (file_contents.size() < kNumHeaderTotalBytes) {
// MSI file is too short to contain header.
return {};
}
auto msi_binary = std::make_unique<MSIBinary>();
// Parse the header.
msi_binary->header_bytes_ = std::vector<uint8_t>(
file_contents.begin(), file_contents.begin() + kNumHeaderTotalBytes);
std::memcpy(&msi_binary->header_, &msi_binary->header_bytes_[0],
sizeof(MSIHeader));
if (std::memcmp(msi_binary->header_.magic, kMsiHeaderSignature,
sizeof(kMsiHeaderSignature)) != 0 ||
std::memcmp(msi_binary->header_.clsid, kMsiHeaderClsid,
sizeof(kMsiHeaderClsid)) != 0) {
// Not an msi file.
return {};
}
const auto sector_format = NewSectorFormat(msi_binary->header_.sector_shift);
if (!sector_format) {
return {};
}
msi_binary->sector_format_ = *sector_format;
if (file_contents.size() < msi_binary->sector_format_.size) {
// MSI file is too short to contain a full header sector.
return {};
}
msi_binary->contents_ = std::vector<uint8_t>(
file_contents.begin() + msi_binary->sector_format_.size,
file_contents.end());
// The difat entries must be populated before the fat entries.
msi_binary->PopulateDifatEntries();
msi_binary->PopulateFatEntries();
// The signature dir entry must be populated before the signed data.
if (!msi_binary->PopulateSignatureDirEntry()) {
return {};
}
msi_binary->PopulateSignedData();
if (!msi_binary->ParseTag()) {
return {};
}
return msi_binary;
}
std::vector<uint8_t> MSIBinary::BuildBinary(
const std::vector<uint8_t>& signed_data) {
if (signed_data.size() < kMiniStreamCutoffSize) {
// Writing SignedData less than 4096 bytes is not supported.
return {};
}
// Ensure enough free fat entries for the signedData.
const uint64_t num_signed_data_sectors =
(signed_data.size() - 1) / sector_format_.size + 1;
const uint64_t first_signed_data_sector =
EnsureFreeFatEntries(num_signed_data_sectors);
// Allocate sectors for the signedData, in a copy of the fat entries.
std::vector<uint32_t> new_fat_entries = fat_entries_;
for (uint64_t i = 0; i < num_signed_data_sectors - 1; ++i) {
new_fat_entries[first_signed_data_sector + i] =
first_signed_data_sector + i + 1;
}
new_fat_entries[first_signed_data_sector + num_signed_data_sectors - 1] =
kFatEndOfChain;
// Update the signedData stream's directory entry location and size, in copy
// of dir entry.
MSIDirEntry new_sig_dir_entry = sig_dir_entry_;
new_sig_dir_entry.stream_first_sector = first_signed_data_sector;
new_sig_dir_entry.stream_size = signed_data.size();
const size_t signed_data_offset =
first_signed_data_sector * sector_format_.size;
// Write out the...
// ...header,
std::vector<uint8_t> header_sector_bytes(sector_format_.size);
std::memcpy(&header_sector_bytes[0], &header_, sizeof(MSIHeader));
for (int i = 0; i < kNumDifatHeaderEntries; ++i) {
std::memcpy(&header_sector_bytes[kNumHeaderContentBytes + i * 4],
&difat_entries_[i], sizeof(uint32_t));
}
// ...content,
// Make a copy of the content bytes, since new data will be overlaid on it.
const size_t new_contents_size =
sector_format_.size * FirstFreeFatEntry(new_fat_entries);
CHECK_GT(new_contents_size, signed_data_offset + signed_data.size());
std::vector<uint8_t> new_contents(new_contents_size);
std::memcpy(&new_contents[0], &contents_[0], signed_data_offset);
// ...signedData directory entry from local modified copy,
std::memcpy(&new_contents[sig_dir_offset_], &new_sig_dir_entry,
sizeof(MSIDirEntry));
// ...difat entries,
// In case difat sectors were added for huge files.
for (size_t i = 0; i < difat_sectors_.size(); ++i) {
const int index = kNumDifatHeaderEntries + i * sector_format_.ints;
uint64_t offset = difat_sectors_[i] * sector_format_.size;
for (int j = 0; j < sector_format_.ints; ++j) {
std::memcpy(&new_contents[offset + j * 4], &difat_entries_[index + j],
sizeof(uint32_t));
}
}
// ...fat entries from local modified copy,
int index = 0;
for (size_t i = 0; i < difat_entries_.size(); ++i) {
if (difat_entries_[i] != kFatFreeSector &&
difat_entries_[i] != kFatEndOfChain &&
!IsLastInSector(sector_format_, i)) {
const uint64_t offset = difat_entries_[i] * sector_format_.size;
for (int j = 0; j < sector_format_.ints; ++j) {
std::memcpy(&new_contents[offset + j * 4], &new_fat_entries[index + j],
sizeof(uint32_t));
}
index += sector_format_.ints;
}
}
// ...signedData
// `new_contents` is zero-initialized, so no need to add padding to end of
// sector. The sectors allocated for signedData are guaranteed contiguous.
std::memcpy(&new_contents[signed_data_offset], &signed_data[0],
signed_data.size());
// ...finally, build and return the new binary.
std::vector<uint8_t> binary(header_sector_bytes.size() + new_contents.size());
std::memcpy(&binary[0], &header_sector_bytes[0], header_sector_bytes.size());
std::memcpy(&binary[header_sector_bytes.size()], &new_contents[0],
new_contents.size());
return binary;
}
std::optional<std::vector<uint8_t>> MSIBinary::SetTag(
base::span<const uint8_t> tag) {
std::optional<std::vector<uint8_t>> signed_data =
SetTagImpl(signed_data_bytes_, tag);
if (!signed_data) {
return {};
}
return BuildBinary(*signed_data);
}
bool MSIBinary::ParseTag() {
return std::visit(base::Overloaded{
[](FailedParse unused) { return false; },
[](SuccessfulEmptyParse unused) { return true; },
[this](SuccessfulParse tag) {
tag_ = std::vector<uint8_t>(tag.begin(), tag.end());
return true;
},
},
ParseTagImpl(signed_data_bytes_));
}
std::optional<std::vector<uint8_t>> MSIBinary::tag() const {
return tag_;
}
} // namespace internal
std::unique_ptr<BinaryInterface> CreatePEBinary(
base::span<const uint8_t> contents) {
return internal::PEBinary::Parse(contents);
}
std::unique_ptr<BinaryInterface> CreateMSIBinary(
base::span<const uint8_t> contents) {
return internal::MSIBinary::Parse(contents);
}
} // namespace updater::tagging
|