File: nn_classifier.cc

package info (click to toggle)
chromium 138.0.7204.157-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 6,071,864 kB
  • sloc: cpp: 34,936,859; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,967; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (95 lines) | stat: -rw-r--r-- 2,765 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/assist_ranker/nn_classifier.h"

#include "base/check_op.h"
#include "components/assist_ranker/proto/nn_classifier.pb.h"

namespace assist_ranker {
namespace nn_classifier {
namespace {

using google::protobuf::RepeatedPtrField;
using std::vector;

vector<float> FeedForward(const NNLayer& layer, const vector<float>& input) {
  const RepeatedPtrField<FloatVector>& weights = layer.weights();
  const FloatVector& biases = layer.biases();

  // Number of nodes in the layer.
  const int num_nodes = biases.values().size();
  // Number of values in the input.
  const int num_input = input.size();
  DCHECK_EQ(weights.size(), num_input);

  // Initialize with the bias.
  vector<float> output(biases.values().begin(), biases.values().end());

  // For each value in the input.
  for (int j = 0; j < num_input; ++j) {
    const FloatVector& v = weights[j];
    DCHECK_EQ(v.values().size(), num_nodes);

    // For each node in the layer.
    for (int i = 0; i < num_nodes; ++i) {
      output[i] += v.values(i) * input[j];
    }
  }
  return output;
}

// Apply ReLU activation function to a vector, which sets all values to
// max(0, value).
void Relu(vector<float>* const v) {
  // We are modifying the vector so the iterator must be a reference.
  for (float& i : *v)
    if (i < 0.0f)
      i = 0.0f;
}

bool ValidateLayer(const NNLayer& layer) {
  // Number of nodes in the layer (must be non-zero).
  const int num_nodes = layer.biases().values().size();
  if (num_nodes == 0)
    return false;

  // Number of values in the input (must be non-zero).
  const int num_input = layer.weights().size();
  if (num_input == 0)
    return false;

  for (int j = 0; j < num_input; ++j) {
    // The size of each weight vector must be the number of nodes in the
    // layer.
    if (layer.weights(j).values().size() != num_nodes)
      return false;
  }

  return true;
}

}  // namespace

bool Validate(const NNClassifierModel& model) {
  // Check the size of the output from the hidden layer is equal to the size
  // of the input in the logits layer.
  if (model.hidden_layer().biases().values().size() !=
      model.logits_layer().weights().size()) {
    return false;
  }

  return ValidateLayer(model.hidden_layer()) &&
         ValidateLayer(model.logits_layer());
}

vector<float> Inference(const NNClassifierModel& model,
                        const vector<float>& input) {
  vector<float> v = FeedForward(model.hidden_layer(), input);
  Relu(&v);
  // Feed forward the logits layer.
  return FeedForward(model.logits_layer(), v);
}

}  // namespace nn_classifier
}  // namespace assist_ranker