File: quantized_nn_classifier.cc

package info (click to toggle)
chromium 138.0.7204.157-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 6,071,864 kB
  • sloc: cpp: 34,936,859; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,967; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (58 lines) | stat: -rw-r--r-- 1,873 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/assist_ranker/quantized_nn_classifier.h"

#include "components/assist_ranker/nn_classifier.h"

namespace assist_ranker {
namespace quantized_nn_classifier {
namespace {

// Dequantized a set of unsigned 8-bit weights using the specified scaling
// factor and base value.
void DequantizeVector(const std::string& s,
                      float scale,
                      float low,
                      FloatVector* v) {
  for (const unsigned char ch : s) {
    v->mutable_values()->Add(scale * ch + low);
  }
}

// Dequantizes a quantized NN layer.
void DequantizeLayer(const QuantizedNNLayer& quantized, NNLayer* layer) {
  const float low = quantized.low();
  const float scale = (quantized.high() - low) / 256;
  DequantizeVector(quantized.biases(), scale, low, layer->mutable_biases());
  for (const std::string& s : quantized.weights()) {
    auto* p = layer->mutable_weights()->Add();
    DequantizeVector(s, scale, low, p);
  }
}

bool ValidateLayer(const QuantizedNNLayer& layer) {
  // The quantization low value must always be less than the high value.
  return layer.low() < layer.high();
}

}  // namespace

NNClassifierModel Dequantize(const QuantizedNNClassifierModel& quantized) {
  NNClassifierModel model;
  DequantizeLayer(quantized.hidden_layer(), model.mutable_hidden_layer());
  DequantizeLayer(quantized.logits_layer(), model.mutable_logits_layer());
  return model;
}

bool Validate(const QuantizedNNClassifierModel& quantized) {
  if (!ValidateLayer(quantized.hidden_layer()) ||
      !ValidateLayer(quantized.logits_layer())) {
    return false;
  }

  return nn_classifier::Validate(Dequantize(quantized));
}

}  // namespace quantized_nn_classifier
}  // namespace assist_ranker