1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/assist_ranker/quantized_nn_classifier.h"
#include "components/assist_ranker/nn_classifier.h"
#include "components/assist_ranker/nn_classifier_test_util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace assist_ranker {
namespace quantized_nn_classifier {
namespace {
using ::google::protobuf::RepeatedFieldBackInserter;
using ::google::protobuf::RepeatedPtrField;
using ::std::copy;
using ::std::vector;
void CreateLayer(const vector<int>& biases,
const vector<vector<int>>& weights,
float low,
float high,
QuantizedNNLayer* layer) {
layer->set_biases(std::string(biases.begin(), biases.end()));
for (const auto& i : weights) {
layer->mutable_weights()->Add(std::string(i.begin(), i.end()));
}
layer->set_low(low);
layer->set_high(high);
}
// Creates a QuantizedDNNClassifierModel proto using a trained set of biases and
// weights.
QuantizedNNClassifierModel CreateModel(
const vector<int>& hidden_biases,
const vector<vector<int>>& hidden_weights,
const vector<int>& logits_biases,
const vector<vector<int>>& logits_weights,
float low,
float high) {
QuantizedNNClassifierModel model;
CreateLayer(hidden_biases, hidden_weights, low, high,
model.mutable_hidden_layer());
CreateLayer(logits_biases, logits_weights, low, high,
model.mutable_logits_layer());
return model;
}
TEST(QuantizedNNClassifierTest, Dequantize) {
const QuantizedNNClassifierModel quantized = CreateModel(
// Hidden biases.
{{8, 16, 32}},
// Hidden weights.
{{2, 4, 6}, {10, 4, 8}},
// Logits biases.
{2},
// Logits weights.
{{4}, {2}, {6}},
// Low.
0,
// High.
128);
ASSERT_TRUE(Validate(quantized));
const NNClassifierModel model = Dequantize(quantized);
const NNClassifierModel expected = nn_classifier::CreateModel(
// Hidden biases.
{{4, 8, 16}},
// Hidden weights.
{{1, 2, 3}, {5, 2, 4}},
// Logits biases.
{1},
// Logits weights.
{{2}, {1}, {3}});
EXPECT_EQ(model.SerializeAsString(), expected.SerializeAsString());
}
TEST(QuantizedNNClassifierTest, XorTest) {
// Creates a NN with a single hidden layer of 5 units that solves XOR.
// Creates a QuantizedDNNClassifier model containing the trained biases and
// weights.
const QuantizedNNClassifierModel quantized = CreateModel(
// Hidden biases.
{{110, 139, 175, 55, 106}},
// Hidden weights.
{{228, 127, 97, 217, 158}, {55, 219, 80, 199, 152}},
// Logits biases.
{74},
// Logits weights.
{{255}, {211}, {53}, {0}, {86}},
// Low.
-2.96390629,
// High.
2.8636384);
ASSERT_TRUE(Validate(quantized));
const NNClassifierModel model = Dequantize(quantized);
ASSERT_TRUE(nn_classifier::Validate(model));
EXPECT_TRUE(nn_classifier::CheckInference(model, {0, 0}, {-2.7032}));
EXPECT_TRUE(nn_classifier::CheckInference(model, {0, 1}, {2.80681}));
EXPECT_TRUE(nn_classifier::CheckInference(model, {1, 0}, {2.64435}));
EXPECT_TRUE(nn_classifier::CheckInference(model, {1, 1}, {-3.17825}));
}
TEST(QuantizedNNClassifierTest, ValidateQuantizedNNClassifierModel) {
// Empty model.
QuantizedNNClassifierModel model;
EXPECT_FALSE(Validate(model));
// Valid model.
model = CreateModel({0, 0, 0}, {{0, 0, 0}, {0, 0, 0}}, {0}, {{0}, {0}, {0}},
0, 1);
EXPECT_TRUE(Validate(model));
// Hidden bias incorrect size.
model =
CreateModel({0, 0}, {{0, 0, 0}, {0, 0, 0}}, {0}, {{0}, {0}, {0}}, 0, 1);
EXPECT_FALSE(Validate(model));
// Hidden weight vector incorrect size.
model =
CreateModel({0, 0, 0}, {{0, 0, 0}, {0, 0}}, {0}, {{0}, {0}, {0}}, 0, 1);
EXPECT_FALSE(Validate(model));
// Logits weights incorrect size.
model = CreateModel({0, 0, 0}, {{0, 0, 0}, {0, 0, 0}}, {0}, {{0}, {0}}, 0, 1);
EXPECT_FALSE(Validate(model));
// Empty logits bias.
model =
CreateModel({0, 0, 0}, {{0, 0, 0}, {0, 0, 0}}, {}, {{0}, {0}, {0}}, 0, 1);
EXPECT_FALSE(Validate(model));
// Low / high incorrect.
model = CreateModel({0, 0, 0}, {{0, 0, 0}, {0, 0, 0}}, {0}, {{0}, {0}, {0}},
1, 0);
EXPECT_FALSE(Validate(model));
}
} // namespace
} // namespace quantized_nn_classifier
} // namespace assist_ranker
|