1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "sandbox/linux/services/credentials.h"
#include <errno.h>
#include <limits.h>
#include <sched.h>
#include <signal.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <array>
#include "base/compiler_specific.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/posix/eintr_wrapper.h"
#include "base/process/launch.h"
#include "build/build_config.h"
#include "sandbox/linux/services/namespace_utils.h"
#include "sandbox/linux/services/proc_util.h"
#include "sandbox/linux/services/syscall_wrappers.h"
#include "sandbox/linux/services/thread_helpers.h"
#include "sandbox/linux/system_headers/capability.h"
#include "sandbox/linux/system_headers/linux_signal.h"
namespace sandbox {
namespace {
const int kExitSuccess = 0;
#if !defined(THREAD_SANITIZER)
const int kExitFailure = 1;
#endif
#if defined(__clang__)
// Disable sanitizers that rely on TLS and may write to non-stack memory.
__attribute__((no_sanitize_address))
__attribute__((no_sanitize_thread))
__attribute__((no_sanitize_memory))
#endif
int ChrootToSelfFdinfo(void*) {
// This function can be run from a vforked child, so it should not write to
// any memory other than the stack or errno. Reads from TLS may be different
// from in the parent process.
RAW_CHECK(sys_chroot("/proc/self/fdinfo/") == 0);
// CWD is essentially an implicit file descriptor, so be careful to not
// leave it behind.
RAW_CHECK(chdir("/") == 0);
_exit(kExitSuccess);
}
// chroot() to an empty dir that is "safe". To be safe, it must not contain
// any subdirectory (chroot-ing there would allow a chroot escape) and it must
// be impossible to create an empty directory there.
// We achieve this by doing the following:
// 1. We create a new process sharing file system information.
// 2. In the child, we chroot to /proc/self/fdinfo/
// This is already "safe", since fdinfo/ does not contain another directory and
// one cannot create another directory there.
// 3. The process dies
// After (3) happens, the directory is not available anymore in /proc.
bool ChrootToSafeEmptyDir() {
// We need to chroot to a fdinfo that is unique to a process and have that
// process die.
// 1. We don't want to simply fork() because duplicating the page tables is
// slow with a big address space.
// 2. We do not use a regular thread (that would unshare CLONE_FILES) because
// when we are in a PID namespace, we cannot easily get a handle to the
// /proc/tid directory for the thread (since /proc may not be aware of the
// PID namespace). With a process, we can just use /proc/self.
pid_t pid = -1;
alignas(16) char stack_buf[PTHREAD_STACK_MIN_CONST];
#if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
defined(ARCH_CPU_MIPS_FAMILY) || defined(ARCH_CPU_PPC64_FAMILY)
// The stack grows downward.
void* stack = stack_buf + sizeof(stack_buf);
#else
#error "Unsupported architecture"
#endif
int clone_flags = CLONE_FS | LINUX_SIGCHLD;
void* tls = nullptr;
#if (defined(ARCH_CPU_X86_64) || defined(ARCH_CPU_ARM_FAMILY) || \
defined(ARCH_CPU_PPC64_FAMILY)) && \
!defined(MEMORY_SANITIZER)
// Use CLONE_VM | CLONE_VFORK as an optimization to avoid copying page tables.
// Since clone writes to the new child's TLS before returning, we must set a
// new TLS to avoid corrupting the current process's TLS. On ARCH_CPU_X86,
// glibc performs syscalls by calling a function pointer in TLS, so we do not
// attempt this optimization.
// TODO(crbug.com/40196869) Broken in MSan builds after LLVM f1bb30a4956f.
//
// NOTE: Without CLONE_VM, fontconfig will attempt to reload configuration
// in every thread. Since the rendered threads are sandboxed without
// filesystem access (e.g. to /etc/fonts/fonts.conf) this will cause font
// configuration loading failures and no fonts will be displayed!
clone_flags |= CLONE_VM | CLONE_VFORK | CLONE_SETTLS;
char tls_buf[PTHREAD_STACK_MIN_CONST] = {};
tls = tls_buf;
#endif
pid = clone(ChrootToSelfFdinfo, stack, clone_flags, nullptr, nullptr, tls,
nullptr);
PCHECK(pid != -1);
int status = -1;
PCHECK(HANDLE_EINTR(waitpid(pid, &status, 0)) == pid);
return WIFEXITED(status) && WEXITSTATUS(status) == kExitSuccess;
}
// CHECK() that an attempt to move to a new user namespace raised an expected
// errno.
void CheckCloneNewUserErrno(int error) {
// EPERM can happen if already in a chroot. EUSERS if too many nested
// namespaces are used. EINVAL for kernels that don't support the feature.
// ENOSPC can occur when the system has reached its maximum configured
// number of user namespaces.
PCHECK(error == EPERM || error == EUSERS || error == EINVAL ||
error == ENOSPC);
}
// Converts a Capability to the corresponding Linux CAP_XXX value.
int CapabilityToKernelValue(Credentials::Capability cap) {
switch (cap) {
case Credentials::Capability::SYS_CHROOT:
return CAP_SYS_CHROOT;
case Credentials::Capability::SYS_ADMIN:
return CAP_SYS_ADMIN;
}
LOG(FATAL) << "Invalid Capability: " << static_cast<int>(cap);
}
} // namespace.
// static
bool Credentials::GetRESIds(uid_t* resuid, gid_t* resgid) {
uid_t ruid, euid, suid;
gid_t rgid, egid, sgid;
PCHECK(sys_getresuid(&ruid, &euid, &suid) == 0);
PCHECK(sys_getresgid(&rgid, &egid, &sgid) == 0);
const bool uids_are_equal = (ruid == euid) && (ruid == suid);
const bool gids_are_equal = (rgid == egid) && (rgid == sgid);
if (!uids_are_equal || !gids_are_equal) return false;
if (resuid) *resuid = euid;
if (resgid) *resgid = egid;
return true;
}
// static
bool Credentials::SetGidAndUidMaps(gid_t gid, uid_t uid) {
const char kGidMapFile[] = "/proc/self/gid_map";
const char kUidMapFile[] = "/proc/self/uid_map";
if (NamespaceUtils::KernelSupportsDenySetgroups() &&
!NamespaceUtils::DenySetgroups()) {
return false;
}
DCHECK(GetRESIds(NULL, NULL));
if (!NamespaceUtils::WriteToIdMapFile(kGidMapFile, gid) ||
!NamespaceUtils::WriteToIdMapFile(kUidMapFile, uid)) {
return false;
}
DCHECK(GetRESIds(NULL, NULL));
return true;
}
// static
bool Credentials::DropAllCapabilities(int proc_fd) {
if (!SetCapabilities(proc_fd, std::vector<Capability>())) {
return false;
}
CHECK(!HasAnyCapability());
return true;
}
// static
bool Credentials::DropAllCapabilities() {
base::ScopedFD proc_fd(ProcUtil::OpenProc());
return Credentials::DropAllCapabilities(proc_fd.get());
}
// static
bool Credentials::DropAllCapabilitiesOnCurrentThread() {
return SetCapabilitiesOnCurrentThread(std::vector<Capability>());
}
// static
bool Credentials::SetCapabilitiesOnCurrentThread(
const std::vector<Capability>& caps) {
struct cap_hdr hdr = {};
hdr.version = _LINUX_CAPABILITY_VERSION_3;
std::array<cap_data, _LINUX_CAPABILITY_U32S_3> data = {};
// Initially, cap has no capability flags set. Enable the effective and
// permitted flags only for the requested capabilities.
for (const Capability cap : caps) {
const int cap_num = CapabilityToKernelValue(cap);
const size_t index = CAP_TO_INDEX(cap_num);
const uint32_t mask = CAP_TO_MASK(cap_num);
data[index].effective |= mask;
data[index].permitted |= mask;
}
return sys_capset(&hdr, data.data()) == 0;
}
// static
bool Credentials::SetCapabilities(int proc_fd,
const std::vector<Capability>& caps) {
DCHECK_LE(0, proc_fd);
#if !defined(THREAD_SANITIZER)
// With TSAN, accept to break the security model as it is a testing
// configuration.
CHECK(ThreadHelpers::IsSingleThreaded(proc_fd));
#endif
return SetCapabilitiesOnCurrentThread(caps);
}
bool Credentials::HasAnyCapability() {
struct cap_hdr hdr = {};
hdr.version = _LINUX_CAPABILITY_VERSION_3;
std::array<cap_data, _LINUX_CAPABILITY_U32S_3> data = {};
PCHECK(sys_capget(&hdr, data.data()) == 0);
for (size_t i = 0; i < std::size(data); ++i) {
if (data[i].effective || data[i].permitted || data[i].inheritable) {
return true;
}
}
return false;
}
bool Credentials::HasCapability(Capability cap) {
struct cap_hdr hdr = {};
hdr.version = _LINUX_CAPABILITY_VERSION_3;
std::array<cap_data, _LINUX_CAPABILITY_U32S_3> data = {};
PCHECK(sys_capget(&hdr, data.data()) == 0);
const int cap_num = CapabilityToKernelValue(cap);
const size_t index = CAP_TO_INDEX(cap_num);
const uint32_t mask = CAP_TO_MASK(cap_num);
return (data[index].effective | data[index].permitted |
data[index].inheritable) &
mask;
}
// static
bool Credentials::CanCreateProcessInNewUserNS() {
#if defined(THREAD_SANITIZER)
// With TSAN, processes will always have threads running and can never
// enter a new user namespace with MoveToNewUserNS().
return false;
#else
uid_t uid;
gid_t gid;
if (!GetRESIds(&uid, &gid)) {
return false;
}
const pid_t pid =
base::ForkWithFlags(CLONE_NEWUSER | SIGCHLD, nullptr, nullptr);
if (pid == -1) {
CheckCloneNewUserErrno(errno);
return false;
}
// The parent process could have had threads. In the child, these threads
// have disappeared.
if (pid == 0) {
// unshare() requires the effective uid and gid to have a mapping in the
// parent namespace.
if (!SetGidAndUidMaps(gid, uid))
_exit(kExitFailure);
// Make sure we drop CAP_SYS_ADMIN.
CHECK(sandbox::Credentials::DropAllCapabilities());
// Ensure we have unprivileged use of CLONE_NEWUSER. Debian
// Jessie explicitly forbids this case. See:
// add-sysctl-to-disallow-unprivileged-CLONE_NEWUSER-by-default.patch
if (sys_unshare(CLONE_NEWUSER))
_exit(kExitFailure);
_exit(kExitSuccess);
}
// Always reap the child.
int status = -1;
PCHECK(HANDLE_EINTR(waitpid(pid, &status, 0)) == pid);
DCHECK(WIFEXITED(status) && (WEXITSTATUS(status) == kExitSuccess ||
WEXITSTATUS(status) == kExitFailure));
// clone(2) succeeded. Now return true only if the system grants
// unprivileged use of CLONE_NEWUSER as well.
return WIFEXITED(status) && WEXITSTATUS(status) == kExitSuccess;
#endif
}
bool Credentials::MoveToNewUserNS() {
uid_t uid;
gid_t gid;
if (!GetRESIds(&uid, &gid)) {
// If all the uids (or gids) are not equal to each other, the security
// model will most likely confuse the caller, abort.
DVLOG(1) << "uids or gids differ!";
return false;
}
int ret = sys_unshare(CLONE_NEWUSER);
if (ret) {
const int unshare_errno = errno;
VLOG(1) << "Looks like unprivileged CLONE_NEWUSER may not be available "
<< "on this kernel.";
CheckCloneNewUserErrno(unshare_errno);
return false;
}
// The current {r,e,s}{u,g}id is now an overflow id (c.f.
// /proc/sys/kernel/overflowuid). Setup the uid and gid maps.
PCHECK(SetGidAndUidMaps(gid, uid));
return true;
}
bool Credentials::DropFileSystemAccess(int proc_fd) {
CHECK_LE(0, proc_fd);
CHECK(ChrootToSafeEmptyDir());
CHECK(!HasFileSystemAccess());
CHECK(!ProcUtil::HasOpenDirectory(proc_fd));
// We never let this function fail.
return true;
}
bool Credentials::HasFileSystemAccess() {
return base::DirectoryExists(base::FilePath("/proc"));
}
pid_t Credentials::ForkAndDropCapabilitiesInChild() {
pid_t pid = fork();
if (pid != 0) {
return pid;
}
// Since we just forked, we are single threaded.
PCHECK(DropAllCapabilitiesOnCurrentThread());
return 0;
}
} // namespace sandbox.
|