1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
// Copyright 2017 The BoringSSL Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OPENSSL_HEADER_CRYPTO_FIPSMODULE_AES_INTERNAL_H
#define OPENSSL_HEADER_CRYPTO_FIPSMODULE_AES_INTERNAL_H
#include <stdlib.h>
#include "../bcm_interface.h"
#include "../../internal.h"
extern "C" {
// block128_f is the type of an AES block cipher implementation.
//
// Unlike upstream OpenSSL, it and the other functions in this file hard-code
// |AES_KEY|. It is undefined in C to call a function pointer with anything
// other than the original type. Thus we either must match |block128_f| to the
// type signature of |BCM_aes_encrypt| and friends or pass in |void*| wrapper
// functions.
//
// These functions are called exclusively with AES, so we use the former.
typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
const AES_KEY *key);
// ctr128_f is the type of a function that performs CTR-mode encryption.
typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
const AES_KEY *key, const uint8_t ivec[16]);
// aes_ctr_set_key initialises |*aes_key| using |key_bytes| bytes from |key|,
// where |key_bytes| must either be 16, 24 or 32. If not NULL, |*out_block| is
// set to a function that encrypts single blocks. If not NULL, |*out_is_hwaes|
// is set to whether the hardware AES implementation was used. It returns a
// function for optimised CTR-mode.
ctr128_f aes_ctr_set_key(AES_KEY *aes_key, int *out_is_hwaes,
block128_f *out_block, const uint8_t *key,
size_t key_bytes);
// AES implementations.
#if !defined(OPENSSL_NO_ASM)
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
#define HWAES
#define HWAES_ECB
inline int hwaes_capable(void) { return CRYPTO_is_AESNI_capable(); }
#define VPAES
#define VPAES_CBC
inline int vpaes_capable(void) { return CRYPTO_is_SSSE3_capable(); }
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
#define HWAES
inline int hwaes_capable(void) { return CRYPTO_is_ARMv8_AES_capable(); }
#if defined(OPENSSL_ARM)
#define BSAES
#define VPAES
inline int bsaes_capable(void) { return CRYPTO_is_NEON_capable(); }
inline int vpaes_capable(void) { return CRYPTO_is_NEON_capable(); }
#endif
#if defined(OPENSSL_AARCH64)
#define VPAES
#define VPAES_CBC
inline int vpaes_capable(void) { return CRYPTO_is_NEON_capable(); }
#endif
#elif defined(OPENSSL_PPC64LE)
#define HWAES
OPENSSL_INLINE int hwaes_capable(void) {
return CRYPTO_is_PPC64LE_vcrypto_capable();
}
#endif
#endif // !NO_ASM
#if defined(HWAES)
int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits, AES_KEY *key);
int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits, AES_KEY *key);
void aes_hw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void aes_hw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t *ivec, int enc);
void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16]);
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
// On x86 and x86_64, |aes_hw_set_decrypt_key| is implemented in terms of
// |aes_hw_set_encrypt_key| and a conversion function.
void aes_hw_encrypt_key_to_decrypt_key(AES_KEY *key);
// There are two variants of this function, one which uses aeskeygenassist
// ("base") and one which uses aesenclast + pshufb ("alt"). aesenclast is
// overall faster but is slower on some older processors. It doesn't use AVX,
// but AVX is used as a proxy to detecting this. See
// https://groups.google.com/g/mailing.openssl.dev/c/OuFXwW4NfO8/m/7d2ZXVjkxVkJ
//
// TODO(davidben): It is unclear if the aeskeygenassist version is still
// worthwhile. However, the aesenclast version requires SSSE3. SSSE3 long
// predates AES-NI, but it's not clear if AES-NI implies SSSE3. In OpenSSL, the
// CCM AES-NI assembly seems to assume it does.
inline int aes_hw_set_encrypt_key_alt_capable(void) {
return hwaes_capable() && CRYPTO_is_SSSE3_capable();
}
inline int aes_hw_set_encrypt_key_alt_preferred(void) {
return hwaes_capable() && CRYPTO_is_AVX_capable();
}
int aes_hw_set_encrypt_key_base(const uint8_t *user_key, int bits,
AES_KEY *key);
int aes_hw_set_encrypt_key_alt(const uint8_t *user_key, int bits, AES_KEY *key);
#endif // OPENSSL_X86 || OPENSSL_X86_64
#else
// If HWAES isn't defined then we provide dummy functions for each of the hwaes
// functions.
inline int hwaes_capable(void) { return 0; }
inline int aes_hw_set_encrypt_key(const uint8_t *user_key, int bits,
AES_KEY *key) {
abort();
}
inline int aes_hw_set_decrypt_key(const uint8_t *user_key, int bits,
AES_KEY *key) {
abort();
}
inline void aes_hw_encrypt(const uint8_t *in, uint8_t *out,
const AES_KEY *key) {
abort();
}
inline void aes_hw_decrypt(const uint8_t *in, uint8_t *out,
const AES_KEY *key) {
abort();
}
inline void aes_hw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t *ivec, int enc) {
abort();
}
inline void aes_hw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
const uint8_t ivec[16]) {
abort();
}
#endif // !HWAES
#if defined(HWAES_ECB)
void aes_hw_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, int enc);
#endif // HWAES_ECB
#if defined(BSAES)
// Note |bsaes_cbc_encrypt| requires |enc| to be zero.
void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t ivec[16], int enc);
void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16]);
// VPAES to BSAES conversions are available on all BSAES platforms.
void vpaes_encrypt_key_to_bsaes(AES_KEY *out_bsaes, const AES_KEY *vpaes);
void vpaes_decrypt_key_to_bsaes(AES_KEY *out_bsaes, const AES_KEY *vpaes);
void vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t *in, uint8_t *out,
size_t blocks, const AES_KEY *key,
const uint8_t ivec[16]);
#else
inline int bsaes_capable(void) { return 0; }
// On other platforms, bsaes_capable() will always return false and so the
// following will never be called.
inline void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t ivec[16], int enc) {
abort();
}
inline void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
const uint8_t ivec[16]) {
abort();
}
inline void vpaes_encrypt_key_to_bsaes(AES_KEY *out_bsaes,
const AES_KEY *vpaes) {
abort();
}
inline void vpaes_decrypt_key_to_bsaes(AES_KEY *out_bsaes,
const AES_KEY *vpaes) {
abort();
}
#endif // !BSAES
#if defined(VPAES)
// On platforms where VPAES gets defined (just above), then these functions are
// provided by asm.
int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
#if defined(VPAES_CBC)
void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t *ivec, int enc);
#endif
void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16]);
#else
inline int vpaes_capable(void) { return 0; }
// On other platforms, vpaes_capable() will always return false and so the
// following will never be called.
inline int vpaes_set_encrypt_key(const uint8_t *userKey, int bits,
AES_KEY *key) {
abort();
}
inline int vpaes_set_decrypt_key(const uint8_t *userKey, int bits,
AES_KEY *key) {
abort();
}
inline void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
abort();
}
inline void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
abort();
}
inline void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const AES_KEY *key, uint8_t *ivec, int enc) {
abort();
}
inline void vpaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
const uint8_t ivec[16]) {
abort();
}
#endif // !VPAES
int aes_nohw_set_encrypt_key(const uint8_t *key, unsigned bits,
AES_KEY *aeskey);
int aes_nohw_set_decrypt_key(const uint8_t *key, unsigned bits,
AES_KEY *aeskey);
void aes_nohw_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void aes_nohw_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
void aes_nohw_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out,
size_t blocks, const AES_KEY *key,
const uint8_t ivec[16]);
void aes_nohw_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t *ivec, int enc);
// Modes
inline void CRYPTO_xor16(uint8_t out[16], const uint8_t a[16],
const uint8_t b[16]) {
// TODO(davidben): Ideally we'd leave this to the compiler, which could use
// vector registers, etc. But the compiler doesn't know that |in| and |out|
// cannot partially alias. |restrict| is slightly two strict (we allow exact
// aliasing), but perhaps in-place could be a separate function?
static_assert(16 % sizeof(crypto_word_t) == 0,
"block cannot be evenly divided into words");
for (size_t i = 0; i < 16; i += sizeof(crypto_word_t)) {
CRYPTO_store_word_le(
out + i, CRYPTO_load_word_le(a + i) ^ CRYPTO_load_word_le(b + i));
}
}
// CTR.
// CRYPTO_ctr128_encrypt_ctr32 encrypts (or decrypts, it's the same in CTR mode)
// |len| bytes from |in| to |out| using |block| in counter mode. There's no
// requirement that |len| be a multiple of any value and any partial blocks are
// stored in |ecount_buf| and |*num|, which must be zeroed before the initial
// call. The counter is a 128-bit, big-endian value in |ivec| and is
// incremented by this function. If the counter overflows, it wraps around.
// |ctr| must be a function that performs CTR mode but only deals with the lower
// 32 bits of the counter.
void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
uint8_t ecount_buf[16], unsigned *num,
ctr128_f ctr);
// GCM.
//
// This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
// not have a |key| pointer that points to the key as upstream's version does.
// Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
// can be safely copied. Additionally, |gcm_key| is split into a separate
// struct.
// gcm_impl_t specifies an assembly implementation of AES-GCM.
enum gcm_impl_t {
gcm_separate = 0, // No combined AES-GCM, but may have AES-CTR and GHASH.
gcm_x86_aesni,
gcm_x86_vaes_avx2,
gcm_x86_vaes_avx512,
gcm_arm64_aes,
};
typedef struct { uint64_t hi,lo; } u128;
// gmult_func multiplies |Xi| by the GCM key and writes the result back to
// |Xi|.
typedef void (*gmult_func)(uint8_t Xi[16], const u128 Htable[16]);
// ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
// |inp|. The result is written back to |Xi| and the |len| argument must be a
// multiple of 16.
typedef void (*ghash_func)(uint8_t Xi[16], const u128 Htable[16],
const uint8_t *inp, size_t len);
typedef struct gcm128_key_st {
u128 Htable[16];
gmult_func gmult;
ghash_func ghash;
AES_KEY aes;
ctr128_f ctr;
block128_f block;
enum gcm_impl_t impl;
} GCM128_KEY;
// GCM128_CONTEXT contains state for a single GCM operation. The structure
// should be zero-initialized before use.
typedef struct {
// The following 5 names follow names in GCM specification
uint8_t Yi[16];
uint8_t EKi[16];
uint8_t EK0[16];
struct {
uint64_t aad;
uint64_t msg;
} len;
uint8_t Xi[16];
unsigned mres, ares;
} GCM128_CONTEXT;
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
// crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
// used.
int crypto_gcm_clmul_enabled(void);
#endif
// CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
// |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
// accelerated) functions for performing operations in the GHASH field.
void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
u128 out_table[16], const uint8_t gcm_key[16]);
// CRYPTO_gcm128_init_aes_key initialises |gcm_key| to with AES key |key|.
void CRYPTO_gcm128_init_aes_key(GCM128_KEY *gcm_key, const uint8_t *key,
size_t key_bytes);
// CRYPTO_gcm128_init_ctx initializes |ctx| to encrypt with |key| and |iv|.
void CRYPTO_gcm128_init_ctx(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *iv, size_t iv_len);
// CRYPTO_gcm128_aad adds to the authenticated data for an instance of GCM.
// This must be called before and data is encrypted. |key| must be the same
// value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on success
// and zero otherwise.
int CRYPTO_gcm128_aad(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *aad, size_t aad_len);
// CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. |key| must be
// the same value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on
// success and zero otherwise.
int CRYPTO_gcm128_encrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *in, uint8_t *out, size_t len);
// CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. |key| must be
// the same value that was passed to |CRYPTO_gcm128_init_ctx|. It returns one on
// success and zero otherwise.
int CRYPTO_gcm128_decrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *in, uint8_t *out, size_t len);
// CRYPTO_gcm128_finish calculates the authenticator and compares it against
// |len| bytes of |tag|. |key| must be the same value that was passed to
// |CRYPTO_gcm128_init_ctx|. It returns one on success and zero otherwise.
int CRYPTO_gcm128_finish(const GCM128_KEY *key, GCM128_CONTEXT *ctx,
const uint8_t *tag, size_t len);
// CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
// The minimum of |len| and 16 bytes are copied into |tag|. |key| must be the
// same value that was passed to |CRYPTO_gcm128_init_ctx|.
void CRYPTO_gcm128_tag(const GCM128_KEY *key, GCM128_CONTEXT *ctx, uint8_t *tag,
size_t len);
// GCM assembly.
void gcm_init_nohw(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_nohw(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_nohw(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
#if !defined(OPENSSL_NO_ASM)
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
#define GCM_FUNCREF
void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_clmul(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_clmul(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
void gcm_init_ssse3(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_ssse3(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_ssse3(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
size_t len);
#if defined(OPENSSL_X86_64)
#define GHASH_ASM_X86_64
void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_avx(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_avx(uint8_t Xi[16], const u128 Htable[16], const uint8_t *in,
size_t len);
#define HW_GCM
size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
void gcm_init_vpclmulqdq_avx2(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_vpclmulqdq_avx2(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_vpclmulqdq_avx2(uint8_t Xi[16], const u128 Htable[16],
const uint8_t *in, size_t len);
void aes_gcm_enc_update_vaes_avx2(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
void aes_gcm_dec_update_vaes_avx2(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
void gcm_init_vpclmulqdq_avx512(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_vpclmulqdq_avx512(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_vpclmulqdq_avx512(uint8_t Xi[16], const u128 Htable[16],
const uint8_t *in, size_t len);
void aes_gcm_enc_update_vaes_avx512(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
void aes_gcm_dec_update_vaes_avx512(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, const uint8_t ivec[16],
const u128 Htable[16], uint8_t Xi[16]);
#endif // OPENSSL_X86_64
#if defined(OPENSSL_X86)
#define GHASH_ASM_X86
#endif // OPENSSL_X86
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
#define GHASH_ASM_ARM
#define GCM_FUNCREF
inline int gcm_pmull_capable(void) { return CRYPTO_is_ARMv8_PMULL_capable(); }
void gcm_init_v8(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_v8(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_v8(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
inline int gcm_neon_capable(void) { return CRYPTO_is_NEON_capable(); }
void gcm_init_neon(u128 Htable[16], const uint64_t H[2]);
void gcm_gmult_neon(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_neon(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
#if defined(OPENSSL_AARCH64)
#define HW_GCM
// These functions are defined in aesv8-gcm-armv8.pl.
void aes_gcm_enc_kernel(const uint8_t *in, uint64_t in_bits, void *out,
void *Xi, uint8_t *ivec, const AES_KEY *key,
const u128 Htable[16]);
void aes_gcm_dec_kernel(const uint8_t *in, uint64_t in_bits, void *out,
void *Xi, uint8_t *ivec, const AES_KEY *key,
const u128 Htable[16]);
#endif
#elif defined(OPENSSL_PPC64LE)
#define GHASH_ASM_PPC64LE
#define GCM_FUNCREF
void gcm_init_p8(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_p8(uint8_t Xi[16], const u128 Htable[16]);
void gcm_ghash_p8(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp,
size_t len);
#endif
#endif // OPENSSL_NO_ASM
// CBC.
// cbc128_f is the type of a function that performs CBC-mode encryption.
typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16], int enc);
// CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
// given IV and block cipher in CBC mode. The input need not be a multiple of
// 128 bits long, but the output will round up to the nearest 128 bit multiple,
// zero padding the input if needed. The IV will be updated on return.
void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
block128_f block);
// CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
// given IV and block cipher in CBC mode. If |len| is not a multiple of 128
// bits then only that many bytes will be written, but a multiple of 128 bits
// is always read from |in|. The IV will be updated on return.
void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
block128_f block);
// OFB.
// CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
// |len| bytes from |in| to |out| using |block| in OFB mode. There's no
// requirement that |len| be a multiple of any value and any partial blocks are
// stored in |ivec| and |*num|, the latter must be zero before the initial
// call.
void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16], unsigned *num,
block128_f block);
// CFB.
// CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB mode. There's no requirement that
// |len| be a multiple of any value and any partial blocks are stored in |ivec|
// and |*num|, the latter must be zero before the initial call.
void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16], unsigned *num,
int enc, block128_f block);
// CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
// |num| should be set to zero.
void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
unsigned *num, int enc, block128_f block);
// CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
// from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
// |num| should be set to zero.
void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
const AES_KEY *key, uint8_t ivec[16],
unsigned *num, int enc, block128_f block);
size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t ivec[16],
block128_f block);
} // extern C
#endif // OPENSSL_HEADER_CRYPTO_FIPSMODULE_AES_INTERNAL_H
|