File: event_processor_unittest.cc

package info (click to toggle)
chromium 138.0.7204.157-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,864 kB
  • sloc: cpp: 34,936,859; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,967; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (539 lines) | stat: -rw-r--r-- 20,896 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <tuple>
#include <utility>
#include <vector>

#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/events/event.h"
#include "ui/events/event_target_iterator.h"
#include "ui/events/event_targeter.h"
#include "ui/events/event_utils.h"
#include "ui/events/test/events_test_utils.h"
#include "ui/events/test/test_event_handler.h"
#include "ui/events/test/test_event_processor.h"
#include "ui/events/test/test_event_target.h"
#include "ui/events/test/test_event_targeter.h"

typedef std::vector<std::string> HandlerSequenceRecorder;

namespace ui {
namespace test {

class EventProcessorTest : public testing::Test {
 public:
  EventProcessorTest() {}

  EventProcessorTest(const EventProcessorTest&) = delete;
  EventProcessorTest& operator=(const EventProcessorTest&) = delete;

  ~EventProcessorTest() override {}

 protected:
  // testing::Test:
  void SetUp() override {
    processor_.SetRoot(std::make_unique<TestEventTarget>());
    processor_.Reset();
    root()->SetEventTargeter(
        std::make_unique<TestEventTargeter>(root(), false));
  }

  TestEventTarget* root() {
    return static_cast<TestEventTarget*>(processor_.GetRoot());
  }

  TestEventProcessor* processor() {
    return &processor_;
  }

  void DispatchEvent(Event* event) {
    processor_.OnEventFromSource(event);
  }

  void SetTarget(TestEventTarget* target) {
    static_cast<TestEventTargeter*>(root()->GetEventTargeter())
        ->set_target(target);
  }

 private:
  TestEventProcessor processor_;
};

TEST_F(EventProcessorTest, Basic) {
  auto child = std::make_unique<TestEventTarget>();
  child->SetEventTargeter(
      std::make_unique<TestEventTargeter>(child.get(), false));
  SetTarget(child.get());
  root()->AddChild(std::move(child));

  MouseEvent mouse(EventType::kMouseMoved, gfx::Point(10, 10),
                   gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);
  DispatchEvent(&mouse);
  EXPECT_TRUE(root()->child_at(0)->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_FALSE(root()->DidReceiveEvent(EventType::kMouseMoved));

  SetTarget(root());
  root()->RemoveChild(root()->child_at(0));
  DispatchEvent(&mouse);
  EXPECT_TRUE(root()->DidReceiveEvent(EventType::kMouseMoved));
}

// ReDispatchEventHandler is used to receive mouse events and forward them
// to a specified EventProcessor. Verifies that the event has the correct
// target and phase both before and after the nested event processing. Also
// verifies that the location of the event remains the same after it has
// been processed by the second EventProcessor.
class ReDispatchEventHandler : public TestEventHandler {
 public:
  ReDispatchEventHandler(EventProcessor* processor, EventTarget* target)
      : processor_(processor), expected_target_(target) {}

  ReDispatchEventHandler(const ReDispatchEventHandler&) = delete;
  ReDispatchEventHandler& operator=(const ReDispatchEventHandler&) = delete;

  ~ReDispatchEventHandler() override {}

  // TestEventHandler:
  void OnMouseEvent(MouseEvent* event) override {
    TestEventHandler::OnMouseEvent(event);

    EXPECT_EQ(expected_target_, event->target());
    EXPECT_EQ(EP_TARGET, event->phase());

    gfx::Point location(event->location());
    EventDispatchDetails details = processor_->OnEventFromSource(event);
    EXPECT_FALSE(details.dispatcher_destroyed);
    EXPECT_FALSE(details.target_destroyed);

    // The nested event-processing should not have mutated the target,
    // phase, or location of |event|.
    EXPECT_EQ(expected_target_, event->target());
    EXPECT_EQ(EP_TARGET, event->phase());
    EXPECT_EQ(location, event->location());
  }

 private:
  raw_ptr<EventProcessor> processor_;
  raw_ptr<EventTarget> expected_target_;
};

// Verifies that the phase and target information of an event is not mutated
// as a result of sending the event to an event processor while it is still
// being processed by another event processor.
TEST_F(EventProcessorTest, NestedEventProcessing) {
  // Add one child to the default event processor used in this test suite.
  auto child = std::make_unique<TestEventTarget>();
  SetTarget(child.get());
  root()->AddChild(std::move(child));

  // Define a second root target and child.
  auto second_root_scoped = std::make_unique<TestEventTarget>();
  TestEventTarget* second_root = second_root_scoped.get();
  auto second_child = std::make_unique<TestEventTarget>();
  second_root->SetEventTargeter(
      std::make_unique<TestEventTargeter>(second_child.get(), false));
  second_root->AddChild(std::move(second_child));

  // Define a second event processor which owns the second root.
  auto second_processor = std::make_unique<TestEventProcessor>();
  second_processor->SetRoot(std::move(second_root_scoped));

  // Indicate that an event which is dispatched to the child target owned by the
  // first event processor should be handled by |target_handler| instead.
  auto target_handler = std::make_unique<ReDispatchEventHandler>(
      second_processor.get(), root()->child_at(0));
  EventHandler* old_handler =
      root()->child_at(0)->SetTargetHandler(target_handler.get());

  // Dispatch a mouse event to the tree of event targets owned by the first
  // event processor, checking in ReDispatchEventHandler that the phase and
  // target information of the event is correct.
  MouseEvent mouse(EventType::kMouseMoved, gfx::Point(10, 10),
                   gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);
  DispatchEvent(&mouse);

  // Verify also that |mouse| was seen by the child nodes contained in both
  // event processors and that the event was not handled.
  EXPECT_EQ(1, target_handler->num_mouse_events());
  EXPECT_TRUE(
      second_root->child_at(0)->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_FALSE(mouse.handled());
  second_root->child_at(0)->ResetReceivedEvents();
  root()->child_at(0)->ResetReceivedEvents();

  target_handler->Reset();

  // Indicate that the child of the second root should handle events, and
  // dispatch another mouse event to verify that it is marked as handled.
  second_root->child_at(0)->set_mark_events_as_handled(true);
  MouseEvent mouse2(EventType::kMouseMoved, gfx::Point(10, 10),
                    gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);
  DispatchEvent(&mouse2);
  EXPECT_EQ(1, target_handler->num_mouse_events());
  EXPECT_TRUE(
      second_root->child_at(0)->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_TRUE(mouse2.handled());

  old_handler = root()->child_at(0)->SetTargetHandler(old_handler);
  EXPECT_EQ(old_handler, target_handler.get());
}

// Verifies that OnEventProcessingFinished() is called when an event
// has been handled.
TEST_F(EventProcessorTest, OnEventProcessingFinished) {
  auto child = std::make_unique<TestEventTarget>();
  child->set_mark_events_as_handled(true);
  SetTarget(child.get());
  root()->AddChild(std::move(child));

  // Dispatch a mouse event. We expect the event to be seen by the target,
  // handled, and we expect OnEventProcessingFinished() to be invoked once.
  MouseEvent mouse(EventType::kMouseMoved, gfx::Point(10, 10),
                   gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);
  DispatchEvent(&mouse);
  EXPECT_TRUE(root()->child_at(0)->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_FALSE(root()->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_TRUE(mouse.handled());
  EXPECT_EQ(1, processor()->num_times_processing_finished());
}

// Verifies that OnEventProcessingStarted() has been called when starting to
// process an event, and that processing does not take place if
// OnEventProcessingStarted() marks the event as handled. Also verifies that
// OnEventProcessingFinished() is also called in either case.
TEST_F(EventProcessorTest, OnEventProcessingStarted) {
  auto child = std::make_unique<TestEventTarget>();
  SetTarget(child.get());
  root()->AddChild(std::move(child));

  // Dispatch a mouse event. We expect the event to be seen by the target,
  // OnEventProcessingStarted() should be called once, and
  // OnEventProcessingFinished() should be called once. The event should
  // remain unhandled.
  MouseEvent mouse(EventType::kMouseMoved, gfx::Point(10, 10),
                   gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);
  DispatchEvent(&mouse);
  EXPECT_TRUE(root()->child_at(0)->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_FALSE(root()->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_FALSE(mouse.handled());
  EXPECT_EQ(1, processor()->num_times_processing_started());
  EXPECT_EQ(1, processor()->num_times_processing_finished());
  processor()->Reset();
  root()->ResetReceivedEvents();
  root()->child_at(0)->ResetReceivedEvents();

  // Dispatch another mouse event, but with OnEventProcessingStarted() marking
  // the event as handled to prevent processing. We expect the event to not be
  // seen by the target this time, but OnEventProcessingStarted() and
  // OnEventProcessingFinished() should both still be called once.
  processor()->set_should_processing_occur(false);
  MouseEvent mouse2(EventType::kMouseMoved, gfx::Point(10, 10),
                    gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);
  DispatchEvent(&mouse2);
  EXPECT_FALSE(root()->child_at(0)->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_FALSE(root()->DidReceiveEvent(EventType::kMouseMoved));
  EXPECT_TRUE(mouse2.handled());
  EXPECT_EQ(1, processor()->num_times_processing_started());
  EXPECT_EQ(1, processor()->num_times_processing_finished());
}

// Tests that unhandled events are correctly dispatched to the next-best
// target as decided by the TestEventTargeter.
TEST_F(EventProcessorTest, DispatchToNextBestTarget) {
  auto child = std::make_unique<TestEventTarget>();
  auto grandchild = std::make_unique<TestEventTarget>();

  // Install a TestEventTargeter which permits bubbling.
  root()->SetEventTargeter(
      std::make_unique<TestEventTargeter>(grandchild.get(), true));
  child->AddChild(std::move(grandchild));
  root()->AddChild(std::move(child));

  ASSERT_EQ(1u, root()->child_count());
  ASSERT_EQ(1u, root()->child_at(0)->child_count());
  ASSERT_EQ(0u, root()->child_at(0)->child_at(0)->child_count());

  TestEventTarget* child_r = root()->child_at(0);
  TestEventTarget* grandchild_r = child_r->child_at(0);

  // When the root has a TestEventTargeter installed which permits bubbling,
  // events targeted at the grandchild target should be dispatched to all three
  // targets.
  KeyEvent key_event(EventType::kKeyPressed, VKEY_ESCAPE, EF_NONE);
  DispatchEvent(&key_event);
  EXPECT_TRUE(root()->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_TRUE(child_r->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_TRUE(grandchild_r->DidReceiveEvent(EventType::kKeyPressed));
  root()->ResetReceivedEvents();
  child_r->ResetReceivedEvents();
  grandchild_r->ResetReceivedEvents();

  // Add a pre-target handler on the child of the root that will mark the event
  // as handled. No targets in the hierarchy should receive the event.
  TestEventHandler handler;
  child_r->AddPreTargetHandler(&handler);
  key_event = KeyEvent(EventType::kKeyPressed, VKEY_ESCAPE, EF_NONE);
  DispatchEvent(&key_event);
  EXPECT_FALSE(root()->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_FALSE(child_r->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_FALSE(grandchild_r->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_EQ(1, handler.num_key_events());
  handler.Reset();

  // Add a post-target handler on the child of the root that will mark the event
  // as handled. Only the grandchild (the initial target) should receive the
  // event.
  child_r->RemovePreTargetHandler(&handler);
  child_r->AddPostTargetHandler(&handler);
  key_event = KeyEvent(EventType::kKeyPressed, VKEY_ESCAPE, EF_NONE);
  DispatchEvent(&key_event);
  EXPECT_FALSE(root()->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_FALSE(child_r->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_TRUE(grandchild_r->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_EQ(1, handler.num_key_events());
  handler.Reset();
  grandchild_r->ResetReceivedEvents();
  child_r->RemovePostTargetHandler(&handler);

  // Mark the event as handled when it reaches the EP_TARGET phase of
  // dispatch at the child of the root. The child and grandchild
  // targets should both receive the event, but the root should not.
  child_r->set_mark_events_as_handled(true);
  key_event = KeyEvent(EventType::kKeyPressed, VKEY_ESCAPE, EF_NONE);
  DispatchEvent(&key_event);
  EXPECT_FALSE(root()->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_TRUE(child_r->DidReceiveEvent(EventType::kKeyPressed));
  EXPECT_TRUE(grandchild_r->DidReceiveEvent(EventType::kKeyPressed));
  root()->ResetReceivedEvents();
  child_r->ResetReceivedEvents();
  grandchild_r->ResetReceivedEvents();
  child_r->set_mark_events_as_handled(false);
}

// Tests that unhandled events are seen by the correct sequence of
// targets, pre-target handlers, and post-target handlers when
// a TestEventTargeter is installed on the root target which permits bubbling.
TEST_F(EventProcessorTest, HandlerSequence) {
  auto child = std::make_unique<TestEventTarget>();
  auto grandchild = std::make_unique<TestEventTarget>();

  // Install a TestEventTargeter which permits bubbling.
  root()->SetEventTargeter(
      std::make_unique<TestEventTargeter>(grandchild.get(), true));
  child->AddChild(std::move(grandchild));
  root()->AddChild(std::move(child));

  ASSERT_EQ(1u, root()->child_count());
  ASSERT_EQ(1u, root()->child_at(0)->child_count());
  ASSERT_EQ(0u, root()->child_at(0)->child_at(0)->child_count());

  TestEventTarget* child_r = root()->child_at(0);
  TestEventTarget* grandchild_r = child_r->child_at(0);

  HandlerSequenceRecorder recorder;
  root()->set_target_name("R");
  root()->set_recorder(&recorder);
  child_r->set_target_name("C");
  child_r->set_recorder(&recorder);
  grandchild_r->set_target_name("G");
  grandchild_r->set_recorder(&recorder);

  TestEventHandler pre_root;
  pre_root.set_handler_name("PreR");
  pre_root.set_recorder(&recorder);
  root()->AddPreTargetHandler(&pre_root);

  TestEventHandler pre_child;
  pre_child.set_handler_name("PreC");
  pre_child.set_recorder(&recorder);
  child_r->AddPreTargetHandler(&pre_child);

  TestEventHandler pre_grandchild;
  pre_grandchild.set_handler_name("PreG");
  pre_grandchild.set_recorder(&recorder);
  grandchild_r->AddPreTargetHandler(&pre_grandchild);

  TestEventHandler post_root;
  post_root.set_handler_name("PostR");
  post_root.set_recorder(&recorder);
  root()->AddPostTargetHandler(&post_root);

  TestEventHandler post_child;
  post_child.set_handler_name("PostC");
  post_child.set_recorder(&recorder);
  child_r->AddPostTargetHandler(&post_child);

  TestEventHandler post_grandchild;
  post_grandchild.set_handler_name("PostG");
  post_grandchild.set_recorder(&recorder);
  grandchild_r->AddPostTargetHandler(&post_grandchild);

  MouseEvent mouse(EventType::kMouseMoved, gfx::Point(10, 10),
                   gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);
  DispatchEvent(&mouse);

  EXPECT_EQ(std::vector<std::string>({"PreR", "PreC", "PreG", "G", "PostG",
                                      "PostC", "PostR", "PreR", "PreC", "C",
                                      "PostC", "PostR", "PreR", "R", "PostR"}),
            recorder);

  grandchild_r->RemovePreTargetHandler(&pre_grandchild);
  child_r->RemovePreTargetHandler(&pre_child);
  root()->RemovePreTargetHandler(&pre_root);

  grandchild_r->set_recorder(nullptr);
  child_r->set_recorder(nullptr);
  root()->set_recorder(nullptr);
}

namespace {

enum DestroyTarget { kProcessor, kTargeter };

class DestroyDuringDispatchEventProcessor : public TestEventProcessor {
 public:
  DestroyDuringDispatchEventProcessor() = default;
  DestroyDuringDispatchEventProcessor(
      const DestroyDuringDispatchEventProcessor&) = delete;
  DestroyDuringDispatchEventProcessor& operator=(
      const DestroyDuringDispatchEventProcessor&) = delete;
  ~DestroyDuringDispatchEventProcessor() override = default;

 protected:
  EventDispatchDetails PostDispatchEvent(EventTarget* target,
                                         const Event& event) override;
};

class DestroyDuringDispatchEventTarget : public TestEventTarget {
 public:
  explicit DestroyDuringDispatchEventTarget(DestroyTarget target)
      : destroy_target_(target),
        processor_(std::make_unique<DestroyDuringDispatchEventProcessor>()) {}

  DestroyDuringDispatchEventTarget(const DestroyDuringDispatchEventTarget&) =
      delete;
  DestroyDuringDispatchEventTarget& operator=(
      const DestroyDuringDispatchEventTarget&) = delete;

  TestEventProcessor* processor() { return processor_.get(); }

  void Destroy() {
    switch (destroy_target_) {
      case kProcessor:
        processor_.reset();
        break;
      case kTargeter:
        SetEventTargeter(nullptr);
    }
  }

 private:
  DestroyTarget destroy_target_;
  std::unique_ptr<TestEventProcessor> processor_;
};

EventDispatchDetails DestroyDuringDispatchEventProcessor::PostDispatchEvent(
    EventTarget* target,
    const Event& event) {
  static_cast<DestroyDuringDispatchEventTarget*>(target)->Destroy();
  return EventDispatchDetails();
}

}  // namespace

TEST(EventProcessorCrashTest, DestroyDuringDispatch) {
  for (auto destroy_target : {kProcessor, kTargeter}) {
    SCOPED_TRACE(destroy_target == kProcessor ? "Processor" : "Targeter");
    auto root = std::make_unique<TestEventTarget>();
    auto target =
        std::make_unique<DestroyDuringDispatchEventTarget>(destroy_target);
    root->SetEventTargeter(
        std::make_unique<TestEventTargeter>(target.get(), false));
    TestEventProcessor* processor = target->processor();
    auto* target_ptr = target.get();
    processor->SetRoot(std::move(root));

    MouseEvent mouse(EventType::kMouseMoved, gfx::Point(10, 10),
                     gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);

    if (destroy_target == kProcessor) {
      EXPECT_TRUE(processor->OnEventFromSource(&mouse).dispatcher_destroyed);
    } else {
      EXPECT_FALSE(processor->OnEventFromSource(&mouse).dispatcher_destroyed);
      EXPECT_FALSE(target_ptr->GetEventTargeter());
    }
  }
}

namespace {

class DestroyDuringFindTargetEventTargeter : public TestEventTargeter {
 public:
  DestroyDuringFindTargetEventTargeter(std::unique_ptr<TestEventTarget> root,
                                       DestroyTarget target)
      : TestEventTargeter(nullptr, false),
        destroy_target_(target),
        root_(root.get()),
        processor_(std::make_unique<TestEventProcessor>()) {
    processor_->SetRoot(std::move(root));
  }
  DestroyDuringFindTargetEventTargeter(
      const DestroyDuringFindTargetEventTargeter&) = delete;
  DestroyDuringFindTargetEventTargeter& operator=(
      const DestroyDuringFindTargetEventTargeter&) = delete;
  ~DestroyDuringFindTargetEventTargeter() override = default;

  // EventTargeter:
  EventTarget* FindTargetForEvent(EventTarget* root, Event* event) override {
    switch (destroy_target_) {
      case kProcessor:
        processor_.reset();
        break;
      case kTargeter:
        processor_.release();
        DCHECK_EQ(this, root_->GetEventTargeter());
        root_->SetEventTargeter(nullptr);
    }
    return nullptr;
  }

  EventProcessor* processor() { return processor_.get(); }

 private:
  DestroyTarget destroy_target_;
  raw_ptr<TestEventTarget> root_;
  std::unique_ptr<TestEventProcessor> processor_;
};

}  // namespace

TEST(EventProcessorCrashTest, DestroyDuringFindTarget) {
  for (auto destroy_target : {kProcessor, kTargeter}) {
    SCOPED_TRACE(destroy_target == kProcessor ? "Processor" : "Targeter");
    auto root = std::make_unique<TestEventTarget>();
    TestEventTarget* root_ptr = root.get();
    auto event_targeter =
        std::make_unique<DestroyDuringFindTargetEventTargeter>(std::move(root),
                                                               destroy_target);
    auto* processor = event_targeter->processor();
    root_ptr->SetEventTargeter(std::move(event_targeter));

    MouseEvent mouse(EventType::kMouseMoved, gfx::Point(10, 10),
                     gfx::Point(10, 10), EventTimeForNow(), EF_NONE, EF_NONE);
    if (destroy_target == kProcessor) {
      EXPECT_TRUE(processor->OnEventFromSource(&mouse).dispatcher_destroyed);
    } else {
      EXPECT_FALSE(processor->OnEventFromSource(&mouse).dispatcher_destroyed);
      EXPECT_FALSE(root_ptr->GetEventTargeter());
      // TestEventTargeter releases the processor when deleting the targeter.
      delete processor;
    }
  }
}

}  // namespace test
}  // namespace ui