1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/time/time.h"
#include <windows.h>
#include <mmsystem.h>
#include <process.h>
#include <stdint.h>
#include <windows.foundation.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <vector>
#include "base/threading/platform_thread.h"
#include "base/win/registry.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
// For TimeDelta::ConstexprInitialization
constexpr int kExpectedDeltaInMilliseconds = 10;
constexpr TimeDelta kConstexprTimeDelta =
Milliseconds(kExpectedDeltaInMilliseconds);
class MockTimeTicks : public TimeTicks {
public:
static DWORD Ticker() {
return static_cast<int>(InterlockedIncrement(&ticker_));
}
static void InstallTicker() {
old_tick_function_ = SetMockTickFunction(&Ticker);
ticker_ = -5;
}
static void UninstallTicker() { SetMockTickFunction(old_tick_function_); }
private:
static volatile LONG ticker_;
static TickFunctionType old_tick_function_;
};
volatile LONG MockTimeTicks::ticker_;
MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_;
HANDLE g_rollover_test_start;
unsigned __stdcall RolloverTestThreadMain(void* param) {
int64_t counter = reinterpret_cast<int64_t>(param);
DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE);
EXPECT_EQ(rv, WAIT_OBJECT_0);
TimeTicks last = TimeTicks::Now();
for (int index = 0; index < counter; index++) {
TimeTicks now = TimeTicks::Now();
int64_t milliseconds = (now - last).InMilliseconds();
// This is a tight loop; we could have looped faster than our
// measurements, so the time might be 0 millis.
EXPECT_GE(milliseconds, 0);
EXPECT_LT(milliseconds, 250);
last = now;
}
return 0;
}
#if defined(_M_ARM64) && defined(__clang__)
#define ReadCycleCounter() _ReadStatusReg(ARM64_PMCCNTR_EL0)
#else
#define ReadCycleCounter() __rdtsc()
#endif
// Measure the performance of the CPU cycle counter so that we can compare it to
// the overhead of QueryPerformanceCounter. A hard-coded frequency is used
// because we don't care about the accuracy of the results, we just need to do
// the work. The amount of work is not exactly the same as in TimeTicks::Now
// (some steps are skipped) but that doesn't seem to materially affect the
// results.
TimeTicks GetTSC() {
// Using a fake cycle counter frequency for test purposes.
return TimeTicks() + Microseconds(ReadCycleCounter() *
Time::kMicrosecondsPerSecond / 10000000);
}
} // namespace
// This test spawns many threads, and can occasionally fail due to resource
// exhaustion in the presence of ASan.
#if defined(ADDRESS_SANITIZER)
#define MAYBE_WinRollover DISABLED_WinRollover
#else
#define MAYBE_WinRollover WinRollover
#endif
TEST(TimeTicks, MAYBE_WinRollover) {
// The internal counter rolls over at ~49days. We'll use a mock
// timer to test this case.
// Basic test algorithm:
// 1) Set clock to rollover - N
// 2) Create N threads
// 3) Start the threads
// 4) Each thread loops through TimeTicks() N times
// 5) Each thread verifies integrity of result.
const int kThreads = 8;
// Use int64_t so we can cast into a void* without a compiler warning.
const int64_t kChecks = 10;
// It takes a lot of iterations to reproduce the bug!
// (See bug 1081395)
for (int loop = 0; loop < 4096; loop++) {
// Setup
MockTimeTicks::InstallTicker();
g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0);
HANDLE threads[kThreads];
for (int index = 0; index < kThreads; index++) {
void* argument = reinterpret_cast<void*>(kChecks);
unsigned thread_id;
threads[index] = reinterpret_cast<HANDLE>(_beginthreadex(
NULL, 0, RolloverTestThreadMain, argument, 0, &thread_id));
EXPECT_NE((HANDLE)NULL, threads[index]);
}
// Start!
SetEvent(g_rollover_test_start);
// Wait for threads to finish
for (int index = 0; index < kThreads; index++) {
DWORD rv = WaitForSingleObject(threads[index], INFINITE);
EXPECT_EQ(rv, WAIT_OBJECT_0);
// Since using _beginthreadex() (as opposed to _beginthread),
// an explicit CloseHandle() is supposed to be called.
CloseHandle(threads[index]);
}
CloseHandle(g_rollover_test_start);
// Teardown
MockTimeTicks::UninstallTicker();
}
}
TEST(TimeTicks, SubMillisecondTimers) {
// IsHighResolution() is false on some systems. Since the product still works
// even if it's false, it makes this entire test questionable.
if (!TimeTicks::IsHighResolution()) {
return;
}
// Run kRetries attempts to see a sub-millisecond timer.
constexpr int kRetries = 1000;
for (int index = 0; index < kRetries; index++) {
const TimeTicks start_time = TimeTicks::Now();
TimeDelta delta;
// Spin until the clock has detected a change.
do {
delta = TimeTicks::Now() - start_time;
} while (delta.is_zero());
if (!delta.InMilliseconds()) {
return;
}
}
ADD_FAILURE() << "Never saw a sub-millisecond timer.";
}
TEST(TimeTicks, TimeGetTimeCaps) {
// Test some basic assumptions that we expect about how timeGetDevCaps works.
TIMECAPS caps;
MMRESULT status = timeGetDevCaps(&caps, sizeof(caps));
ASSERT_EQ(static_cast<MMRESULT>(MMSYSERR_NOERROR), status);
EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, caps.wPeriodMax);
}
TEST(TimeTicks, QueryPerformanceFrequency) {
// Test some basic assumptions that we expect about QPF.
LARGE_INTEGER frequency;
BOOL rv;
rv = QueryPerformanceFrequency(&frequency);
EXPECT_EQ(TRUE, rv);
EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz
printf("QueryPerformanceFrequency is %5.2fMHz\n",
frequency.QuadPart / 1000000.0);
LARGE_INTEGER frequency_next;
rv = QueryPerformanceFrequency(&frequency_next);
EXPECT_EQ(TRUE, rv);
// Expect that the frequency doesn't change.
EXPECT_EQ(frequency_next.QuadPart, frequency.QuadPart);
}
TEST(TimeTicks, TimerPerformance) {
// Verify that various timer mechanisms can always complete quickly.
// Note: This is a somewhat arbitrary test.
const int kLoops = 500000;
typedef TimeTicks (*TestFunc)();
struct TestCase {
TestFunc func;
const char* description;
};
// Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time)
// in order to create a single test case list.
static_assert(sizeof(TimeTicks) == sizeof(Time),
"TimeTicks and Time must be the same size");
std::vector<TestCase> cases;
cases.push_back({reinterpret_cast<TestFunc>(&Time::Now), "Time::Now"});
cases.push_back({&TimeTicks::Now, "TimeTicks::Now"});
cases.push_back({&GetTSC, "CPUCycleCounter"});
if (ThreadTicks::IsSupported()) {
ThreadTicks::WaitUntilInitialized();
cases.push_back(
{reinterpret_cast<TestFunc>(&ThreadTicks::Now), "ThreadTicks::Now"});
}
// Warm up the CPU to its full clock rate so that we get accurate timing
// information.
DWORD start_tick = GetTickCount();
const DWORD kWarmupMs = 50;
for (;;) {
DWORD elapsed = GetTickCount() - start_tick;
if (elapsed > kWarmupMs) {
break;
}
}
for (const auto& test_case : cases) {
TimeTicks start = TimeTicks::Now();
for (int index = 0; index < kLoops; index++) {
test_case.func();
}
TimeTicks stop = TimeTicks::Now();
// Turning off the check for acceptible delays. Without this check,
// the test really doesn't do much other than measure. But the
// measurements are still useful for testing timers on various platforms.
// The reason to remove the check is because the tests run on many
// buildbots, some of which are VMs. These machines can run horribly
// slow, and there is really no value for checking against a max timer.
// const int kMaxTime = 35; // Maximum acceptible milliseconds for test.
// EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
printf("%s: %1.2fus per call\n", test_case.description,
(stop - start).InMillisecondsF() * 1000 / kLoops);
}
}
#if !defined(ARCH_CPU_ARM64)
// This test is disabled on Windows ARM64 systems because TSCTicksPerSecond is
// only used in Chromium for QueryThreadCycleTime, and QueryThreadCycleTime
// doesn't use a constant-rate timer on ARM64.
TEST(TimeTicks, TSCTicksPerSecond) {
if (time_internal::HasConstantRateTSC()) {
ThreadTicks::WaitUntilInitialized();
// Read the CPU frequency from the registry.
base::win::RegKey processor_key(
HKEY_LOCAL_MACHINE,
L"Hardware\\Description\\System\\CentralProcessor\\0", KEY_QUERY_VALUE);
ASSERT_TRUE(processor_key.Valid());
DWORD processor_mhz_from_registry;
ASSERT_EQ(ERROR_SUCCESS,
processor_key.ReadValueDW(L"~MHz", &processor_mhz_from_registry));
// Expect the measured TSC frequency to be similar to the processor
// frequency from the registry (0.5% error).
double tsc_mhz_measured = time_internal::TSCTicksPerSecond() / 1e6;
EXPECT_NEAR(tsc_mhz_measured, processor_mhz_from_registry,
0.005 * processor_mhz_from_registry);
}
}
#endif
TEST(TimeTicks, FromQPCValue) {
if (!TimeTicks::IsHighResolution()) {
return;
}
LARGE_INTEGER frequency;
ASSERT_TRUE(QueryPerformanceFrequency(&frequency));
const int64_t ticks_per_second = frequency.QuadPart;
ASSERT_GT(ticks_per_second, 0);
// Generate the tick values to convert, advancing the tick count by varying
// amounts. These values will ensure that both the fast and overflow-safe
// conversion logic in FromQPCValue() is tested, and across the entire range
// of possible QPC tick values.
std::vector<int64_t> test_cases;
test_cases.push_back(0);
// Build the test cases.
{
const int kNumAdvancements = 100;
int64_t ticks = 0;
int64_t ticks_increment = 10;
for (int i = 0; i < kNumAdvancements; ++i) {
test_cases.push_back(ticks);
ticks += ticks_increment;
ticks_increment = ticks_increment * 6 / 5;
}
test_cases.push_back(Time::kQPCOverflowThreshold - 1);
test_cases.push_back(Time::kQPCOverflowThreshold);
test_cases.push_back(Time::kQPCOverflowThreshold + 1);
ticks = Time::kQPCOverflowThreshold + 10;
ticks_increment = 10;
for (int i = 0; i < kNumAdvancements; ++i) {
test_cases.push_back(ticks);
ticks += ticks_increment;
ticks_increment = ticks_increment * 6 / 5;
}
test_cases.push_back(std::numeric_limits<int64_t>::max());
}
// Test that the conversions using FromQPCValue() match those computed here
// using simple floating-point arithmetic. The floating-point math provides
// enough precision for all reasonable values to confirm that the
// implementation is correct to the microsecond, and for "very large" values
// it confirms that the answer is very close to correct.
for (int64_t ticks : test_cases) {
const double expected_microseconds_since_origin =
(static_cast<double>(ticks) * Time::kMicrosecondsPerSecond) /
ticks_per_second;
const TimeTicks converted_value = TimeTicks::FromQPCValue(ticks);
const double converted_microseconds_since_origin =
(converted_value - TimeTicks()).InMicrosecondsF();
// When we test with very large numbers we end up in a range where adjacent
// double values are far apart - 512.0 apart in one test failure. In that
// situation it makes no sense for our epsilon to be 1.0 - it should be
// the difference between adjacent doubles.
double epsilon = nextafter(expected_microseconds_since_origin, INFINITY) -
expected_microseconds_since_origin;
// Epsilon must be at least 1.0 because converted_microseconds_since_origin
// comes from an integral value, and expected_microseconds_since_origin is
// a double that is expected to be up to 0.999 larger. In addition, due to
// multiple roundings in the double calculation the actual error can be
// slightly larger than 1.0, even when the converted value is perfect. This
// epsilon value was chosen because it is slightly larger than the error
// seen in a test failure caused by the double rounding.
epsilon = std::max(epsilon, 1.002);
EXPECT_NEAR(expected_microseconds_since_origin,
converted_microseconds_since_origin, epsilon)
<< "ticks=" << ticks << ", to be converted via logic path: "
<< (ticks < Time::kQPCOverflowThreshold ? "FAST" : "SAFE");
}
}
TEST(TimeDelta, ConstexprInitialization) {
// Make sure that TimeDelta works around crbug.com/635974
EXPECT_EQ(kExpectedDeltaInMilliseconds, kConstexprTimeDelta.InMilliseconds());
}
TEST(TimeDelta, FromFileTime) {
FILETIME ft;
ft.dwLowDateTime = 1001;
ft.dwHighDateTime = 0;
// 100100 ns ~= 100 us.
EXPECT_EQ(Microseconds(100), TimeDelta::FromFileTime(ft));
ft.dwLowDateTime = 0;
ft.dwHighDateTime = 1;
// 2^32 * 100 ns ~= 2^32 * 10 us.
EXPECT_EQ(Microseconds((1ull << 32) / 10), TimeDelta::FromFileTime(ft));
}
TEST(TimeDelta, FromWinrtDateTime) {
ABI::Windows::Foundation::DateTime dt;
dt.UniversalTime = 0;
// 0 UniversalTime = no delta since epoch.
EXPECT_EQ(TimeDelta(), TimeDelta::FromWinrtDateTime(dt));
dt.UniversalTime = 101;
// 101 * 100 ns ~= 10.1 microseconds.
EXPECT_EQ(Microseconds(10.1), TimeDelta::FromWinrtDateTime(dt));
}
TEST(TimeDelta, ToWinrtDateTime) {
auto time_delta = Seconds(0);
// No delta since epoch = 0 DateTime.
EXPECT_EQ(0, time_delta.ToWinrtDateTime().UniversalTime);
time_delta = Microseconds(10);
// 10 microseconds = 100 * 100 ns.
EXPECT_EQ(100, time_delta.ToWinrtDateTime().UniversalTime);
}
TEST(TimeDelta, FromWinrtTimeSpan) {
ABI::Windows::Foundation::TimeSpan ts;
ts.Duration = 0;
// 0.
EXPECT_EQ(TimeDelta(), TimeDelta::FromWinrtTimeSpan(ts));
ts.Duration = 101;
// 101 * 100 ns ~= 10.1 microseconds.
EXPECT_EQ(Microseconds(10.1), TimeDelta::FromWinrtTimeSpan(ts));
}
TEST(TimeDelta, ToWinrtTimeSpan) {
auto time_delta = Seconds(0);
// 0.
EXPECT_EQ(0, time_delta.ToWinrtTimeSpan().Duration);
time_delta = Microseconds(10);
// 10 microseconds = 100 * 100 ns.
EXPECT_EQ(100, time_delta.ToWinrtTimeSpan().Duration);
}
TEST(HighResolutionTimer, GetUsage) {
Time::ResetHighResolutionTimerUsage();
// 0% usage since the timer isn't activated regardless of how much time has
// elapsed.
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
Sleep(10);
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
Time::ActivateHighResolutionTimer(true);
Time::ResetHighResolutionTimerUsage();
Sleep(20);
// 100% usage since the timer has been activated entire time.
EXPECT_EQ(100.0, Time::GetHighResolutionTimerUsage());
Time::ActivateHighResolutionTimer(false);
Sleep(20);
double usage1 = Time::GetHighResolutionTimerUsage();
// usage1 should be about 50%.
EXPECT_LT(usage1, 100.0);
EXPECT_GT(usage1, 0.0);
Time::ActivateHighResolutionTimer(true);
Sleep(10);
Time::ActivateHighResolutionTimer(false);
double usage2 = Time::GetHighResolutionTimerUsage();
// usage2 should be about 60%.
EXPECT_LT(usage2, 100.0);
EXPECT_GT(usage2, usage1);
Time::ResetHighResolutionTimerUsage();
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
}
} // namespace base
|