1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CC_TILES_TILING_COVERAGE_ITERATOR_H_
#define CC_TILES_TILING_COVERAGE_ITERATOR_H_
#include <algorithm>
#include <concepts>
#include <utility>
#include "base/check.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "cc/base/tiling_data.h"
#include "cc/cc_export.h"
#include "cc/tiles/tile_index.h"
#include "cc/tiles/tiling_internal.h"
#include "ui/gfx/geometry/axis_transform2d.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/size.h"
namespace cc {
// TilingCoverageIterator iterates over a generic tiling to expose the minimal
// set of tiles required to cover a given content rectangle.
//
// Iteration terminates once either the content area has been fully covered by
// by visited tiles, or all applicable tiles in the tiling have been visited.
template <typename T>
requires internal::Tiling<T>
class CC_EXPORT TilingCoverageIterator {
public:
using Tile = typename T::Tile;
TilingCoverageIterator() = default;
// Constructs an iterable coverage view for `tiling` which attempts to fully
// cover the content area given by `coverage_rect`, a rectangle that has been
// pre-scaled by `coverage_scale` relative to layer space.
TilingCoverageIterator(const T* tiling,
float coverage_scale,
const gfx::Rect& coverage_rect)
: tiling_(tiling),
coverage_rect_max_bounds_(
ComputeCoverageRectMaxBounds(*tiling,
tiling->raster_size(),
coverage_scale)),
coverage_rect_(
gfx::IntersectRects(coverage_rect, coverage_rect_max_bounds_)),
coverage_to_content_(
gfx::PreScaleAxisTransform2d(tiling->raster_transform(),
1 / coverage_scale)) {
if (coverage_rect_.IsEmpty()) {
return;
}
const gfx::Rect wanted_texels =
ComputeWantedTexels(coverage_to_content_, coverage_rect_);
const TilingData& data = *tiling->tiling_data();
top_left_.i = data.LastBorderTileXIndexFromSrcCoord(wanted_texels.x());
top_left_.j = data.LastBorderTileYIndexFromSrcCoord(wanted_texels.y());
bottom_right_.i =
1 +
std::max(data.FirstBorderTileXIndexFromSrcCoord(wanted_texels.right()),
top_left_.i);
bottom_right_.j =
1 +
std::max(data.FirstBorderTileYIndexFromSrcCoord(wanted_texels.bottom()),
top_left_.j);
index_ = top_left_;
AdvanceUntilTileIsRelevant();
}
TilingCoverageIterator(const TilingCoverageIterator&) = default;
TilingCoverageIterator& operator=(const TilingCoverageIterator&) = default;
~TilingCoverageIterator() = default;
// Returns true if and only if this iterator has been initialized for a
// specific tiling and has not yet advanced to the end of its coverage. Other
// methods on this object may only be called when this returns true, and the
// value returned here may only change after assigning or incrementing the
// iterator.
bool IsValid() const { return index_.j < bottom_right_.j; }
explicit operator bool() const { return IsValid(); }
// Advances the iterator to the next unvisited tile which covers some portion
// of the coverage rect.
TilingCoverageIterator& operator++() {
if (IsValid()) {
IncrementIndex();
AdvanceUntilTileIsRelevant();
}
return *this;
}
// The index of the current tile.
const TileIndex& index() const { return index_; }
int i() const { return index_.i; }
int j() const { return index_.j; }
// The current tile.
Tile* operator*() const { return current_tile_; }
Tile* operator->() const { return current_tile_; }
// The rect covered by the current tile within the space of the coverage rect.
const gfx::Rect& geometry_rect() const { return geometry_rect_; }
// The rect in texture space of the current tile's intersection with the
// coverage rect.
gfx::RectF texture_rect() const {
auto tex_origin = gfx::PointF(tiling_->tiling_data()
->TileBoundsWithBorder(index_.i, index_.j)
.origin());
// Convert from coverage space => content space => texture space.
gfx::RectF texture_rect =
coverage_to_content_.MapRect(gfx::RectF(geometry_rect_));
texture_rect.Offset(-tex_origin.OffsetFromOrigin());
return texture_rect;
}
private:
static gfx::Rect ComputeCoverageRectMaxBounds(const T& tiling,
const gfx::Size& layer_bounds,
float coverage_scale) {
gfx::Rect tiling_rect_in_layer_space =
gfx::ToEnclosingRect(tiling.raster_transform().InverseMapRect(
gfx::RectF(tiling.tiling_data()->tiling_rect())));
tiling_rect_in_layer_space.Intersect(gfx::Rect(layer_bounds));
return gfx::ScaleToEnclosingRect(tiling_rect_in_layer_space,
coverage_scale);
}
static gfx::Rect ComputeWantedTexels(
const gfx::AxisTransform2d& coverage_to_content,
const gfx::Rect& coverage_rect) {
gfx::RectF content_rect =
coverage_to_content.MapRect(gfx::RectF(coverage_rect));
content_rect.Offset(-0.5f, -0.5f);
return gfx::ToEnclosingRect(content_rect);
}
void IncrementIndex() {
++index_.i;
if (index_.i >= bottom_right_.i) {
index_.i = top_left_.i;
++index_.j;
}
}
void AdvanceUntilTileIsRelevant() {
const TilingData& data = *tiling_->tiling_data();
gfx::Rect last_geometry_rect;
Tile* next_tile = nullptr;
while (IsValid()) {
// Calculate the current geometry rect. As we reserved overlap between
// tiles to accommodate bilinear filtering and rounding errors in
// destination space, the geometry rect might overlap on the edges.
//
// We allow the tile to overreach by 1/1024 texels to avoid seams between
// tiles. The constant 1/1024 is picked by the fact that with bilinear
// filtering, the maximum error in color value introduced by clamping
// error in both u/v axis can't exceed
// 255 * (1 - (1 - 1/1024) * (1 - 1/1024)) ~= 0.498
// i.e. The color value can never flip over a rounding threshold.
gfx::RectF texel_extent = data.TexelExtent(index_.i, index_.j);
constexpr float kEpsilon = 1. / 1024.f;
texel_extent.Inset(-kEpsilon);
// Convert texel_extent to coverage scale, which is what we have to report
// geometry_rect in.
//
// We also adjust external edges to cover the whole recorded bounds in
// dest space if any edge of the tiling rect touches the recorded edge.
//
// For external edges, extend the tile to scaled recorded bounds. This is
// needed to fully cover the coverage space because the sample extent
// doesn't cover the last 0.5 texel to the recorded edge, and also the
// coverage space can be rounded up for up to 1 pixel. This overhang will
// never be sampled as the AA fragment shader clamps sample coordinate and
// antialiasing itself.
gfx::Rect geometry_rect = gfx::ToEnclosedRect(
coverage_to_content_.InverseMapRect(texel_extent));
geometry_rect.SetByBounds(
index_.i == 0 ? coverage_rect_max_bounds_.x() : geometry_rect.x(),
index_.j == 0 ? coverage_rect_max_bounds_.y() : geometry_rect.y(),
index_.i == data.num_tiles_x() - 1 ? coverage_rect_max_bounds_.right()
: geometry_rect.right(),
index_.j == data.num_tiles_y() - 1
? coverage_rect_max_bounds_.bottom()
: geometry_rect.bottom());
geometry_rect.Intersect(coverage_rect_);
if (!geometry_rect.IsEmpty()) {
next_tile = tiling_->TileAt(index_);
last_geometry_rect = std::exchange(geometry_rect_, geometry_rect);
break;
}
IncrementIndex();
}
current_tile_ = next_tile;
if (last_geometry_rect.IsEmpty()) {
// First tile or end of iteration. Nothing more to do in either case.
return;
}
// Iteration happens left->right, top->bottom. Running off the bottom-right
// edge is handled by the intersection above. Here we make sure that the
// new current geometry rect doesn't overlap with the previous one.
int min_left, min_top;
const bool new_row = index_.i == top_left_.i;
if (new_row) {
min_left = coverage_rect_.x();
min_top = last_geometry_rect.bottom();
} else {
min_left = last_geometry_rect.right();
min_top = last_geometry_rect.y();
}
const int inset_left = std::max(0, min_left - geometry_rect_.x());
const int inset_top = std::max(0, min_top - geometry_rect_.y());
geometry_rect_.Inset(gfx::Insets::TLBR(inset_top, inset_left, 0, 0));
#if DCHECK_IS_ON()
// Sometimes we run into an extreme case where we are at the edge of integer
// precision. When doing so, rect calculations may end up changing values
// unexpectedly. Unfortunately, there isn't much we can do at this point, so
// we just do the correctness checks if both y and x offsets are
// 'reasonable', meaning they are less than the specified value.
static constexpr int kReasonableOffsetForDcheck = 100'000'000;
if (!new_row && geometry_rect_.x() <= kReasonableOffsetForDcheck &&
geometry_rect_.y() <= kReasonableOffsetForDcheck) {
DCHECK_EQ(last_geometry_rect.right(), geometry_rect_.x());
DCHECK_EQ(last_geometry_rect.bottom(), geometry_rect_.bottom());
DCHECK_EQ(last_geometry_rect.y(), geometry_rect_.y());
}
#endif
}
RAW_PTR_EXCLUSION const T* tiling_;
gfx::Rect coverage_rect_max_bounds_;
gfx::Rect coverage_rect_;
gfx::AxisTransform2d coverage_to_content_;
TileIndex top_left_;
TileIndex bottom_right_;
TileIndex index_;
gfx::Rect geometry_rect_;
RAW_PTR_EXCLUSION Tile* current_tile_ = nullptr;
};
} // namespace cc
#endif // CC_TILES_TILING_COVERAGE_ITERATOR_H_
|