1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/utility/safe_browsing/mac/udif.h"
#include <CoreFoundation/CoreFoundation.h>
#include <bzlib.h>
#include <libkern/OSByteOrder.h>
#include <uuid/uuid.h>
#include <algorithm>
#include <array>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
#include "base/apple/foundation_util.h"
#include "base/apple/scoped_cftyperef.h"
#include "base/compiler_specific.h"
#include "base/containers/buffer_iterator.h"
#include "base/containers/span.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/notreached.h"
#include "base/numerics/ostream_operators.h"
#include "base/numerics/safe_math.h"
#include "base/strings/sys_string_conversions.h"
#include "chrome/utility/safe_browsing/mac/convert_big_endian.h"
#include "chrome/utility/safe_browsing/mac/read_stream.h"
#include "third_party/zlib/zlib.h"
namespace safe_browsing {
namespace dmg {
#pragma pack(push, 1)
// The following structures come from the analysis provided by Jonathan Levin
// at <http://newosxbook.com/DMG.html>.
//
// Note that all fields are stored in big endian.
struct UDIFChecksum {
uint32_t type;
uint32_t size;
std::array<uint32_t, 32> data;
};
static void ConvertBigEndian(UDIFChecksum* checksum) {
ConvertBigEndian(&checksum->type);
ConvertBigEndian(&checksum->size);
for (size_t i = 0; i < std::size(checksum->data); ++i) {
ConvertBigEndian(&checksum->data[i]);
}
}
// The trailer structure for a UDIF file.
struct UDIFResourceFile {
static const uint32_t kSignature = 'koly';
static const uint32_t kVersion = 4;
uint32_t signature;
uint32_t version;
uint32_t header_size; // Size of this structure.
uint32_t flags;
uint64_t running_data_fork_offset;
uint64_t data_fork_offset;
uint64_t data_fork_length;
uint64_t rsrc_fork_offset;
uint64_t rsrc_fork_length;
uint32_t segment_number;
uint32_t segment_count;
uuid_t segment_id;
UDIFChecksum data_checksum;
uint64_t plist_offset; // Offset and length of the blkx plist.
uint64_t plist_length;
uint8_t reserved1[64];
uint64_t code_signature_offset;
uint64_t code_signature_length;
uint8_t reserved2[40];
UDIFChecksum main_checksum;
uint32_t image_variant;
uint64_t sector_count;
uint32_t reserved3;
uint32_t reserved4;
uint32_t reserved5;
};
static void ConvertBigEndian(uuid_t* uuid) {
// UUID is never consulted, so do not swap.
}
static void ConvertBigEndian(UDIFResourceFile* file) {
ConvertBigEndian(&file->signature);
ConvertBigEndian(&file->version);
ConvertBigEndian(&file->flags);
ConvertBigEndian(&file->header_size);
ConvertBigEndian(&file->running_data_fork_offset);
ConvertBigEndian(&file->data_fork_offset);
ConvertBigEndian(&file->data_fork_length);
ConvertBigEndian(&file->rsrc_fork_offset);
ConvertBigEndian(&file->rsrc_fork_length);
ConvertBigEndian(&file->segment_number);
ConvertBigEndian(&file->segment_count);
ConvertBigEndian(&file->segment_id);
ConvertBigEndian(&file->data_checksum);
ConvertBigEndian(&file->plist_offset);
ConvertBigEndian(&file->plist_length);
ConvertBigEndian(&file->code_signature_offset);
ConvertBigEndian(&file->code_signature_length);
ConvertBigEndian(&file->main_checksum);
ConvertBigEndian(&file->image_variant);
// `sector_count` is never consulted, so do not swap.
// Note: If this is ever needed in the future, one must make a copy when byte
// swapping to avoid unaligned access.
// Reserved fields are skipped.
}
struct UDIFBlockChunk {
enum class Type : uint32_t {
ZERO_FILL = 0x00000000,
UNCOMPRESSED = 0x00000001,
IGNORED = 0x00000002,
COMPRESS_ADC = 0x80000004,
COMPRESS_ZLIB = 0x80000005,
COMPRESSS_BZ2 = 0x80000006,
COMMENT = 0x7ffffffe,
LAST_BLOCK = 0xffffffff,
};
Type type;
uint32_t comment;
uint64_t start_sector; // Logical chunk offset and length, in sectors.
uint64_t sector_count;
uint64_t compressed_offset; // Compressed offset and length, in bytes.
uint64_t compressed_length;
};
static void ConvertBigEndian(UDIFBlockChunk* chunk) {
ConvertBigEndian(reinterpret_cast<uint32_t*>(&chunk->type));
ConvertBigEndian(&chunk->comment);
ConvertBigEndian(&chunk->start_sector);
ConvertBigEndian(&chunk->sector_count);
ConvertBigEndian(&chunk->compressed_offset);
ConvertBigEndian(&chunk->compressed_length);
}
struct UDIFBlockData {
static const uint32_t kSignature = 'mish';
static const uint32_t kVersion = 1;
uint32_t signature;
uint32_t version;
uint64_t start_sector; // Logical block offset and length, in sectors.
uint64_t sector_count;
uint64_t data_offset;
uint32_t buffers_needed;
uint32_t block_descriptors;
uint32_t reserved1;
uint32_t reserved2;
uint32_t reserved3;
uint32_t reserved4;
uint32_t reserved5;
uint32_t reserved6;
UDIFChecksum checksum;
uint32_t chunk_count;
};
static void ConvertBigEndian(UDIFBlockData* block) {
ConvertBigEndian(&block->signature);
ConvertBigEndian(&block->version);
ConvertBigEndian(&block->start_sector);
ConvertBigEndian(&block->sector_count);
ConvertBigEndian(&block->data_offset);
ConvertBigEndian(&block->buffers_needed);
ConvertBigEndian(&block->block_descriptors);
// Reserved fields are skipped.
ConvertBigEndian(&block->checksum);
ConvertBigEndian(&block->chunk_count);
}
#pragma pack(pop)
// UDIFBlock takes a raw, big-endian block data pointer and stores, in host
// endian, the data for both the block and the chunk.
class UDIFBlock {
public:
UDIFBlock() : block_() {}
UDIFBlock(const UDIFBlock&) = delete;
UDIFBlock& operator=(const UDIFBlock&) = delete;
bool ParseBlockData(base::span<const uint8_t> block_data,
uint16_t sector_size) {
base::BufferIterator iterator(block_data);
const UDIFBlockData* block_header = iterator.Object<UDIFBlockData>();
if (!block_header) {
DLOG(ERROR) << "UDIF block data is smaller than expected";
return false;
}
block_ = *block_header;
ConvertBigEndian(&block_);
// Make sure the number of sectors doesn't overflow.
auto block_size = base::CheckedNumeric<size_t>(sector_count()) *
sector_size;
if (!block_size.IsValid()) {
DLOG(ERROR) << "UDIF block size overflows";
return false;
}
// Make sure the block data contains the reported number of chunks.
auto block_and_chunks_size =
(base::CheckedNumeric<size_t>(sizeof(UDIFBlockChunk)) *
block_.chunk_count) +
sizeof(block_);
if (!block_and_chunks_size.IsValid() ||
block_data.size() < block_and_chunks_size.ValueOrDie()) {
DLOG(ERROR) << "UDIF block does not contain reported number of chunks, "
<< block_and_chunks_size.ValueOrDie() << " bytes expected, "
<< "got " << block_data.size();
return false;
}
// Make sure that the chunk data isn't larger than the block reports.
base::CheckedNumeric<size_t> chunk_sectors(0);
for (uint32_t i = 0; i < block_.chunk_count; ++i) {
const UDIFBlockChunk* raw_chunk = iterator.Object<UDIFBlockChunk>();
// Total size check above should ensure that the chunk always exists
CHECK(raw_chunk);
chunks_.push_back(*raw_chunk);
UDIFBlockChunk* chunk = &chunks_[i];
ConvertBigEndian(chunk);
chunk_sectors += chunk->sector_count;
if (!chunk_sectors.IsValid() ||
chunk_sectors.ValueOrDie() > sector_count()) {
DLOG(ERROR) << "Total chunk sectors larger than reported block sectors";
return false;
}
auto chunk_end_offset =
base::CheckedNumeric<size_t>(chunk->compressed_offset) +
chunk->compressed_length;
if (!chunk_end_offset.IsValid() ||
chunk->compressed_length > block_size.ValueOrDie()) {
DLOG(ERROR) << "UDIF chunk data length " << i << " overflows";
return false;
}
}
return true;
}
uint32_t signature() const { return block_.signature; }
uint32_t version() const { return block_.version; }
uint64_t start_sector() const { return block_.start_sector; }
uint64_t sector_count() const { return block_.sector_count; }
uint64_t chunk_count() const { return chunks_.size(); }
const UDIFBlockChunk* chunk(uint32_t i) const {
if (i >= chunk_count())
return nullptr;
return &chunks_[i];
}
private:
UDIFBlockData block_;
std::vector<UDIFBlockChunk> chunks_;
};
namespace {
const size_t kSectorSize = 512;
class UDIFBlockChunkReadStream;
// A UDIFPartitionReadStream virtualizes a partition's non-contiguous blocks
// into a single stream.
class UDIFPartitionReadStream : public ReadStream {
public:
UDIFPartitionReadStream(ReadStream* stream,
uint16_t block_size,
const UDIFBlock* partition_block);
UDIFPartitionReadStream(const UDIFPartitionReadStream&) = delete;
UDIFPartitionReadStream& operator=(const UDIFPartitionReadStream&) = delete;
~UDIFPartitionReadStream() override;
bool Read(base::span<uint8_t> buf, size_t* bytes_read) override;
// Seek only supports SEEK_SET and SEEK_CUR.
off_t Seek(off_t offset, int whence) override;
private:
const raw_ptr<ReadStream> stream_; // The UDIF stream.
const uint16_t block_size_; // The UDIF block size.
const raw_ptr<const UDIFBlock> block_; // The block for this partition.
uint64_t current_chunk_; // The current chunk number.
// The current chunk stream.
std::unique_ptr<UDIFBlockChunkReadStream> chunk_stream_;
};
// A ReadStream for a single block chunk, which transparently handles
// decompression.
class UDIFBlockChunkReadStream : public ReadStream {
public:
UDIFBlockChunkReadStream(ReadStream* stream,
uint16_t block_size,
const UDIFBlockChunk* chunk);
UDIFBlockChunkReadStream(const UDIFBlockChunkReadStream&) = delete;
UDIFBlockChunkReadStream& operator=(const UDIFBlockChunkReadStream&) = delete;
~UDIFBlockChunkReadStream() override;
bool Read(base::span<uint8_t> buf, size_t* bytes_read) override;
// Seek only supports SEEK_SET.
off_t Seek(off_t offset, int whence) override;
bool IsAtEnd() { return offset_ >= length_in_bytes_; }
const UDIFBlockChunk* chunk() const { return chunk_; }
size_t length_in_bytes() const { return length_in_bytes_; }
private:
bool CopyOutZeros(base::span<uint8_t> buf, size_t* bytes_read);
bool CopyOutUncompressed(base::span<uint8_t> buf, size_t* bytes_read);
bool CopyOutDecompressed(base::span<uint8_t> buf, size_t* bytes_read);
bool HandleADC(base::span<uint8_t> buf, size_t* bytes_read);
bool HandleZLib(base::span<uint8_t> buf, size_t* bytes_read);
bool HandleBZ2(base::span<uint8_t> buf, size_t* bytes_read);
// Reads from |stream_| |chunk_->compressed_length| bytes, starting at
// |chunk_->compressed_offset|. Returns (possibly empty) vector containing
// data, or nullopt on error.
std::optional<std::vector<uint8_t>> ReadCompressedData();
const raw_ptr<ReadStream> stream_; // The UDIF stream.
const raw_ptr<const UDIFBlockChunk> chunk_; // The chunk to be read.
size_t length_in_bytes_; // The decompressed length in bytes.
size_t offset_; // The offset into the decompressed buffer.
std::vector<uint8_t> decompress_buffer_; // Decompressed data buffer.
bool did_decompress_; // Whether or not the chunk has been decompressed.
};
} // namespace
UDIFParser::UDIFParser(ReadStream* stream)
: stream_(stream),
partition_names_(),
blocks_(),
block_size_(kSectorSize) {}
UDIFParser::~UDIFParser() = default;
bool UDIFParser::Parse() {
if (!ParseBlkx())
return false;
return true;
}
const std::vector<uint8_t>& UDIFParser::GetCodeSignature() {
return signature_blob_;
}
size_t UDIFParser::GetNumberOfPartitions() {
return blocks_.size();
}
std::string UDIFParser::GetPartitionName(size_t part_number) {
DCHECK_LT(part_number, partition_names_.size());
return partition_names_[part_number];
}
std::string UDIFParser::GetPartitionType(size_t part_number) {
// The partition type is embedded in the Name field, as such:
// "Partition-Name (Partition-Type : Partition-ID)".
std::string name = GetPartitionName(part_number);
size_t open = name.rfind('(');
size_t separator = name.rfind(':');
if (open == std::string::npos || separator == std::string::npos)
return std::string();
// Name does not end in ')' or no space after ':'.
if (*(name.end() - 1) != ')' ||
(name.size() - separator < 2 || name[separator + 1] != ' ')) {
return std::string();
}
--separator;
++open;
if (separator <= open)
return std::string();
return name.substr(open, separator - open);
}
size_t UDIFParser::GetPartitionSize(size_t part_number) {
DCHECK_LT(part_number, blocks_.size());
auto size =
base::CheckedNumeric<size_t>(blocks_[part_number]->sector_count()) *
block_size_;
return size.ValueOrDie();
}
std::unique_ptr<ReadStream> UDIFParser::GetPartitionReadStream(
size_t part_number) {
DCHECK_LT(part_number, blocks_.size());
return std::make_unique<UDIFPartitionReadStream>(stream_, block_size_,
blocks_[part_number].get());
}
bool UDIFParser::ParseBlkx() {
UDIFResourceFile trailer;
off_t trailer_start = stream_->Seek(-sizeof(trailer), SEEK_END);
if (trailer_start == -1)
return false;
if (!stream_->ReadType(trailer)) {
DLOG(ERROR) << "Failed to read UDIFResourceFile";
return false;
}
ConvertBigEndian(&trailer);
if (trailer.signature != trailer.kSignature) {
DLOG(ERROR) << "blkx signature does not match, is 0x"
<< std::hex << trailer.signature;
return false;
}
if (trailer.version != trailer.kVersion) {
DLOG(ERROR) << "blkx version does not match, is " << trailer.version;
return false;
}
auto plist_end = base::CheckedNumeric<size_t>(trailer.plist_offset) +
trailer.plist_length;
if (!plist_end.IsValid() ||
plist_end.ValueOrDie() > base::checked_cast<size_t>(trailer_start)) {
DLOG(ERROR) << "blkx plist extends past UDIF trailer";
return false;
}
std::vector<uint8_t> plist_bytes(trailer.plist_length, 0);
if (stream_->Seek(trailer.plist_offset, SEEK_SET) == -1)
return false;
if (trailer.plist_length == 0 || !stream_->ReadExact(plist_bytes)) {
DLOG(ERROR) << "Failed to read blkx plist data";
return false;
}
base::apple::ScopedCFTypeRef<CFDataRef> plist_data(
CFDataCreateWithBytesNoCopy(kCFAllocatorDefault, plist_bytes.data(),
plist_bytes.size(), kCFAllocatorNull));
if (!plist_data) {
DLOG(ERROR) << "Failed to create data from bytes";
return false;
}
CFErrorRef error = nullptr;
base::apple::ScopedCFTypeRef<CFPropertyListRef> plist(
CFPropertyListCreateWithData(kCFAllocatorDefault, plist_data.get(),
kCFPropertyListImmutable, nullptr, &error));
CFDictionaryRef plist_dict =
base::apple::CFCast<CFDictionaryRef>(plist.get());
base::apple::ScopedCFTypeRef<CFErrorRef> error_ref(error);
if (error) {
base::apple::ScopedCFTypeRef<CFStringRef> error_string(
CFErrorCopyDescription(error));
DLOG(ERROR) << "Failed to parse XML plist: "
<< base::SysCFStringRefToUTF8(error_string.get());
return false;
}
if (!plist_dict) {
DLOG(ERROR) << "Plist is not a dictionary";
return false;
}
auto* resource_fork = base::apple::GetValueFromDictionary<CFDictionaryRef>(
plist_dict, CFSTR("resource-fork"));
if (!resource_fork) {
DLOG(ERROR) << "No resource-fork entry in plist";
return false;
}
auto* blkx = base::apple::GetValueFromDictionary<CFArrayRef>(resource_fork,
CFSTR("blkx"));
if (!blkx) {
DLOG(ERROR) << "No blkx entry in resource-fork";
return false;
}
for (CFIndex i = 0; i < CFArrayGetCount(blkx); ++i) {
auto* block_dictionary =
base::apple::CFCast<CFDictionaryRef>(CFArrayGetValueAtIndex(blkx, i));
if (!block_dictionary) {
DLOG(ERROR) << "Skipping block " << i
<< " because it is not a CFDictionary";
continue;
}
auto* data = base::apple::GetValueFromDictionary<CFDataRef>(
block_dictionary, CFSTR("Data"));
if (!data) {
DLOG(ERROR) << "Skipping block " << i
<< " because it has no Data section";
continue;
}
// Copy the block table out of the plist.
auto block = std::make_unique<UDIFBlock>();
// SAFETY: CFDataGetBytePtr is provided by Apple and documented to
// return CFDataGetLength bytes.
if (!block->ParseBlockData(UNSAFE_BUFFERS(
base::span(CFDataGetBytePtr(data),
base::checked_cast<size_t>(CFDataGetLength(data))),
block_size_))) {
DLOG(ERROR) << "Failed to parse UDIF block data";
return false;
}
if (block->signature() != UDIFBlockData::kSignature) {
DLOG(ERROR) << "Skipping block " << i << " because its signature does not"
<< " match, is 0x" << std::hex << block->signature();
continue;
}
if (block->version() != UDIFBlockData::kVersion) {
DLOG(ERROR) << "Skipping block " << i << "because its version does not "
<< "match, is " << block->version();
continue;
}
CFStringRef partition_name_cf = base::apple::CFCast<CFStringRef>(
CFDictionaryGetValue(block_dictionary, CFSTR("Name")));
if (!partition_name_cf) {
DLOG(ERROR) << "Skipping block " << i << " because it has no name";
continue;
}
std::string partition_name = base::SysCFStringRefToUTF8(partition_name_cf);
if (DLOG_IS_ON(INFO) && VLOG_IS_ON(1)) {
DVLOG(1) << "Name: " << partition_name;
DVLOG(1) << "StartSector = " << block->start_sector()
<< ", SectorCount = " << block->sector_count()
<< ", ChunkCount = " << block->chunk_count();
for (uint32_t j = 0; j < block->chunk_count(); ++j) {
const UDIFBlockChunk* chunk = block->chunk(j);
DVLOG(1) << "Chunk#" << j
<< " type = " << std::hex << static_cast<uint32_t>(chunk->type)
<< ", StartSector = " << std::dec << chunk->start_sector
<< ", SectorCount = " << chunk->sector_count
<< ", CompressOffset = " << chunk->compressed_offset
<< ", CompressLen = " << chunk->compressed_length;
}
}
blocks_.push_back(std::move(block));
partition_names_.push_back(partition_name);
}
// The offsets in the trailer could be garbage in DMGs that aren't signed.
// Need a sanity check that the DMG has legit values for these fields.
if (trailer.code_signature_length != 0 && trailer_start > 0) {
auto code_signature_end =
base::CheckedNumeric<size_t>(trailer.code_signature_offset) +
trailer.code_signature_length;
if (code_signature_end.IsValid() &&
code_signature_end.ValueOrDie() <=
base::checked_cast<size_t>(trailer_start)) {
signature_blob_.resize(trailer.code_signature_length);
off_t code_signature_start =
stream_->Seek(trailer.code_signature_offset, SEEK_SET);
if (code_signature_start == -1)
return false;
size_t bytes_read = 0;
if (!stream_->Read(signature_blob_, &bytes_read)) {
DLOG(ERROR) << "Failed to read raw signature bytes";
return false;
}
if (bytes_read != trailer.code_signature_length) {
DLOG(ERROR) << "Read unexpected number of raw signature bytes";
return false;
}
}
}
return true;
}
namespace {
UDIFPartitionReadStream::UDIFPartitionReadStream(
ReadStream* stream,
uint16_t block_size,
const UDIFBlock* partition_block)
: stream_(stream),
block_size_(block_size),
block_(partition_block),
current_chunk_(0),
chunk_stream_() {
}
UDIFPartitionReadStream::~UDIFPartitionReadStream() = default;
bool UDIFPartitionReadStream::Read(base::span<uint8_t> buf,
size_t* bytes_read) {
size_t buffer_space_remaining = buf.size();
*bytes_read = 0;
for (uint32_t i = current_chunk_; i < block_->chunk_count(); ++i) {
const UDIFBlockChunk* chunk = block_->chunk(i);
// If this is the last block chunk, then the read is complete.
if (chunk->type == UDIFBlockChunk::Type::LAST_BLOCK) {
break;
}
// If the buffer is full, then the read is complete.
if (buffer_space_remaining == 0)
break;
// A chunk stream may exist if the last read from this chunk was partial,
// or if the stream was Seek()ed.
if (!chunk_stream_) {
chunk_stream_ = std::make_unique<UDIFBlockChunkReadStream>(
stream_, block_size_, chunk);
}
DCHECK_EQ(chunk, chunk_stream_->chunk());
size_t chunk_bytes_read = 0;
if (!chunk_stream_->Read(buf.last(buffer_space_remaining),
&chunk_bytes_read)) {
DLOG(ERROR) << "Failed to read " << buffer_space_remaining << " bytes "
<< "from chunk " << i;
return false;
}
*bytes_read += chunk_bytes_read;
buffer_space_remaining -= chunk_bytes_read;
if (chunk_stream_->IsAtEnd()) {
chunk_stream_.reset();
++current_chunk_;
}
}
return true;
}
off_t UDIFPartitionReadStream::Seek(off_t offset, int whence) {
// Translate SEEK_END to SEEK_SET. SEEK_CUR is not currently supported.
if (whence == SEEK_END) {
base::CheckedNumeric<off_t> safe_offset(block_->sector_count());
safe_offset *= block_size_;
safe_offset += offset;
if (!safe_offset.IsValid()) {
DLOG(ERROR) << "Seek offset overflows";
return -1;
}
offset = safe_offset.ValueOrDie();
} else if (whence != SEEK_SET) {
DCHECK_EQ(SEEK_SET, whence);
}
uint64_t sector = offset / block_size_;
// Find the chunk for this sector.
uint32_t chunk_number = 0;
const UDIFBlockChunk* chunk = nullptr;
for (uint32_t i = 0; i < block_->chunk_count(); ++i) {
const UDIFBlockChunk* chunk_it = block_->chunk(i);
// This assumes that all the chunks are ordered by sector.
if (i != 0) {
DLOG_IF(ERROR,
chunk_it->start_sector < block_->chunk(i - 1)->start_sector)
<< "Chunks are not ordered by sector at chunk " << i
<< " , previous start_sector = "
<< block_->chunk(i - 1)->start_sector << ", current = "
<< chunk_it->start_sector;
}
if (sector >= chunk_it->start_sector) {
chunk = chunk_it;
chunk_number = i;
} else {
break;
}
}
if (!chunk) {
DLOG(ERROR) << "Failed to Seek to partition offset " << offset;
return -1;
}
// Compute the offset into the chunk.
uint64_t offset_in_sector = offset % block_size_;
uint64_t start_sector = sector - chunk->start_sector;
base::CheckedNumeric<uint64_t> decompress_read_offset(start_sector);
decompress_read_offset *= block_size_;
decompress_read_offset += offset_in_sector;
if (!decompress_read_offset.IsValid()) {
DLOG(ERROR) << "Partition decompress read offset overflows";
return -1;
}
if (!chunk_stream_ || chunk != chunk_stream_->chunk()) {
chunk_stream_ =
std::make_unique<UDIFBlockChunkReadStream>(stream_, block_size_, chunk);
}
current_chunk_ = chunk_number;
if (chunk_stream_->Seek(
base::ValueOrDieForType<off_t>(decompress_read_offset), SEEK_SET) ==
-1)
return -1;
return offset;
}
UDIFBlockChunkReadStream::UDIFBlockChunkReadStream(ReadStream* stream,
uint16_t block_size,
const UDIFBlockChunk* chunk)
: stream_(stream),
chunk_(chunk),
length_in_bytes_(chunk->sector_count * block_size),
offset_(0),
decompress_buffer_(),
did_decompress_(false) {
// Make sure the multiplication above did not overflow.
CHECK(length_in_bytes_ == 0 || length_in_bytes_ >= block_size);
}
UDIFBlockChunkReadStream::~UDIFBlockChunkReadStream() = default;
bool UDIFBlockChunkReadStream::Read(base::span<uint8_t> buf,
size_t* bytes_read) {
switch (chunk_->type) {
case UDIFBlockChunk::Type::ZERO_FILL:
case UDIFBlockChunk::Type::IGNORED:
return CopyOutZeros(buf, bytes_read);
case UDIFBlockChunk::Type::UNCOMPRESSED:
return CopyOutUncompressed(buf, bytes_read);
case UDIFBlockChunk::Type::COMPRESS_ADC:
return HandleADC(buf, bytes_read);
case UDIFBlockChunk::Type::COMPRESS_ZLIB:
return HandleZLib(buf, bytes_read);
case UDIFBlockChunk::Type::COMPRESSS_BZ2:
return HandleBZ2(buf, bytes_read);
case UDIFBlockChunk::Type::COMMENT:
NOTREACHED();
case UDIFBlockChunk::Type::LAST_BLOCK:
*bytes_read = 0;
return true;
}
return false;
}
off_t UDIFBlockChunkReadStream::Seek(off_t offset, int whence) {
DCHECK_EQ(SEEK_SET, whence);
if (static_cast<uint64_t>(offset) >= length_in_bytes_)
return -1;
offset_ = offset;
return offset_;
}
bool UDIFBlockChunkReadStream::CopyOutZeros(base::span<uint8_t> buf,
size_t* bytes_read) {
*bytes_read = std::min(buf.size(), length_in_bytes_ - offset_);
UNSAFE_TODO(bzero(buf.data(), *bytes_read));
offset_ += *bytes_read;
return true;
}
bool UDIFBlockChunkReadStream::CopyOutUncompressed(base::span<uint8_t> buf,
size_t* bytes_read) {
*bytes_read = std::min(buf.size(), length_in_bytes_ - offset_);
if (*bytes_read == 0) {
return true;
}
uint64_t offset = chunk_->compressed_offset + offset_;
if (stream_->Seek(offset, SEEK_SET) == -1) {
return false;
}
bool rv = stream_->Read(buf.first(*bytes_read), bytes_read);
if (rv) {
offset_ += *bytes_read;
} else {
DLOG(ERROR) << "Failed to read uncompressed chunk data";
}
return rv;
}
bool UDIFBlockChunkReadStream::CopyOutDecompressed(base::span<uint8_t> buf,
size_t* bytes_read) {
DCHECK(did_decompress_);
*bytes_read = std::min(buf.size(), decompress_buffer_.size() - offset_);
base::span<uint8_t> src_data =
base::span(decompress_buffer_).subspan(offset_, *bytes_read);
buf.copy_prefix_from(src_data);
offset_ += *bytes_read;
return true;
}
bool UDIFBlockChunkReadStream::HandleADC(base::span<uint8_t> buf,
size_t* bytes_read) {
// TODO(rsesek): Implement ADC handling.
NOTIMPLEMENTED();
return false;
}
bool UDIFBlockChunkReadStream::HandleZLib(base::span<uint8_t> buf,
size_t* bytes_read) {
if (!did_decompress_) {
auto compressed_data_or_error = ReadCompressedData();
if (!compressed_data_or_error.has_value()) {
return false;
}
std::vector<uint8_t>& compressed_data = compressed_data_or_error.value();
z_stream zlib = {};
if (inflateInit(&zlib) != Z_OK) {
DLOG(ERROR) << "Failed to initialize zlib";
return false;
}
decompress_buffer_.resize(length_in_bytes_);
zlib.next_in = compressed_data.data();
zlib.avail_in = compressed_data.size();
zlib.next_out = decompress_buffer_.data();
zlib.avail_out = decompress_buffer_.size();
int rv = inflate(&zlib, Z_FINISH);
inflateEnd(&zlib);
if (rv != Z_STREAM_END) {
DLOG(ERROR) << "Failed to decompress zlib data, error = " << rv;
return false;
}
did_decompress_ = true;
}
return CopyOutDecompressed(buf, bytes_read);
}
bool UDIFBlockChunkReadStream::HandleBZ2(base::span<uint8_t> buf,
size_t* bytes_read) {
if (!did_decompress_) {
auto compressed_data_or_error = ReadCompressedData();
if (!compressed_data_or_error.has_value()) {
return false;
}
std::vector<uint8_t>& compressed_data = compressed_data_or_error.value();
bz_stream bz = {};
if (BZ2_bzDecompressInit(&bz, 0, 0) != BZ_OK) {
DLOG(ERROR) << "Failed to initialize bzlib";
return false;
}
decompress_buffer_.resize(length_in_bytes_);
bz.next_in = reinterpret_cast<char*>(compressed_data.data());
bz.avail_in = compressed_data.size();
bz.next_out = reinterpret_cast<char*>(decompress_buffer_.data());
bz.avail_out = decompress_buffer_.size();
int rv = BZ2_bzDecompress(&bz);
BZ2_bzDecompressEnd(&bz);
if (rv != BZ_STREAM_END) {
DLOG(ERROR) << "Failed to decompress BZ2 data, error = " << rv;
return false;
}
did_decompress_ = true;
}
return CopyOutDecompressed(buf, bytes_read);
}
std::optional<std::vector<uint8_t>>
UDIFBlockChunkReadStream::ReadCompressedData() {
std::vector<uint8_t> data;
data.resize(chunk_->compressed_length);
if (stream_->Seek(chunk_->compressed_offset, SEEK_SET) == -1) {
return std::nullopt;
}
if (!stream_->ReadExact(data)) {
return std::nullopt;
}
return data;
}
} // namespace
} // namespace dmg
} // namespace safe_browsing
|