File: inverted_index.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (373 lines) | stat: -rw-r--r-- 14,509 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chromeos/ash/components/local_search_service/inverted_index.h"

#include <numeric>
#include <string>
#include <tuple>
#include <vector>

#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/strings/utf_string_conversions.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "chromeos/ash/components/local_search_service/search_utils.h"

namespace ash::local_search_service {

namespace {

// (document-score, posting-of-all-matching-terms).
using ScoreWithPosting = std::pair<double, Posting>;

// Calculates TF-IDF scores for a term
std::vector<TfidfResult> CalculateTfidf(const std::u16string& term,
                                        const DocLength& doc_length,
                                        const Dictionary& dictionary) {
  std::vector<TfidfResult> results;
  // We don't apply weights to idf because the effect is likely small.
  const float idf =
      1.0 + log((1.0 + doc_length.size()) / (1.0 + dictionary.at(term).size()));

  for (const auto& item : dictionary.at(term)) {
    // If a term has a very low content weight in a doc, its effective number of
    // occurrences in the doc should be lower. Strictly speaking, the effective
    // length of the doc should be smaller too. However, for performance
    // reasons, we only apply the weight to the term occurrences but not doc
    // length.
    // TODO(jiameng): this is an expensive operation, we will need to monitor
    // its performance and optimize it.
    const double effective_term_occ = std::accumulate(
        item.second.begin(), item.second.end(), 0.0,
        [](double sum, const WeightedPosition& weighted_position) {
          return sum + weighted_position.weight;
        });
    const float tf = effective_term_occ / doc_length.at(item.first);
    results.push_back({item.first, item.second, tf * idf});
  }
  return results;
}

// Builds TF-IDF cache given the data. Since this function is expensive, it
// should run on a non-blocking thread that is different than the main thread.
TfidfCache BuildTfidf(uint32_t num_docs_from_last_update,
                      const DocLength& doc_length,
                      const Dictionary& dictionary,
                      const TermSet& terms_to_be_updated,
                      const TfidfCache& tfidf_cache) {
  // TODO(crbug.com/40152719): consider moving the helper functions inside the
  // class so that we can use SequenceChecker.
  TfidfCache new_cache(tfidf_cache);
  // If number of documents doesn't change from the last time index was built,
  // we only need to update terms in |terms_to_be_updated|. Otherwise we need
  // to rebuild the index.
  if (num_docs_from_last_update == doc_length.size()) {
    for (const auto& term : terms_to_be_updated) {
      if (dictionary.find(term) != dictionary.end()) {
        new_cache[term] = CalculateTfidf(term, doc_length, dictionary);
      } else {
        new_cache.erase(term);
      }
    }
  } else {
    new_cache.clear();
    for (const auto& item : dictionary) {
      new_cache[item.first] =
          CalculateTfidf(item.first, doc_length, dictionary);
    }
  }
  return new_cache;
}

// Removes a document from document state variables given it's ID. Don't do
// anything if the ID doesn't exist. Return true if the document is removed.
bool RemoveDocumentIfExist(const std::string& document_id,
                           DocLength* doc_length,
                           Dictionary* dictionary,
                           TermSet* terms_to_be_updated) {
  CHECK(doc_length);
  CHECK(dictionary);
  CHECK(terms_to_be_updated);
  bool document_removed = false;
  if (doc_length->find(document_id) == doc_length->end())
    return document_removed;
  doc_length->erase(document_id);
  for (auto it = dictionary->begin(); it != dictionary->end();) {
    if (it->second.find(document_id) != it->second.end()) {
      terms_to_be_updated->insert(it->first);
      it->second.erase(document_id);
      document_removed = true;
    }

    // Removes term from the dictionary if its posting list is empty.
    if (it->second.empty()) {
      it = dictionary->erase(it);
    } else {
      it++;
    }
  }
  return document_removed;
}

// Given list of documents to update and document state variables, returns new
// document state variables and number of deleted documents.
std::pair<DocumentStateVariables, uint32_t> UpdateDocumentStateVariables(
    DocumentToUpdate&& documents_to_update,
    const DocLength& doc_length,
    Dictionary&& dictionary,
    TermSet&& terms_to_be_updated) {
  DocLength new_doc_length(doc_length);
  uint32_t num_deleted = 0u;
  for (const auto& document : documents_to_update) {
    const std::string document_id(document.first);
    bool is_deleted = RemoveDocumentIfExist(document_id, &new_doc_length,
                                            &dictionary, &terms_to_be_updated);

    // Update the document if necessary.
    if (!document.second.empty()) {
      // If document content is not empty, it is being updated but not
      // deleted.
      is_deleted = false;
      for (const auto& token : document.second) {
        dictionary[token.content][document_id] = token.positions;
        new_doc_length[document_id] += token.positions.size();
        terms_to_be_updated.insert(token.content);
      }
    }
    num_deleted += (is_deleted) ? 1 : 0;
  }

  return std::make_pair(
      std::make_tuple(std::move(new_doc_length), std::move(dictionary),
                      std::move(terms_to_be_updated)),
      num_deleted);
}

// Given the index variables, clear all the data.
std::pair<DocumentStateVariables, TfidfCache> ClearData(
    DocumentToUpdate&& documents_to_update,
    const DocLength& doc_length,
    Dictionary&& dictionary,
    TermSet&& terms_to_be_updated,
    TfidfCache&& tfidf_cache) {
  DocLength new_doc_length;
  documents_to_update.clear();
  dictionary.clear();
  terms_to_be_updated.clear();
  tfidf_cache.clear();
  return std::make_pair(
      std::make_tuple(std::move(new_doc_length), std::move(dictionary),
                      std::move(terms_to_be_updated)),
      std::move(tfidf_cache));
}

}  // namespace

InvertedIndex::InvertedIndex() {
  task_runner_ = base::ThreadPool::CreateSequencedTaskRunner(
      {base::TaskPriority::BEST_EFFORT, base::MayBlock(),
       base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN});
}
InvertedIndex::~InvertedIndex() = default;

PostingList InvertedIndex::FindTerm(const std::u16string& term) const {
  auto it = dictionary_.find(term);
  if (it != dictionary_.end()) {
    return it->second;
  }

  return {};
}

std::vector<Result> InvertedIndex::FindMatchingDocumentsApproximately(
    const std::unordered_set<std::u16string>& terms,
    double prefix_threshold,
    double block_threshold) const {
  // For each document, its score is the sum of the scores of its terms that
  // match one of more query term. Each term's score is the product of its
  // TF-IDF score and its match relevance score.
  // The map is keyed by the document id.
  std::unordered_map<std::string, ScoreWithPosting> matching_docs;
  for (const auto& kv : tfidf_cache_) {
    const std::u16string& index_term = kv.first;
    const std::vector<TfidfResult>& tfidf_results = kv.second;
    for (const auto& term : terms) {
      const float relevance = RelevanceCoefficient(
          term, index_term, prefix_threshold, block_threshold);
      if (relevance > 0) {
        // If the |index_term| is relevant, all of the enclosing documents will
        // have their ranking scores updated.
        for (const auto& docid_tfidf : tfidf_results) {
          const std::string& docid = std::get<0>(docid_tfidf);
          const Posting& posting = std::get<1>(docid_tfidf);
          const float tfidf = std::get<2>(docid_tfidf);
          auto it = matching_docs.find(docid);
          if (it == matching_docs.end()) {
            it = matching_docs.emplace(docid, ScoreWithPosting(0.0, {})).first;
          }

          auto& score_posting = it->second;
          // TODO(jiameng): add position penalty.
          score_posting.first += tfidf * relevance;
          // Also update matching positions.
          auto& existing_posting = score_posting.second;
          existing_posting.insert(existing_posting.end(), posting.begin(),
                                  posting.end());
        }
        // Break out from inner loop, i.e. no need to check other query terms.
        break;
      }
    }
  }

  std::vector<Result> sorted_matching_docs;
  for (const auto& kv : matching_docs) {
    // We don't need to include weights in the search results.
    std::vector<Position> positions;
    for (const auto& weighted_position : kv.second.second) {
      positions.emplace_back(weighted_position.position);
    }
    sorted_matching_docs.emplace_back(
        Result(kv.first, kv.second.first, positions));
  }
  std::sort(sorted_matching_docs.begin(), sorted_matching_docs.end(),
            CompareResults);
  return sorted_matching_docs;
}

void InvertedIndex::AddDocuments(const DocumentToUpdate& documents,
                                 base::OnceCallback<void()> callback) {
  if (documents.empty())
    return;

  task_runner_->PostTaskAndReplyWithResult(
      FROM_HERE,
      base::BindOnce(&UpdateDocumentStateVariables, documents,
                     std::move(doc_length_), std::move(dictionary_),
                     std::move(terms_to_be_updated_)),
      base::BindOnce(&InvertedIndex::OnAddDocumentsComplete,
                     weak_ptr_factory_.GetWeakPtr(), std::move(callback)));
}

void InvertedIndex::RemoveDocuments(
    const std::vector<std::string>& document_ids,
    base::OnceCallback<void(uint32_t)> callback) {
  DocumentToUpdate documents;
  for (const auto& id : document_ids) {
    documents.push_back({id, std::vector<Token>()});
  }

  task_runner_->PostTaskAndReplyWithResult(
      FROM_HERE,
      base::BindOnce(&UpdateDocumentStateVariables, documents,
                     std::move(doc_length_), std::move(dictionary_),
                     std::move(terms_to_be_updated_)),
      base::BindOnce(&InvertedIndex::OnUpdateDocumentsComplete,
                     weak_ptr_factory_.GetWeakPtr(), std::move(callback)));
}

void InvertedIndex::UpdateDocuments(
    const DocumentToUpdate& documents,
    base::OnceCallback<void(uint32_t)> callback) {
  task_runner_->PostTaskAndReplyWithResult(
      FROM_HERE,
      base::BindOnce(&UpdateDocumentStateVariables, documents,
                     std::move(doc_length_), std::move(dictionary_),
                     std::move(terms_to_be_updated_)),
      base::BindOnce(&InvertedIndex::OnUpdateDocumentsComplete,
                     weak_ptr_factory_.GetWeakPtr(), std::move(callback)));
}

std::vector<TfidfResult> InvertedIndex::GetTfidf(
    const std::u16string& term) const {
  auto it = tfidf_cache_.find(term);
  if (it != tfidf_cache_.end()) {
    return it->second;
  }

  return {};
}

void InvertedIndex::BuildInvertedIndex(base::OnceCallback<void()> callback) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  task_runner_->PostTaskAndReplyWithResult(
      FROM_HERE,
      base::BindOnce(&BuildTfidf, num_docs_from_last_update_, doc_length_,
                     dictionary_, std::move(terms_to_be_updated_),
                     tfidf_cache_),
      base::BindOnce(&InvertedIndex::OnBuildTfidfComplete,
                     weak_ptr_factory_.GetWeakPtr(), std::move(callback)));
}

void InvertedIndex::ClearInvertedIndex(base::OnceCallback<void()> callback) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  task_runner_->PostTaskAndReplyWithResult(
      FROM_HERE,
      base::BindOnce(&ClearData, std::move(documents_to_update_), doc_length_,
                     std::move(dictionary_), std::move(terms_to_be_updated_),
                     std::move(tfidf_cache_)),
      base::BindOnce(&InvertedIndex::OnDataCleared,
                     weak_ptr_factory_.GetWeakPtr(), std::move(callback)));
}

void InvertedIndex::OnBuildTfidfComplete(base::OnceCallback<void()> callback,
                                         TfidfCache&& new_cache) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  num_docs_from_last_update_ = doc_length_.size();
  tfidf_cache_ = std::move(new_cache);

  std::move(callback).Run();
}

void InvertedIndex::OnUpdateDocumentsComplete(
    base::OnceCallback<void(uint32_t)> callback,
    std::pair<DocumentStateVariables, uint32_t>&&
        document_state_variables_and_num_deleted) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  doc_length_ =
      std::move(std::get<0>(document_state_variables_and_num_deleted.first));
  dictionary_ =
      std::move(std::get<1>(document_state_variables_and_num_deleted.first));
  terms_to_be_updated_ =
      std::move(std::get<2>(document_state_variables_and_num_deleted.first));

  BuildInvertedIndex(base::BindOnce(
      [](base::OnceCallback<void(uint32_t)> callback, uint32_t num_deleted) {
        std::move(callback).Run(num_deleted);
      },
      std::move(callback), document_state_variables_and_num_deleted.second));
}

void InvertedIndex::OnAddDocumentsComplete(
    base::OnceCallback<void()> callback,
    std::pair<DocumentStateVariables, uint32_t>&&
        document_state_variables_and_num_deleted) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  DCHECK_EQ(document_state_variables_and_num_deleted.second, 0u);
  doc_length_ =
      std::move(std::get<0>(document_state_variables_and_num_deleted.first));
  dictionary_ =
      std::move(std::get<1>(document_state_variables_and_num_deleted.first));
  terms_to_be_updated_ =
      std::move(std::get<2>(document_state_variables_and_num_deleted.first));

  BuildInvertedIndex(std::move(callback));
}

void InvertedIndex::OnDataCleared(
    base::OnceCallback<void()> callback,
    std::pair<DocumentStateVariables, TfidfCache>&& inverted_index_data) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  doc_length_ = std::move(std::get<0>(inverted_index_data.first));
  dictionary_ = std::move(std::get<1>(inverted_index_data.first));
  terms_to_be_updated_ = std::move(std::get<2>(inverted_index_data.first));
  tfidf_cache_ = std::move(inverted_index_data.second);
  num_docs_from_last_update_ = 0;

  std::move(callback).Run();
}

}  // namespace ash::local_search_service