1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "chromeos/ash/components/memory/userspace_swap/swap_storage.h"
#include <fcntl.h>
#include <linux/userfaultfd.h>
#include <poll.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/vfs.h>
#include <unistd.h>
#include <cstring>
#include "base/containers/span.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/numerics/checked_math.h"
#include "base/path_service.h"
#include "base/posix/eintr_wrapper.h"
#include "base/process/process_metrics.h"
#include "base/threading/scoped_blocking_call.h"
#include "crypto/aead.h"
#include "crypto/random.h"
#include "third_party/zlib/google/compression_utils.h"
namespace ash {
namespace memory {
namespace userspace_swap {
namespace {
// Adds a compression layer to a SwapFile.
class CompressedSwapFile : public SwapFile {
public:
CompressedSwapFile(const CompressedSwapFile&) = delete;
CompressedSwapFile& operator=(const CompressedSwapFile&) = delete;
~CompressedSwapFile() override;
// SwapFile impl:
bool WriteToSwap(const Region& src, Region* swap_region) override;
ssize_t ReadFromSwap(const Region& swap_region, const Region& dest) override;
protected:
friend class SwapFile;
friend class EncryptedCompressedSwapFile;
explicit CompressedSwapFile(base::ScopedFD fd);
// Compress will compress the region |src| into the region |dest| returning
// true if successful. Upon successful completion |compressed_size| will
// contain the number of compressed bytes written to |dest|.
static bool Compress(const Region& src,
const Region& dest,
size_t* compressed_size);
// Decompress will decompress the region |src| into |dest|. It is expected
// that |dest| be large enough to hold the decompressed buffer, the return
// value is the number of decompressed bytes.
static ssize_t Decompress(const Region& src, const Region& dest);
};
// Adds an encryption layer to a SwapFile.
class EncryptedSwapFile : public SwapFile {
public:
EncryptedSwapFile(const EncryptedSwapFile&) = delete;
EncryptedSwapFile& operator=(const EncryptedSwapFile&) = delete;
~EncryptedSwapFile() override;
// SwapFile impl:
bool WriteToSwap(const Region& src, Region* swap_region) override;
ssize_t ReadFromSwap(const Region& swap_region, const Region& dest) override;
protected:
friend class SwapFile;
explicit EncryptedSwapFile(base::ScopedFD fd);
// This key and nonce are random and ephemeral.
crypto::Aead aead_;
std::vector<uint8_t> key_;
std::vector<uint8_t> nonce_;
};
// Adds a encryption layer to a compressed swap file.
class EncryptedCompressedSwapFile : public EncryptedSwapFile {
public:
EncryptedCompressedSwapFile(const EncryptedCompressedSwapFile&) = delete;
EncryptedCompressedSwapFile& operator=(const EncryptedCompressedSwapFile&) =
delete;
~EncryptedCompressedSwapFile() override;
// SwapFile impl:
bool WriteToSwap(const Region& src, Region* swap_region) override;
ssize_t ReadFromSwap(const Region& swap_region, const Region& dest) override;
protected:
friend class SwapFile;
explicit EncryptedCompressedSwapFile(base::ScopedFD fd);
};
// Because for some inputs that aren't compressible it can result in a size
// that's slightly larger, we allow for this.
constexpr size_t kCompressionExtra = 32 << 10;
} // namespace
// Static
std::unique_ptr<SwapFile> SwapFile::Create(Type type) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
// We enforce that the file is encrypted.
CHECK(type & Type::kEncrypted);
base::FilePath directory;
if (!GetDirectoryForSwapFile(&directory)) {
return nullptr;
}
// We open the file with O_TMPFILE which creates an unnamed inode and anything
// written to the file will be lost when this fd is closed. O_EXCL prevents
// this file from being linked to the filesystem. Note, O_EXCL behaves
// differently because of O_TMPFILE. For more information on this see man 2
// open.
base::ScopedFD swap_fd(HANDLE_EINTR(
open(directory.value().c_str(), O_TMPFILE | O_EXCL | O_RDWR | O_CLOEXEC,
S_IRUSR | S_IWUSR)));
if (!swap_fd.is_valid()) {
PLOG(ERROR) << "Unable to open a temporary swap file in " << directory;
return nullptr;
}
return SwapFile::WrapFD(std::move(swap_fd), type);
}
std::unique_ptr<SwapFile> SwapFile::WrapFD(base::ScopedFD swap_fd, Type type) {
std::unique_ptr<SwapFile> swap;
if (type == (Type::kCompressed | Type::kEncrypted)) {
swap.reset(new EncryptedCompressedSwapFile(std::move(swap_fd)));
} else if (type == Type::kCompressed) {
swap.reset(new CompressedSwapFile(std::move(swap_fd)));
} else if (type == Type::kEncrypted) {
swap.reset(new EncryptedSwapFile(std::move(swap_fd)));
} else {
swap.reset(new SwapFile(std::move(swap_fd)));
}
return swap;
}
SwapFile::~SwapFile() = default;
SwapFile::SwapFile(base::ScopedFD fd) : fd_(std::move(fd)) {}
base::ScopedFD SwapFile::ReleaseFD() {
return std::move(fd_);
}
uint64_t SwapFile::GetUsageKB() const {
struct stat statbuf = {};
fstat(fd_.get(), &statbuf);
// fstat returns the number of 512byte blocks, we convert to KB.
return (statbuf.st_blocks * 512) >> 10;
}
// Static
bool SwapFile::GetDirectoryForSwapFile(base::FilePath* file_path) {
// We cache the file path so we don't have to repeatedly call these functions.
static base::FilePath cached_path = []() -> base::FilePath {
// We try to look for the unecrypted swap folder first, if it doesn't exist
// we will fall back the user's home directory. If that happens it means
// we're encrypted before writing to an encrypted file system so we log a
// warning.
const base::FilePath swap_folder(
"/mnt/stateful_partition/unencrypted/userspace_swap.tmp/");
if (base::PathExists(swap_folder)) {
return swap_folder;
}
PLOG(WARNING) << "Swap folder " << swap_folder
<< " did not exist so userspace swap will be be disabled";
return base::FilePath();
}();
if (!cached_path.empty()) {
*file_path = cached_path;
return true;
}
return false;
}
// Static
uint64_t SwapFile::GetBackingStoreFreeSpaceKB() {
base::FilePath swap_file_dir;
if (!GetDirectoryForSwapFile(&swap_file_dir)) {
return 0;
}
struct statfs buf = {};
if (statfs(swap_file_dir.value().c_str(), &buf) < 0) {
PLOG(ERROR) << "Unable to get backing store space freespace for swap";
return 0;
}
// Convert number of blocks to KB.
return (buf.f_bavail * buf.f_bsize) >> 10;
}
bool SwapFile::WriteToSwap(const Region& src, Region* swap_region) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
// Writes are the only operations that cannot happen concurrently. Writes use
// write(2) and adjust the file pointer so this is a critical section. Reads
// and drops use position pread(2)/fallocate(2) and can safely be performed
// concurrently as they only access those regions and do not affect the file
// pointer.
base::AutoLock scoped_lock(write_lock_);
// We capture the current file pointer to determine where we started writing
// at.
DCHECK(swap_region);
swap_region->address = lseek(fd_.get(), 0, SEEK_CUR);
swap_region->length = 0;
while (swap_region->length < src.length) {
int bytes_written = HANDLE_EINTR(write(
fd_.get(), reinterpret_cast<char*>(src.address) + swap_region->length,
src.length - swap_region->length));
if (bytes_written <= 0) {
// We want the user to see errno from the write(2) call and not from
// lseek(2) should it also fail.
int write_failed_errno = errno;
// Seek back the file pointer as anything partially written is not
// tracked and would have been wasted file space.
lseek(fd_.get(), swap_region->address, SEEK_SET);
// We want the user to see errno from the write(2) call and not from
// lseek(2).
errno = write_failed_errno;
swap_region->address = 0;
swap_region->length = 0;
return false;
}
swap_region->length += bytes_written;
}
return true;
}
ssize_t SwapFile::ReadFromSwap(const Region& swap_region, const Region& dest) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
CHECK_EQ(swap_region.length, dest.length);
uint64_t bytes_read = 0;
while (bytes_read < swap_region.length) {
int64_t res = HANDLE_EINTR(pread(
fd_.get(), reinterpret_cast<char*>(dest.address) + bytes_read,
swap_region.length - bytes_read, swap_region.address + bytes_read));
if (res <= 0) {
return res;
}
bytes_read += res;
}
return bytes_read;
}
bool SwapFile::DropFromSwap(const Region& swap_region) {
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
int res = HANDLE_EINTR(fallocate(fd_.get(),
FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
swap_region.address, swap_region.length));
if (res < 0) {
return false;
}
return true;
}
CompressedSwapFile::~CompressedSwapFile() = default;
CompressedSwapFile::CompressedSwapFile(base::ScopedFD fd)
: SwapFile(std::move(fd)) {}
// Static
inline bool CompressedSwapFile::Compress(const Region& src,
const Region& dest,
size_t* compressed_size) {
return compression::GzipCompress(src.AsStringPiece(),
reinterpret_cast<char*>(dest.address),
dest.length, compressed_size,
/* malloc_fn= */ nullptr,
/* free_fn= */ nullptr);
}
bool CompressedSwapFile::WriteToSwap(const Region& src, Region* swap_region) {
// We use a larger buffer because in some situations the compression can
// actually be larger than the input, while this is very rare we allow for it.
uint64_t buf_size =
(base::CheckedNumeric<uint64_t>(src.length) + kCompressionExtra)
.ValueOrDie();
std::vector<uint8_t> compressed_buf(buf_size);
size_t compressed_size = 0;
// Compress src into compressed buf.
if (!CompressedSwapFile::Compress(src, Region(compressed_buf),
&compressed_size)) {
errno = EIO;
return false;
}
compressed_buf.resize(compressed_size);
// Now write our compressed buffer to disk.
return SwapFile::WriteToSwap(Region(compressed_buf), swap_region);
}
// Static
inline ssize_t CompressedSwapFile::Decompress(const Region& src,
const Region& dest) {
uint32_t uncompressed_size =
compression::GetUncompressedSize(src.AsStringPiece());
CHECK_EQ(dest.length, uncompressed_size);
if (!compression::GzipUncompress(src.AsStringPiece(), dest.AsSpan<char>())) {
errno = EIO;
return -1;
}
return uncompressed_size;
}
ssize_t CompressedSwapFile::ReadFromSwap(const Region& swap_region,
const Region& dest) {
// Read from disk and then decompress directly into the buffer.
std::vector<uint8_t> compressed_buf(swap_region.length);
ssize_t read_res =
SwapFile::ReadFromSwap(swap_region, Region(compressed_buf));
if (read_res != static_cast<ssize_t>(swap_region.length)) {
return read_res;
}
compressed_buf.resize(read_res);
return CompressedSwapFile::Decompress(Region(compressed_buf), dest);
}
EncryptedSwapFile::~EncryptedSwapFile() {
memset(key_.data(), 0, key_.size());
memset(nonce_.data(), 0, nonce_.size());
}
EncryptedSwapFile::EncryptedSwapFile(base::ScopedFD fd)
: SwapFile(std::move(fd)), aead_(crypto::Aead::AES_256_GCM_SIV) {
key_.resize(aead_.KeyLength());
nonce_.resize(aead_.NonceLength());
CHECK_EQ(aead_.KeyLength(), key_.size());
CHECK_EQ(aead_.NonceLength(), nonce_.size());
crypto::RandBytes(nonce_);
crypto::RandBytes(key_);
aead_.Init(key_);
}
bool EncryptedSwapFile::WriteToSwap(const Region& src, Region* swap_region) {
std::vector<uint8_t> cipher_text =
aead_.Seal(src.AsSpan<const uint8_t>(), nonce_,
/* additional data */ base::span<const uint8_t>());
if (cipher_text.empty()) {
LOG(ERROR) << "Unable to encrypt region";
errno = EIO;
return false;
}
// Write the encrypted contents to disk.
return SwapFile::WriteToSwap(Region(cipher_text), swap_region);
}
ssize_t EncryptedSwapFile::ReadFromSwap(const Region& swap_region,
const Region& dest) {
// Start by reading the contents from the swap file and then decrypt it.
std::vector<uint8_t> cipher_text(swap_region.length);
ssize_t read_bytes = SwapFile::ReadFromSwap(swap_region, Region(cipher_text));
if (read_bytes != static_cast<ssize_t>(swap_region.length)) {
errno = EIO;
return -1;
}
cipher_text.resize(read_bytes);
std::optional<std::vector<uint8_t>> decrypted =
aead_.Open(cipher_text, nonce_,
/* additional data */ base::span<const uint8_t>());
if (!decrypted) {
LOG(ERROR) << "Decryption failure";
errno = EIO;
return -1;
}
if (dest.length < decrypted.value().size()) {
LOG(ERROR) << "Decryption buffer too small";
errno = ENOMEM;
return -1;
}
memcpy(reinterpret_cast<void*>(dest.address), decrypted.value().data(),
decrypted.value().size());
return decrypted.value().size();
}
EncryptedCompressedSwapFile::~EncryptedCompressedSwapFile() = default;
EncryptedCompressedSwapFile::EncryptedCompressedSwapFile(base::ScopedFD fd)
: EncryptedSwapFile(std::move(fd)) {}
ssize_t EncryptedCompressedSwapFile::ReadFromSwap(const Region& swap_region,
const Region& dest) {
// First read from the encrypted swap file then decompress. Because
// compression may have resulted in a size which is larger than the original
// payload for some rare inputs we allow for this.
uint64_t buf_size =
(base::CheckedNumeric<uint64_t>(dest.length) + kCompressionExtra)
.ValueOrDie();
std::vector<uint8_t> compressed_buf(buf_size);
ssize_t read_res =
EncryptedSwapFile::ReadFromSwap(swap_region, Region(compressed_buf));
if (read_res == -1) {
PLOG(ERROR) << "Read failed " << read_res;
return read_res;
}
compressed_buf.resize(read_res);
// Decompress directly into the destination region.
return CompressedSwapFile::Decompress(Region(compressed_buf), dest);
}
bool EncryptedCompressedSwapFile::WriteToSwap(const Region& src,
Region* swap_region) {
// First compress the memory and then write to encrypted swap file.
// We use a larger buffer because in some situations the compression can
// actually be larger than the input, while this is very rare we allow for it.
uint64_t buf_size =
(base::CheckedNumeric<uint64_t>(src.length) + kCompressionExtra)
.ValueOrDie();
std::vector<uint8_t> compressed_buf(buf_size);
size_t compressed_size = 0;
if (!CompressedSwapFile::Compress(src, Region(compressed_buf),
&compressed_size)) {
return false;
}
compressed_buf.resize(compressed_size);
// Now write to the EncryptedSwapFile.
return EncryptedSwapFile::WriteToSwap(Region(compressed_buf), swap_region);
}
} // namespace userspace_swap
} // namespace memory
} // namespace ash
|