1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chromeos/ash/components/osauth/impl/auth_hub_attempt_handler.h"
#include <optional>
#include <utility>
#include "base/check.h"
#include "base/containers/enum_set.h"
#include "base/functional/callback_forward.h"
#include "base/memory/raw_ptr.h"
#include "chromeos/ash/components/osauth/impl/auth_hub_common.h"
#include "chromeos/ash/components/osauth/public/auth_factor_engine.h"
#include "chromeos/ash/components/osauth/public/auth_factor_status_consumer.h"
#include "chromeos/ash/components/osauth/public/common_types.h"
namespace ash {
AuthHubAttemptHandler::AuthHubAttemptHandler(
AuthHubAttemptHandler::Owner* owner,
const AuthAttemptVector& attempt,
const AuthEnginesMap& engines,
AuthFactorsSet expected_factors)
: owner_(owner),
attempt_(attempt),
engines_(engines),
initial_factors_(expected_factors) {}
AuthHubAttemptHandler::~AuthHubAttemptHandler() = default;
AuthHubAttemptHandler::Owner::~Owner() = default;
AuthHubConnector* AuthHubAttemptHandler::GetConnector() {
return this;
}
void AuthHubAttemptHandler::SetConsumer(
raw_ptr<AuthFactorStatusConsumer> consumer) {
status_consumer_ = std::move(consumer);
status_consumer_->InitializeUi(initial_factors_, this);
}
bool AuthHubAttemptHandler::HasOngoingAttempt() const {
// It is safe to proceed with shutdown if we have
// successfully authenticated.
if (authenticated_) {
return false;
}
return ongoing_attempt_factor_.has_value();
}
void AuthHubAttemptHandler::PrepareForShutdown(base::OnceClosure callback) {
CHECK(!callback.is_null());
if (shutting_down_) {
shutdown_callbacks_.AddUnsafe(std::move(callback));
return;
}
if (!ongoing_attempt_factor_.has_value() || authenticated_) {
shutting_down_ = true;
UpdateAllFactorStates();
std::move(callback).Run();
return;
}
shutting_down_ = true;
shutdown_callbacks_.AddUnsafe(std::move(callback));
}
void AuthHubAttemptHandler::OnFactorsChecked(AuthFactorsSet available_factors,
AuthFactorsSet failed_factors) {
DCHECK(Intersection(available_factors, failed_factors).empty());
// TODO(b/286814076): Refine this strategy.
// All factors can be split into 4 groups, according to initial_factors_ and
// two parameters passed:
// * New factors, that are in `available_factors` but were not listed in
// `initial_factors_`;
// * Available factors, that present both in `available_factors` and
// `initial_factors_`;
// * Removed factors, that were listed in `initial_factors_` but do not
// present neither in `available_factors` nor in `failed_factors`;
// * Failed factors;
AuthFactorsSet potentially_present = Union(available_factors, failed_factors);
AuthFactorsSet new_factors = Difference(available_factors, initial_factors_);
AuthFactorsSet removed_factors =
Difference(initial_factors_, potentially_present);
// If some factor engines failed, but there are no new/removed factors,
// report those factors in error state. Otherwise, consider them removed.
AuthFactorsSet failed_initial =
Intersection(initial_factors_, failed_factors);
bool same_factor_list = new_factors.empty() && removed_factors.empty();
if (same_factor_list) {
for (AshAuthFactor f : failed_initial) {
// Create entry, but mark as failed.
factor_state_[f].engine_failed = true;
CalculateFactorState(f, factor_state_[f]);
}
}
// Retain only necessary engines, fill status for them:
for (auto it = engines_.begin(); it != engines_.end();) {
if (!available_factors.Has(it->first)) {
it = engines_.erase(it);
continue;
}
FillAllStatusValues(it->first, factor_state_[it->first]);
it++;
}
FactorsStatusMap update;
for (auto& state : factor_state_) {
update[state.first] = state.second.internal_state;
state.second.reported_state = state.second.internal_state;
}
if (same_factor_list) {
status_consumer_->OnFactorStatusesChanged(update);
} else {
owner_->UpdateFactorUiCache(attempt_, available_factors);
status_consumer_->OnFactorListChanged(update);
}
PropagateEnginesEnabledStatus();
}
void AuthHubAttemptHandler::PropagateStatusUpdates() {
FactorsStatusMap update;
for (auto& state : factor_state_) {
if (state.second.internal_state != state.second.reported_state) {
update[state.first] = state.second.internal_state;
state.second.reported_state = state.second.internal_state;
}
}
if (!update.empty()) {
status_consumer_->OnFactorStatusesChanged(update);
}
PropagateEnginesEnabledStatus();
}
void AuthHubAttemptHandler::PropagateEnginesEnabledStatus() {
for (auto& state : factor_state_) {
if (state.second.intended_usage != state.second.engine_usage) {
state.second.engine_usage = state.second.intended_usage;
engines_[state.first]->SetUsageAllowed(state.second.engine_usage);
}
}
}
void AuthHubAttemptHandler::OnFactorPresenceChecked(AshAuthFactor factor,
bool factor_present) {
// No-op, this method is implemented and handled by AuthHubVectorLifecycle.
// Result would be provided to this class via `OnFactorsChecked` call.
}
void AuthHubAttemptHandler::OnFactorAttempt(AshAuthFactor factor) {
ongoing_attempt_factor_ = factor;
UpdateAllFactorStates();
}
void AuthHubAttemptHandler::UpdateAllFactorStates() {
for (auto& state : factor_state_) {
CalculateFactorState(state.first, state.second);
}
PropagateStatusUpdates();
}
void AuthHubAttemptHandler::OnFactorAttemptResult(AshAuthFactor factor,
bool success) {
CHECK(ongoing_attempt_factor_.has_value());
CHECK(factor == *ongoing_attempt_factor_);
if (shutting_down_) {
shutdown_callbacks_.Notify();
return;
}
if (success) {
status_consumer_->OnFactorAuthSuccess(factor);
authenticated_ = true;
// Keep an `ongoing_attempt_factor_` to prevent
// factors from being re-enabled.
status_consumer_->OnEndAuthentication();
// Calling `OnEndAuthentication` signals the end of interaction with UI for
// this particular attempt, which would eventually destroy UI, so we reset
// the pointer here to avoid calling into a danling pointer.
status_consumer_ = nullptr;
// Signal the successful auth to every auth engine.
for (const auto& [unused, engine] : engines_) {
engine->OnSuccessfulAuthentiation();
}
owner_->OnAuthenticationSuccess(attempt_, factor);
return;
} else {
status_consumer_->OnFactorAuthFailure(factor);
owner_->OnFactorAttemptFailed(attempt_, factor);
ongoing_attempt_factor_.reset();
}
UpdateAllFactorStates();
}
void AuthHubAttemptHandler::OnPolicyChanged(AshAuthFactor factor) {
CHECK(factor_state_.contains(factor));
auto& state = factor_state_[factor];
if (state.engine_failed) {
return;
}
CHECK(engines_.contains(factor));
auto* engine = engines_[factor].get();
state.disabled_by_policy = engine->IsDisabledByPolicy();
CalculateFactorState(factor, state);
PropagateStatusUpdates();
}
void AuthHubAttemptHandler::OnLockoutChanged(AshAuthFactor factor) {
CHECK(factor_state_.contains(factor));
auto& state = factor_state_[factor];
if (state.engine_failed) {
return;
}
CHECK(engines_.contains(factor));
auto* engine = engines_[factor].get();
state.locked_out = engine->IsLockedOut();
CalculateFactorState(factor, state);
PropagateStatusUpdates();
}
void AuthHubAttemptHandler::OnFactorSpecificRestrictionsChanged(
AshAuthFactor factor) {
CHECK(factor_state_.contains(factor));
auto& state = factor_state_[factor];
if (state.engine_failed) {
return;
}
CHECK(engines_.contains(factor));
auto* engine = engines_[factor].get();
state.factor_specific_restricted = engine->IsFactorSpecificRestricted();
CalculateFactorState(factor, state);
PropagateStatusUpdates();
}
void AuthHubAttemptHandler::OnCriticalError(AshAuthFactor factor) {
CHECK(factor_state_.contains(factor));
factor_state_[factor].engine_failed = true;
CalculateFactorState(factor, factor_state_[factor]);
PropagateStatusUpdates();
}
void AuthHubAttemptHandler::OnFactorCustomSignal(AshAuthFactor factor) {
CHECK(engines_.contains(factor));
status_consumer_->OnFactorCustomSignal(factor);
}
void AuthHubAttemptHandler::FillAllStatusValues(AshAuthFactor factor,
FactorAttemptState& state) {
CHECK(engines_.contains(factor));
auto* engine = engines_[factor].get();
state.disabled_by_policy = engine->IsDisabledByPolicy();
state.locked_out = engine->IsLockedOut();
state.factor_specific_restricted = engine->IsFactorSpecificRestricted();
CalculateFactorState(factor, state);
}
void AuthHubAttemptHandler::CalculateFactorState(AshAuthFactor factor,
FactorAttemptState& state) {
state.internal_state = AuthFactorState::kFactorReady;
if (state.engine_failed) {
state.internal_state = AuthFactorState::kEngineError;
// Factor is marked as Failed if it's engine did not start.
// We do not modify `intended_usage` here as we can not propagate
// it to the engine.
return;
}
if (shutting_down_) {
// We need to set some disabled state here to prevent factors from
// being used, does not matter which one.
state.internal_state = AuthFactorState::kDisabledParallelAttempt;
// As code is in the shutdown sequence, engine will not be re-enabled
// again, so use kDisabled instead of kDisabledParallelAttempt here,
// to prevent engine from queueing any attempts.
state.intended_usage = AuthFactorEngine::UsageAllowed::kDisabled;
return;
}
if (state.disabled_by_policy) {
state.internal_state = AuthFactorState::kDisabledByPolicy;
state.intended_usage = AuthFactorEngine::UsageAllowed::kDisabled;
return;
}
if (state.factor_specific_restricted) {
state.internal_state = AuthFactorState::kDisabledFactorSpecific;
state.intended_usage = AuthFactorEngine::UsageAllowed::kDisabled;
return;
}
if (state.locked_out) {
state.internal_state = AuthFactorState::kLockedOutIndefinite;
state.intended_usage = AuthFactorEngine::UsageAllowed::kDisabled;
return;
}
if (ongoing_attempt_factor_.has_value()) {
if (*ongoing_attempt_factor_ == factor) {
state.internal_state = AuthFactorState::kOngoingAttempt;
} else {
state.internal_state = AuthFactorState::kDisabledParallelAttempt;
}
// While there is an ongoing attempt, keep all factors disabled to
// prevent double authentication.
state.intended_usage =
AuthFactorEngine::UsageAllowed::kDisabledParallelAttempt;
return;
}
state.internal_state = AuthFactorState::kFactorReady;
state.intended_usage = AuthFactorEngine::UsageAllowed::kEnabled;
}
AuthFactorEngine* AuthHubAttemptHandler::GetEngine(AshAuthFactor factor) {
CHECK(engines_.contains(factor));
return engines_[factor];
}
} // namespace ash
|