1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ipc/ipc_channel_nacl.h"
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/types.h>
#include <algorithm>
#include <memory>
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_pump_for_io.h"
#include "base/synchronization/lock.h"
#include "base/task/single_thread_task_runner.h"
#include "base/threading/simple_thread.h"
#include "base/trace_event/trace_event.h"
#include "ipc/ipc_listener.h"
#include "ipc/ipc_logging.h"
#include "ipc/ipc_message_attachment_set.h"
#include "ipc/ipc_platform_file_attachment_posix.h"
#include "native_client/src/public/imc_syscalls.h"
#include "native_client/src/public/imc_types.h"
namespace IPC {
struct MessageContents {
std::vector<char> data;
std::vector<int> fds;
};
namespace {
bool ReadDataOnReaderThread(int pipe, MessageContents* contents) {
DCHECK(pipe >= 0);
if (pipe < 0)
return false;
contents->data.resize(Channel::kReadBufferSize);
contents->fds.resize(NACL_ABI_IMC_DESC_MAX);
NaClAbiNaClImcMsgIoVec iov = { &contents->data[0], contents->data.size() };
NaClAbiNaClImcMsgHdr msg = {
&iov, 1, &contents->fds[0], contents->fds.size()
};
int bytes_read = imc_recvmsg(pipe, &msg, 0);
if (bytes_read <= 0) {
// NaClIPCAdapter::BlockingReceive returns -1 when the pipe closes (either
// due to error or for regular shutdown).
contents->data.clear();
contents->fds.clear();
return false;
}
DCHECK(bytes_read);
// Resize the buffers down to the number of bytes and fds we actually read.
contents->data.resize(bytes_read);
contents->fds.resize(msg.desc_length);
return true;
}
} // namespace
// static
constexpr size_t Channel::kMaximumMessageSize;
class ChannelNacl::ReaderThreadRunner
: public base::DelegateSimpleThread::Delegate {
public:
// |pipe|: A file descriptor from which we will read using imc_recvmsg.
// |data_read_callback|: A callback we invoke (on the main thread) when we
// have read data.
// |failure_callback|: A callback we invoke when we have a failure reading
// from |pipe|.
// |main_message_loop|: A proxy for the main thread, where we will invoke the
// above callbacks.
ReaderThreadRunner(
int pipe,
base::RepeatingCallback<void(std::unique_ptr<MessageContents>)>
data_read_callback,
base::RepeatingCallback<void()> failure_callback,
scoped_refptr<base::SingleThreadTaskRunner> main_task_runner);
ReaderThreadRunner(const ReaderThreadRunner&) = delete;
ReaderThreadRunner& operator=(const ReaderThreadRunner&) = delete;
// DelegateSimpleThread implementation. Reads data from the pipe in a loop
// until either we are told to quit or a read fails.
void Run() override;
private:
int pipe_;
base::RepeatingCallback<void(std::unique_ptr<MessageContents>)>
data_read_callback_;
base::RepeatingCallback<void()> failure_callback_;
scoped_refptr<base::SingleThreadTaskRunner> main_task_runner_;
};
ChannelNacl::ReaderThreadRunner::ReaderThreadRunner(
int pipe,
base::RepeatingCallback<void(std::unique_ptr<MessageContents>)>
data_read_callback,
base::RepeatingCallback<void()> failure_callback,
scoped_refptr<base::SingleThreadTaskRunner> main_task_runner)
: pipe_(pipe),
data_read_callback_(data_read_callback),
failure_callback_(failure_callback),
main_task_runner_(main_task_runner) {}
void ChannelNacl::ReaderThreadRunner::Run() {
while (true) {
std::unique_ptr<MessageContents> msg_contents(new MessageContents);
bool success = ReadDataOnReaderThread(pipe_, msg_contents.get());
if (success) {
main_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(data_read_callback_, std::move(msg_contents)));
} else {
main_task_runner_->PostTask(FROM_HERE, failure_callback_);
// Because the read failed, we know we're going to quit. Don't bother
// trying to read again.
return;
}
}
}
ChannelNacl::ChannelNacl(const IPC::ChannelHandle& channel_handle,
Mode mode,
Listener* listener)
: ChannelReader(listener),
mode_(mode),
waiting_connect_(true),
pipe_(-1),
weak_ptr_factory_(this) {
if (!CreatePipe(channel_handle)) {
// The pipe may have been closed already.
const char *modestr = (mode_ & MODE_SERVER_FLAG) ? "server" : "client";
LOG(WARNING) << "Unable to create pipe in " << modestr << " mode";
}
}
ChannelNacl::~ChannelNacl() {
CleanUp();
Close();
}
bool ChannelNacl::Connect() {
WillConnect();
if (pipe_ == -1) {
DLOG(WARNING) << "Channel creation failed";
return false;
}
// Note that Connect is called on the "Channel" thread (i.e., the same thread
// where Channel::Send will be called, and the same thread that should receive
// messages). The constructor might be invoked on another thread (see
// ChannelProxy for an example of that). Therefore, we must wait until Connect
// is called to decide which SingleThreadTaskRunner to pass to
// ReaderThreadRunner.
reader_thread_runner_ = std::make_unique<ReaderThreadRunner>(
pipe_,
base::BindRepeating(&ChannelNacl::DidRecvMsg,
weak_ptr_factory_.GetWeakPtr()),
base::BindRepeating(&ChannelNacl::ReadDidFail,
weak_ptr_factory_.GetWeakPtr()),
base::SingleThreadTaskRunner::GetCurrentDefault());
reader_thread_ = std::make_unique<base::DelegateSimpleThread>(
reader_thread_runner_.get(), "ipc_channel_nacl reader thread");
reader_thread_->Start();
waiting_connect_ = false;
// If there were any messages queued before connection, send them.
ProcessOutgoingMessages();
base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(&ChannelNacl::CallOnChannelConnected,
weak_ptr_factory_.GetWeakPtr()));
return true;
}
void ChannelNacl::Close() {
// For now, we assume that at shutdown, the reader thread will be woken with
// a failure (see NaClIPCAdapter::BlockingRead and CloseChannel). Or... we
// might simply be killed with no chance to clean up anyway :-).
// If untrusted code tries to close the channel prior to shutdown, it's likely
// to hang.
// TODO(dmichael): Can we do anything smarter here to make sure the reader
// thread wakes up and quits?
reader_thread_->Join();
close(pipe_);
pipe_ = -1;
reader_thread_runner_.reset();
reader_thread_.reset();
read_queue_.clear();
output_queue_.clear();
}
bool ChannelNacl::Send(Message* message) {
DCHECK(!message->HasAttachments());
DVLOG(2) << "sending message @" << message << " on channel @" << this
<< " with type " << message->type();
std::unique_ptr<Message> message_ptr(message);
#if BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)
Logging::GetInstance()->OnSendMessage(message_ptr.get());
#endif // BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)
TRACE_EVENT_WITH_FLOW0("toplevel.flow", "ChannelNacl::Send",
message->header()->flags, TRACE_EVENT_FLAG_FLOW_OUT);
output_queue_.push_back(std::move(message_ptr));
if (!waiting_connect_)
return ProcessOutgoingMessages();
return true;
}
void ChannelNacl::DidRecvMsg(std::unique_ptr<MessageContents> contents) {
// Close sets the pipe to -1. It's possible we'll get a buffer sent to us from
// the reader thread after Close is called. If so, we ignore it.
if (pipe_ == -1)
return;
auto data = std::make_unique<std::vector<char>>();
data->swap(contents->data);
read_queue_.push_back(std::move(data));
input_attachments_.reserve(contents->fds.size());
for (int fd : contents->fds) {
input_attachments_.push_back(
new internal::PlatformFileAttachment(base::ScopedFD(fd)));
}
contents->fds.clear();
// In POSIX, we would be told when there are bytes to read by implementing
// OnFileCanReadWithoutBlocking in MessagePumpForIO::FdWatcher. In NaCl, we
// instead know at this point because the reader thread posted some data to
// us.
ProcessIncomingMessages();
}
void ChannelNacl::ReadDidFail() {
Close();
}
bool ChannelNacl::CreatePipe(
const IPC::ChannelHandle& channel_handle) {
DCHECK(pipe_ == -1);
// There's one possible case in NaCl:
// 1) It's a channel wrapping a pipe that is given to us.
// We don't support these:
// 2) It's for a named channel.
// 3) It's for a client that we implement ourself.
// 4) It's the initial IPC channel.
if (channel_handle.socket.fd == -1) {
NOTIMPLEMENTED();
return false;
}
pipe_ = channel_handle.socket.fd;
return true;
}
bool ChannelNacl::ProcessOutgoingMessages() {
DCHECK(!waiting_connect_); // Why are we trying to send messages if there's
// no connection?
if (output_queue_.empty())
return true;
if (pipe_ == -1)
return false;
// Write out all the messages. The trusted implementation is guaranteed to not
// block. See NaClIPCAdapter::Send for the implementation of imc_sendmsg.
while (!output_queue_.empty()) {
std::unique_ptr<Message> msg = std::move(output_queue_.front());
output_queue_.pop_front();
const size_t num_fds = msg->attachment_set()->size();
DCHECK(num_fds <= MessageAttachmentSet::kMaxDescriptorsPerMessage);
std::vector<int> fds;
fds.reserve(num_fds);
for (size_t i = 0; i < num_fds; i++) {
scoped_refptr<MessageAttachment> attachment =
msg->attachment_set()->GetAttachmentAt(i);
DCHECK_EQ(MessageAttachment::Type::PLATFORM_FILE, attachment->GetType());
fds.push_back(static_cast<internal::PlatformFileAttachment&>(*attachment)
.TakePlatformFile());
}
NaClAbiNaClImcMsgIoVec iov = {const_cast<uint8_t*>(msg->data()),
msg->size()};
NaClAbiNaClImcMsgHdr msgh = {&iov, 1, fds.data(), num_fds};
ssize_t bytes_written = imc_sendmsg(pipe_, &msgh, 0);
DCHECK(bytes_written); // The trusted side shouldn't return 0.
if (bytes_written < 0) {
// The trusted side should only ever give us an error of EPIPE. We
// should never be interrupted, nor should we get EAGAIN.
DCHECK(errno == EPIPE);
Close();
PLOG(ERROR) << "pipe_ error on "
<< pipe_
<< " Currently writing message of size: "
<< msg->size();
return false;
} else {
msg->attachment_set()->CommitAllDescriptors();
}
// Message sent OK!
DVLOG(2) << "sent message @" << msg.get() << " with type " << msg->type()
<< " on fd " << pipe_;
}
return true;
}
void ChannelNacl::CallOnChannelConnected() {
listener()->OnChannelConnected(-1);
}
ChannelNacl::ReadState ChannelNacl::ReadData(
char* buffer,
int buffer_len,
int* bytes_read) {
*bytes_read = 0;
if (pipe_ == -1)
return READ_FAILED;
if (read_queue_.empty())
return READ_PENDING;
while (!read_queue_.empty() && *bytes_read < buffer_len) {
std::vector<char>* vec = read_queue_.front().get();
size_t bytes_to_read = buffer_len - *bytes_read;
if (vec->size() <= bytes_to_read) {
// We can read and discard the entire vector.
std::ranges::copy(*vec, buffer + *bytes_read);
*bytes_read += vec->size();
read_queue_.pop_front();
} else {
// Read all the bytes we can and discard them from the front of the
// vector. (This can be slowish, since erase has to move the back of the
// vector to the front, but it's hopefully a temporary hack and it keeps
// the code simple).
std::copy(vec->begin(), vec->begin() + bytes_to_read,
buffer + *bytes_read);
vec->erase(vec->begin(), vec->begin() + bytes_to_read);
*bytes_read += bytes_to_read;
}
}
return READ_SUCCEEDED;
}
bool ChannelNacl::ShouldDispatchInputMessage(Message* msg) {
return true;
}
bool ChannelNacl::GetAttachments(Message* msg) {
uint16_t header_fds = msg->header()->num_fds;
CHECK(header_fds == input_attachments_.size());
if (header_fds == 0)
return true; // Nothing to do.
for (auto& attachment : input_attachments_) {
msg->attachment_set()->AddAttachment(std::move(attachment));
}
input_attachments_.clear();
return true;
}
bool ChannelNacl::DidEmptyInputBuffers() {
// When the input data buffer is empty, the attachments should be too.
return input_attachments_.empty();
}
void ChannelNacl::HandleInternalMessage(const Message& msg) {
// The trusted side IPC::Channel should handle the "hello" handshake; we
// should not receive the "Hello" message.
NOTREACHED();
}
// Channel's methods
// static
std::unique_ptr<Channel> Channel::Create(
const IPC::ChannelHandle& channel_handle,
Mode mode,
Listener* listener) {
return std::make_unique<ChannelNacl>(channel_handle, mode, listener);
}
} // namespace IPC
|