1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
// Copyright 2024 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/debugging/internal/decode_rust_punycode.h"
#include <cstddef>
#include <cstdint>
#include <cstring>
#include "absl/base/config.h"
#include "absl/base/nullability.h"
#include "absl/debugging/internal/bounded_utf8_length_sequence.h"
#include "absl/debugging/internal/utf8_for_code_point.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
namespace {
// Decoding Punycode requires repeated random-access insertion into a stream of
// variable-length UTF-8 code-point encodings. We need this to be tolerably
// fast (no N^2 slowdown for unfortunate inputs), and we can't allocate any data
// structures on the heap (async-signal-safety).
//
// It is pragmatic to impose a moderately low limit on the identifier length and
// bail out if we ever hit it. Then BoundedUtf8LengthSequence efficiently
// determines where to insert the next code point, and memmove efficiently makes
// room for it.
//
// The chosen limit is a round number several times larger than identifiers
// expected in practice, yet still small enough that a memmove of this many
// UTF-8 characters is not much more expensive than the division and modulus
// operations that Punycode decoding requires.
constexpr uint32_t kMaxChars = 256;
// Constants from RFC 3492 section 5.
constexpr uint32_t kBase = 36, kTMin = 1, kTMax = 26, kSkew = 38, kDamp = 700;
constexpr uint32_t kMaxCodePoint = 0x10ffff;
// Overflow threshold in DecodeRustPunycode's inner loop; see comments there.
constexpr uint32_t kMaxI = 1 << 30;
// If punycode_begin .. punycode_end begins with a prefix matching the regular
// expression [0-9a-zA-Z_]+_, removes that prefix, copies all but the final
// underscore into out_begin .. out_end, sets num_ascii_chars to the number of
// bytes copied, and returns true. (A prefix of this sort represents the
// nonempty subsequence of ASCII characters in the corresponding plaintext.)
//
// If punycode_begin .. punycode_end does not contain an underscore, sets
// num_ascii_chars to zero and returns true. (The encoding of a plaintext
// without any ASCII characters does not carry such a prefix.)
//
// Returns false and zeroes num_ascii_chars on failure (either parse error or
// not enough space in the output buffer).
bool ConsumeOptionalAsciiPrefix(const char*& punycode_begin,
const char* const punycode_end,
char* const out_begin,
char* const out_end,
uint32_t& num_ascii_chars) {
num_ascii_chars = 0;
// Remember the last underscore if any. Also use the same string scan to
// reject any ASCII bytes that do not belong in an identifier, including NUL,
// as well as non-ASCII bytes, which should have been delta-encoded instead.
int last_underscore = -1;
for (int i = 0; i < punycode_end - punycode_begin; ++i) {
const char c = punycode_begin[i];
if (c == '_') {
last_underscore = i;
continue;
}
// We write out the meaning of absl::ascii_isalnum rather than call that
// function because its documentation does not promise it will remain
// async-signal-safe under future development.
if ('a' <= c && c <= 'z') continue;
if ('A' <= c && c <= 'Z') continue;
if ('0' <= c && c <= '9') continue;
return false;
}
// If there was no underscore, that means there were no ASCII characters in
// the plaintext, so there is no prefix to consume. Our work is done.
if (last_underscore < 0) return true;
// Otherwise there will be an underscore delimiter somewhere. It can't be
// initial because then there would be no ASCII characters to its left, and no
// delimiter would have been added in that case.
if (last_underscore == 0) return false;
// Any other position is reasonable. Make sure there's room in the buffer.
if (last_underscore + 1 > out_end - out_begin) return false;
// Consume and write out the ASCII characters.
num_ascii_chars = static_cast<uint32_t>(last_underscore);
std::memcpy(out_begin, punycode_begin, num_ascii_chars);
out_begin[num_ascii_chars] = '\0';
punycode_begin += num_ascii_chars + 1;
return true;
}
// Returns the value of `c` as a base-36 digit according to RFC 3492 section 5,
// or -1 if `c` is not such a digit.
int DigitValue(char c) {
if ('0' <= c && c <= '9') return c - '0' + 26;
if ('a' <= c && c <= 'z') return c - 'a';
if ('A' <= c && c <= 'Z') return c - 'A';
return -1;
}
// Consumes the next delta encoding from punycode_begin .. punycode_end,
// updating i accordingly. Returns true on success. Returns false on parse
// failure or arithmetic overflow.
bool ScanNextDelta(const char*& punycode_begin, const char* const punycode_end,
uint32_t bias, uint32_t& i) {
uint64_t w = 1; // 64 bits to prevent overflow in w *= kBase - t
// "for k = base to infinity in steps of base do begin ... end" in RFC 3492
// section 6.2. Each loop iteration scans one digit of the delta.
for (uint32_t k = kBase; punycode_begin != punycode_end; k += kBase) {
const int digit_value = DigitValue(*punycode_begin++);
if (digit_value < 0) return false;
// Compute this in 64-bit arithmetic so we can check for overflow afterward.
const uint64_t new_i = i + static_cast<uint64_t>(digit_value) * w;
// Valid deltas are bounded by (#chars already emitted) * kMaxCodePoint, but
// invalid input could encode an arbitrarily large delta. Nip that in the
// bud here.
static_assert(
kMaxI >= kMaxChars * kMaxCodePoint,
"kMaxI is too small to prevent spurious failures on good input");
if (new_i > kMaxI) return false;
static_assert(
kMaxI < (uint64_t{1} << 32),
"Make kMaxI smaller or i 64 bits wide to prevent silent wraparound");
i = static_cast<uint32_t>(new_i);
// Compute the threshold that determines whether this is the last digit and
// (if not) what the next digit's place value will be. This logic from RFC
// 3492 section 6.2 is explained in section 3.3.
uint32_t t;
if (k <= bias + kTMin) {
t = kTMin;
} else if (k >= bias + kTMax) {
t = kTMax;
} else {
t = k - bias;
}
if (static_cast<uint32_t>(digit_value) < t) return true;
// If this gets too large, the range check on new_i in the next iteration
// will catch it. We know this multiplication will not overwrap because w
// is 64 bits wide.
w *= kBase - t;
}
return false;
}
} // namespace
char* absl_nullable DecodeRustPunycode(DecodeRustPunycodeOptions options) {
const char* punycode_begin = options.punycode_begin;
const char* const punycode_end = options.punycode_end;
char* const out_begin = options.out_begin;
char* const out_end = options.out_end;
// Write a NUL terminator first. Later memcpy calls will keep bumping it
// along to its new right place.
const size_t out_size = static_cast<size_t>(out_end - out_begin);
if (out_size == 0) return nullptr;
*out_begin = '\0';
// RFC 3492 section 6.2 begins here. We retain the names of integer variables
// appearing in that text.
uint32_t n = 128, i = 0, bias = 72, num_chars = 0;
// If there are any ASCII characters, consume them and their trailing
// underscore delimiter.
if (!ConsumeOptionalAsciiPrefix(punycode_begin, punycode_end,
out_begin, out_end, num_chars)) {
return nullptr;
}
uint32_t total_utf8_bytes = num_chars;
BoundedUtf8LengthSequence<kMaxChars> utf8_lengths;
// "while the input is not exhausted do begin ... end"
while (punycode_begin != punycode_end) {
if (num_chars >= kMaxChars) return nullptr;
const uint32_t old_i = i;
if (!ScanNextDelta(punycode_begin, punycode_end, bias, i)) return nullptr;
// Update bias as in RFC 3492 section 6.1. (We have inlined adapt.)
uint32_t delta = i - old_i;
delta /= (old_i == 0 ? kDamp : 2);
delta += delta/(num_chars + 1);
bias = 0;
while (delta > ((kBase - kTMin) * kTMax)/2) {
delta /= kBase - kTMin;
bias += kBase;
}
bias += ((kBase - kTMin + 1) * delta)/(delta + kSkew);
// Back in section 6.2, compute the new code point and insertion index.
static_assert(
kMaxI + kMaxCodePoint < (uint64_t{1} << 32),
"Make kMaxI smaller or n 64 bits wide to prevent silent wraparound");
n += i/(num_chars + 1);
i %= num_chars + 1;
// To actually insert, we need to convert the code point n to UTF-8 and the
// character index i to an index into the byte stream emitted so far. First
// prepare the UTF-8 encoding for n, rejecting surrogates, overlarge values,
// and anything that won't fit into the remaining output storage.
Utf8ForCodePoint utf8_for_code_point(n);
if (!utf8_for_code_point.ok()) return nullptr;
if (total_utf8_bytes + utf8_for_code_point.length + 1 > out_size) {
return nullptr;
}
// Now insert the new character into both our length map and the output.
uint32_t n_index =
utf8_lengths.InsertAndReturnSumOfPredecessors(
i, utf8_for_code_point.length);
std::memmove(
out_begin + n_index + utf8_for_code_point.length, out_begin + n_index,
total_utf8_bytes + 1 - n_index);
std::memcpy(out_begin + n_index, utf8_for_code_point.bytes,
utf8_for_code_point.length);
total_utf8_bytes += utf8_for_code_point.length;
++num_chars;
// Finally, advance to the next state before continuing.
++i;
}
return out_begin + total_utf8_bytes;
}
} // namespace debugging_internal
ABSL_NAMESPACE_END
} // namespace absl
|