1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/log_uniform_int_distribution.h"
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/log.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"
namespace {
template <typename IntType>
class LogUniformIntDistributionTypeTest : public ::testing::Test {};
using IntTypes = ::testing::Types<int8_t, int16_t, int32_t, int64_t, //
uint8_t, uint16_t, uint32_t, uint64_t>;
TYPED_TEST_SUITE(LogUniformIntDistributionTypeTest, IntTypes);
TYPED_TEST(LogUniformIntDistributionTypeTest, SerializeTest) {
using param_type =
typename absl::log_uniform_int_distribution<TypeParam>::param_type;
using Limits = std::numeric_limits<TypeParam>;
constexpr int kCount = 1000;
absl::InsecureBitGen gen;
for (const auto& param : {
param_type(0, 1), //
param_type(0, 2), //
param_type(0, 2, 10), //
param_type(9, 32, 4), //
param_type(1, 101, 10), //
param_type(1, Limits::max() / 2), //
param_type(0, Limits::max() - 1), //
param_type(0, Limits::max(), 2), //
param_type(0, Limits::max(), 10), //
param_type(Limits::min(), 0), //
param_type(Limits::lowest(), Limits::max()), //
param_type(Limits::min(), Limits::max()), //
}) {
// Validate parameters.
const auto min = param.min();
const auto max = param.max();
const auto base = param.base();
absl::log_uniform_int_distribution<TypeParam> before(min, max, base);
EXPECT_EQ(before.min(), param.min());
EXPECT_EQ(before.max(), param.max());
EXPECT_EQ(before.base(), param.base());
{
absl::log_uniform_int_distribution<TypeParam> via_param(param);
EXPECT_EQ(via_param, before);
}
// Validate stream serialization.
std::stringstream ss;
ss << before;
absl::log_uniform_int_distribution<TypeParam> after(3, 6, 17);
EXPECT_NE(before.max(), after.max());
EXPECT_NE(before.base(), after.base());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.min(), after.min());
EXPECT_EQ(before.max(), after.max());
EXPECT_EQ(before.base(), after.base());
EXPECT_EQ(before.param(), after.param());
EXPECT_EQ(before, after);
// Smoke test.
auto sample_min = after.max();
auto sample_max = after.min();
for (int i = 0; i < kCount; i++) {
auto sample = after(gen);
EXPECT_GE(sample, after.min());
EXPECT_LE(sample, after.max());
if (sample > sample_max) sample_max = sample;
if (sample < sample_min) sample_min = sample;
}
LOG(INFO) << "Range: " << sample_min << ", " << sample_max;
}
}
using log_uniform_i32 = absl::log_uniform_int_distribution<int32_t>;
class LogUniformIntChiSquaredTest
: public testing::TestWithParam<log_uniform_i32::param_type> {
public:
// The ChiSquaredTestImpl provides a chi-squared goodness of fit test for
// data generated by the log-uniform-int distribution.
double ChiSquaredTestImpl();
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
};
double LogUniformIntChiSquaredTest::ChiSquaredTestImpl() {
using absl::random_internal::kChiSquared;
const auto& param = GetParam();
// Check the distribution of L=log(log_uniform_int_distribution, base),
// expecting that L is roughly uniformly distributed, that is:
//
// P[L=0] ~= P[L=1] ~= ... ~= P[L=log(max)]
//
// For a total of X entries, each bucket should contain some number of samples
// in the interval [X/k - a, X/k + a].
//
// Where `a` is approximately sqrt(X/k). This is validated by bucketing
// according to the log function and using a chi-squared test for uniformity.
const bool is_2 = (param.base() == 2);
const double base_log = 1.0 / std::log(param.base());
const auto bucket_index = [base_log, is_2, ¶m](int32_t x) {
uint64_t y = static_cast<uint64_t>(x) - param.min();
return (y == 0) ? 0
: is_2 ? static_cast<int>(1 + std::log2(y))
: static_cast<int>(1 + std::log(y) * base_log);
};
const int max_bucket = bucket_index(param.max()); // inclusive
const size_t trials = 15 + (max_bucket + 1) * 10;
log_uniform_i32 dist(param);
std::vector<int64_t> buckets(max_bucket + 1);
for (size_t i = 0; i < trials; ++i) {
const auto sample = dist(rng_);
// Check the bounds.
ABSL_ASSERT(sample <= dist.max());
ABSL_ASSERT(sample >= dist.min());
// Convert the output of the generator to one of num_bucket buckets.
int bucket = bucket_index(sample);
ABSL_ASSERT(bucket <= max_bucket);
++buckets[bucket];
}
// The null-hypothesis is that the distribution is uniform with respect to
// log-uniform-int bucketization.
const int dof = buckets.size() - 1;
const double expected = trials / static_cast<double>(buckets.size());
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
double chi_square = absl::random_internal::ChiSquareWithExpected(
std::begin(buckets), std::end(buckets), expected);
const double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
if (chi_square > threshold) {
LOG(INFO) << "values";
for (size_t i = 0; i < buckets.size(); i++) {
LOG(INFO) << i << ": " << buckets[i];
}
LOG(INFO) << "trials=" << trials << "\n"
<< kChiSquared << "(data, " << dof << ") = " << chi_square << " ("
<< p << ")\n"
<< kChiSquared << " @ 0.98 = " << threshold;
}
return p;
}
TEST_P(LogUniformIntChiSquaredTest, MultiTest) {
const int kTrials = 5;
int failures = 0;
for (int i = 0; i < kTrials; i++) {
double p_value = ChiSquaredTestImpl();
if (p_value < 0.005) {
failures++;
}
}
// There is a 0.10% chance of producing at least one failure, so raise the
// failure threshold high enough to allow for a flake rate < 10,000.
EXPECT_LE(failures, 4);
}
// Generate the parameters for the test.
std::vector<log_uniform_i32::param_type> GenParams() {
using Param = log_uniform_i32::param_type;
using Limits = std::numeric_limits<int32_t>;
return std::vector<Param>{
Param{0, 1, 2},
Param{1, 1, 2},
Param{0, 2, 2},
Param{0, 3, 2},
Param{0, 4, 2},
Param{0, 9, 10},
Param{0, 10, 10},
Param{0, 11, 10},
Param{1, 10, 10},
Param{0, (1 << 8) - 1, 2},
Param{0, (1 << 8), 2},
Param{0, (1 << 30) - 1, 2},
Param{-1000, 1000, 10},
Param{0, Limits::max(), 2},
Param{0, Limits::max(), 3},
Param{0, Limits::max(), 10},
Param{Limits::min(), 0},
Param{Limits::min(), Limits::max(), 2},
};
}
std::string ParamName(
const ::testing::TestParamInfo<log_uniform_i32::param_type>& info) {
const auto& p = info.param;
std::string name =
absl::StrCat("min_", p.min(), "__max_", p.max(), "__base_", p.base());
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}
INSTANTIATE_TEST_SUITE_P(All, LogUniformIntChiSquaredTest,
::testing::ValuesIn(GenParams()), ParamName);
// NOTE: absl::log_uniform_int_distribution is not guaranteed to be stable.
TEST(LogUniformIntDistributionTest, StabilityTest) {
using testing::ElementsAre;
// absl::uniform_int_distribution stability relies on
// absl::random_internal::LeadingSetBit, std::log, std::pow.
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(6);
{
absl::log_uniform_int_distribution<int32_t> dist(0, 256);
std::generate(std::begin(output), std::end(output),
[&] { return dist(urbg); });
EXPECT_THAT(output, ElementsAre(256, 66, 4, 6, 57, 103));
}
urbg.reset();
{
absl::log_uniform_int_distribution<int32_t> dist(0, 256, 10);
std::generate(std::begin(output), std::end(output),
[&] { return dist(urbg); });
EXPECT_THAT(output, ElementsAre(8, 4, 0, 0, 0, 69));
}
}
} // namespace
|