1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// Copyright 2021 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/cord_analysis.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <unordered_set>
#include "absl/base/config.h"
#include "absl/base/nullability.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_crc.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
// Accounting mode for analyzing memory usage.
enum class Mode { kFairShare, kTotal, kTotalMorePrecise };
// CordRepRef holds a `const CordRep*` reference in rep, and depending on mode,
// holds a 'fraction' representing a cumulative inverse refcount weight.
template <Mode mode>
struct CordRepRef {
// Instantiates a CordRepRef instance.
explicit CordRepRef(const CordRep* absl_nonnull r) : rep(r) {}
// Creates a child reference holding the provided child.
// Overloaded to add cumulative reference count for kFairShare.
CordRepRef Child(const CordRep* absl_nonnull child) const {
return CordRepRef(child);
}
const CordRep* absl_nonnull rep;
};
// RawUsage holds the computed total number of bytes.
template <Mode mode>
struct RawUsage {
size_t total = 0;
// Add 'size' to total, ignoring the CordRepRef argument.
void Add(size_t size, CordRepRef<mode>) { total += size; }
};
// Overloaded representation of RawUsage that tracks the set of objects
// counted, and avoids double-counting objects referenced more than once
// by the same Cord.
template <>
struct RawUsage<Mode::kTotalMorePrecise> {
size_t total = 0;
// TODO(b/289250880): Replace this with a flat_hash_set.
std::unordered_set<const CordRep* absl_nonnull> counted;
void Add(size_t size, CordRepRef<Mode::kTotalMorePrecise> repref) {
if (counted.insert(repref.rep).second) {
total += size;
}
}
};
// Returns n / refcount avoiding a div for the common refcount == 1.
template <typename refcount_t>
double MaybeDiv(double d, refcount_t refcount) {
return refcount == 1 ? d : d / refcount;
}
// Overloaded 'kFairShare' specialization for CordRepRef. This class holds a
// `fraction` value which represents a cumulative inverse refcount weight.
// For example, a top node with a reference count of 2 will have a fraction
// value of 1/2 = 0.5, representing the 'fair share' of memory it references.
// A node below such a node with a reference count of 5 then has a fraction of
// 0.5 / 5 = 0.1 representing the fair share of memory below that node, etc.
template <>
struct CordRepRef<Mode::kFairShare> {
// Creates a CordRepRef with the provided rep and top (parent) fraction.
explicit CordRepRef(const CordRep* absl_nonnull r, double frac = 1.0)
: rep(r), fraction(MaybeDiv(frac, r->refcount.Get())) {}
// Returns a CordRepRef with a fraction of `this->fraction / child.refcount`
CordRepRef Child(const CordRep* absl_nonnull child) const {
return CordRepRef(child, fraction);
}
const CordRep* absl_nonnull rep;
double fraction;
};
// Overloaded 'kFairShare' specialization for RawUsage
template <>
struct RawUsage<Mode::kFairShare> {
double total = 0;
// Adds `size` multiplied by `rep.fraction` to the total size.
void Add(size_t size, CordRepRef<Mode::kFairShare> rep) {
total += static_cast<double>(size) * rep.fraction;
}
};
// Computes the estimated memory size of the provided data edge.
// External reps are assumed 'heap allocated at their exact size'.
template <Mode mode>
void AnalyzeDataEdge(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
assert(IsDataEdge(rep.rep));
// Consume all substrings
if (rep.rep->tag == SUBSTRING) {
raw_usage.Add(sizeof(CordRepSubstring), rep);
rep = rep.Child(rep.rep->substring()->child);
}
// Consume FLAT / EXTERNAL
const size_t size =
rep.rep->tag >= FLAT
? rep.rep->flat()->AllocatedSize()
: rep.rep->length + sizeof(CordRepExternalImpl<intptr_t>);
raw_usage.Add(size, rep);
}
// Computes the memory size of the provided Btree tree.
template <Mode mode>
void AnalyzeBtree(CordRepRef<mode> rep, RawUsage<mode>& raw_usage) {
raw_usage.Add(sizeof(CordRepBtree), rep);
const CordRepBtree* tree = rep.rep->btree();
if (tree->height() > 0) {
for (CordRep* edge : tree->Edges()) {
AnalyzeBtree(rep.Child(edge), raw_usage);
}
} else {
for (CordRep* edge : tree->Edges()) {
AnalyzeDataEdge(rep.Child(edge), raw_usage);
}
}
}
template <Mode mode>
size_t GetEstimatedUsage(const CordRep* absl_nonnull rep) {
// Zero initialized memory usage totals.
RawUsage<mode> raw_usage;
// Capture top level node and refcount into a CordRepRef.
CordRepRef<mode> repref(rep);
// Consume the top level CRC node if present.
if (repref.rep->tag == CRC) {
raw_usage.Add(sizeof(CordRepCrc), repref);
if (repref.rep->crc()->child == nullptr) {
return static_cast<size_t>(raw_usage.total);
}
repref = repref.Child(repref.rep->crc()->child);
}
if (IsDataEdge(repref.rep)) {
AnalyzeDataEdge(repref, raw_usage);
} else if (repref.rep->tag == BTREE) {
AnalyzeBtree(repref, raw_usage);
} else {
assert(false);
}
return static_cast<size_t>(raw_usage.total);
}
} // namespace
size_t GetEstimatedMemoryUsage(const CordRep* absl_nonnull rep) {
return GetEstimatedUsage<Mode::kTotal>(rep);
}
size_t GetEstimatedFairShareMemoryUsage(const CordRep* absl_nonnull rep) {
return GetEstimatedUsage<Mode::kFairShare>(rep);
}
size_t GetMorePreciseMemoryUsage(const CordRep* absl_nonnull rep) {
return GetEstimatedUsage<Mode::kTotalMorePrecise>(rep);
}
} // namespace cord_internal
ABSL_NAMESPACE_END
} // namespace absl
|