1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|
// Copyright 2021 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: cord_buffer.h
// -----------------------------------------------------------------------------
//
// This file defines an `absl::CordBuffer` data structure to hold data for
// eventual inclusion within an existing `Cord` data structure. Cord buffers are
// useful for building large Cords that may require custom allocation of its
// associated memory.
//
#ifndef ABSL_STRINGS_CORD_BUFFER_H_
#define ABSL_STRINGS_CORD_BUFFER_H_
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <utility>
#include "absl/base/config.h"
#include "absl/base/macros.h"
#include "absl/numeric/bits.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class Cord;
class CordBufferTestPeer;
// CordBuffer
//
// CordBuffer manages memory buffers for purposes such as zero-copy APIs as well
// as applications building cords with large data requiring granular control
// over the allocation and size of cord data. For example, a function creating
// a cord of random data could use a CordBuffer as follows:
//
// absl::Cord CreateRandomCord(size_t length) {
// absl::Cord cord;
// while (length > 0) {
// CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(length);
// absl::Span<char> data = buffer.available_up_to(length);
// FillRandomValues(data.data(), data.size());
// buffer.IncreaseLengthBy(data.size());
// cord.Append(std::move(buffer));
// length -= data.size();
// }
// return cord;
// }
//
// CordBuffer instances are by default limited to a capacity of `kDefaultLimit`
// bytes. `kDefaultLimit` is currently just under 4KiB, but this default may
// change in the future and/or for specific architectures. The default limit is
// aimed to provide a good trade-off between performance and memory overhead.
// Smaller buffers typically incur more compute cost while larger buffers are
// more CPU efficient but create significant memory overhead because of such
// allocations being less granular. Using larger buffers may also increase the
// risk of memory fragmentation.
//
// Applications create a buffer using one of the `CreateWithDefaultLimit()` or
// `CreateWithCustomLimit()` methods. The returned instance will have a non-zero
// capacity and a zero length. Applications use the `data()` method to set the
// contents of the managed memory, and once done filling the buffer, use the
// `IncreaseLengthBy()` or 'SetLength()' method to specify the length of the
// initialized data before adding the buffer to a Cord.
//
// The `CreateWithCustomLimit()` method is intended for applications needing
// larger buffers than the default memory limit, allowing the allocation of up
// to a capacity of `kCustomLimit` bytes minus some minimum internal overhead.
// The usage of `CreateWithCustomLimit()` should be limited to only those use
// cases where the distribution of the input is relatively well known, and/or
// where the trade-off between the efficiency gains outweigh the risk of memory
// fragmentation. See the documentation for `CreateWithCustomLimit()` for more
// information on using larger custom limits.
//
// The capacity of a `CordBuffer` returned by one of the `Create` methods may
// be larger than the requested capacity due to rounding, alignment and
// granularity of the memory allocator. Applications should use the `capacity`
// method to obtain the effective capacity of the returned instance as
// demonstrated in the provided example above.
//
// CordBuffer is a move-only class. All references into the managed memory are
// invalidated when an instance is moved into either another CordBuffer instance
// or a Cord. Writing to a location obtained by a previous call to `data()`
// after an instance was moved will lead to undefined behavior.
//
// A `moved from` CordBuffer instance will have a valid, but empty state.
// CordBuffer is thread compatible.
class CordBuffer {
public:
// kDefaultLimit
//
// Default capacity limits of allocated CordBuffers.
// See the class comments for more information on allocation limits.
static constexpr size_t kDefaultLimit = cord_internal::kMaxFlatLength;
// kCustomLimit
//
// Maximum size for CreateWithCustomLimit() allocated buffers.
// Note that the effective capacity may be slightly less
// because of internal overhead of internal cord buffers.
static constexpr size_t kCustomLimit = 64U << 10;
// Constructors, Destructors and Assignment Operators
// Creates an empty CordBuffer.
CordBuffer() = default;
// Destroys this CordBuffer instance and, if not empty, releases any memory
// managed by this instance, invalidating previously returned references.
~CordBuffer();
// CordBuffer is move-only
CordBuffer(CordBuffer&& rhs) noexcept;
CordBuffer& operator=(CordBuffer&&) noexcept;
CordBuffer(const CordBuffer&) = delete;
CordBuffer& operator=(const CordBuffer&) = delete;
// CordBuffer::MaximumPayload()
//
// Returns the guaranteed maximum payload for a CordBuffer returned by the
// `CreateWithDefaultLimit()` method. While small, each internal buffer inside
// a Cord incurs an overhead to manage the length, type and reference count
// for the buffer managed inside the cord tree. Applications can use this
// method to get approximate number of buffers required for a given byte
// size, etc.
//
// For example:
// const size_t payload = absl::CordBuffer::MaximumPayload();
// const size_t buffer_count = (total_size + payload - 1) / payload;
// buffers.reserve(buffer_count);
static constexpr size_t MaximumPayload();
// Overload to the above `MaximumPayload()` except that it returns the
// maximum payload for a CordBuffer returned by the `CreateWithCustomLimit()`
// method given the provided `block_size`.
static constexpr size_t MaximumPayload(size_t block_size);
// CordBuffer::CreateWithDefaultLimit()
//
// Creates a CordBuffer instance of the desired `capacity`, capped at the
// default limit `kDefaultLimit`. The returned buffer has a guaranteed
// capacity of at least `min(kDefaultLimit, capacity)`. See the class comments
// for more information on buffer capacities and intended usage.
static CordBuffer CreateWithDefaultLimit(size_t capacity);
// CordBuffer::CreateWithCustomLimit()
//
// Creates a CordBuffer instance of the desired `capacity` rounded to an
// appropriate power of 2 size less than, or equal to `block_size`.
// Requires `block_size` to be a power of 2.
//
// If `capacity` is less than or equal to `kDefaultLimit`, then this method
// behaves identical to `CreateWithDefaultLimit`, which means that the caller
// is guaranteed to get a buffer of at least the requested capacity.
//
// If `capacity` is greater than or equal to `block_size`, then this method
// returns a buffer with an `allocated size` of `block_size` bytes. Otherwise,
// this methods returns a buffer with a suitable smaller power of 2 block size
// to satisfy the request. The actual size depends on a number of factors, and
// is typically (but not necessarily) the highest or second highest power of 2
// value less than or equal to `capacity`.
//
// The 'allocated size' includes a small amount of overhead required for
// internal state, which is currently 13 bytes on 64-bit platforms. For
// example: a buffer created with `block_size` and `capacity' set to 8KiB
// will have an allocated size of 8KiB, and an effective internal `capacity`
// of 8KiB - 13 = 8179 bytes.
//
// To demonstrate this in practice, let's assume we want to read data from
// somewhat larger files using approximately 64KiB buffers:
//
// absl::Cord ReadFromFile(int fd, size_t n) {
// absl::Cord cord;
// while (n > 0) {
// CordBuffer buffer = CordBuffer::CreateWithCustomLimit(64 << 10, n);
// absl::Span<char> data = buffer.available_up_to(n);
// ReadFileDataOrDie(fd, data.data(), data.size());
// buffer.IncreaseLengthBy(data.size());
// cord.Append(std::move(buffer));
// n -= data.size();
// }
// return cord;
// }
//
// If we'd use this function to read a file of 659KiB, we may get the
// following pattern of allocated cord buffer sizes:
//
// CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523)
// CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523)
// ...
// CreateWithCustomLimit(64KiB, 19586) --> ~16KiB (16371)
// CreateWithCustomLimit(64KiB, 3215) --> 3215 (at least 3215)
//
// The reason the method returns a 16K buffer instead of a roughly 19K buffer
// is to reduce memory overhead and fragmentation risks. Using carefully
// chosen power of 2 values reduces the entropy of allocated memory sizes.
//
// Additionally, let's assume we'd use the above function on files that are
// generally smaller than 64K. If we'd use 'precise' sized buffers for such
// files, than we'd get a very wide distribution of allocated memory sizes
// rounded to 4K page sizes, and we'd end up with a lot of unused capacity.
//
// In general, application should only use custom sizes if the data they are
// consuming or storing is expected to be many times the chosen block size,
// and be based on objective data and performance metrics. For example, a
// compress function may work faster and consume less CPU when using larger
// buffers. Such an application should pick a size offering a reasonable
// trade-off between expected data size, compute savings with larger buffers,
// and the cost or fragmentation effect of larger buffers.
// Applications must pick a reasonable spot on that curve, and make sure their
// data meets their expectations in size distributions such as "mostly large".
static CordBuffer CreateWithCustomLimit(size_t block_size, size_t capacity);
// CordBuffer::available()
//
// Returns the span delineating the available capacity in this buffer
// which is defined as `{ data() + length(), capacity() - length() }`.
absl::Span<char> available();
// CordBuffer::available_up_to()
//
// Returns the span delineating the available capacity in this buffer limited
// to `size` bytes. This is equivalent to `available().subspan(0, size)`.
absl::Span<char> available_up_to(size_t size);
// CordBuffer::data()
//
// Returns a non-null reference to the data managed by this instance.
// Applications are allowed to write up to `capacity` bytes of instance data.
// CordBuffer data is uninitialized by default. Reading data from an instance
// that has not yet been initialized will lead to undefined behavior.
char* data();
const char* data() const;
// CordBuffer::length()
//
// Returns the length of this instance. The default length of a CordBuffer is
// 0, indicating an 'empty' CordBuffer. Applications must specify the length
// of the data in a CordBuffer before adding it to a Cord.
size_t length() const;
// CordBuffer::capacity()
//
// Returns the capacity of this instance. All instances have a non-zero
// capacity: default and `moved from` instances have a small internal buffer.
size_t capacity() const;
// CordBuffer::IncreaseLengthBy()
//
// Increases the length of this buffer by the specified 'n' bytes.
// Applications must make sure all data in this buffer up to the new length
// has been initialized before adding a CordBuffer to a Cord: failure to do so
// will lead to undefined behavior. Requires `length() + n <= capacity()`.
// Typically, applications will use 'available_up_to()` to get a span of the
// desired capacity, and use `span.size()` to increase the length as in:
// absl::Span<char> span = buffer.available_up_to(desired);
// buffer.IncreaseLengthBy(span.size());
// memcpy(span.data(), src, span.size());
// etc...
void IncreaseLengthBy(size_t n);
// CordBuffer::SetLength()
//
// Sets the data length of this instance. Applications must make sure all data
// of the specified length has been initialized before adding a CordBuffer to
// a Cord: failure to do so will lead to undefined behavior.
// Setting the length to a small value or zero does not release any memory
// held by this CordBuffer instance. Requires `length <= capacity()`.
// Applications should preferably use the `IncreaseLengthBy()` method above
// in combination with the 'available()` or `available_up_to()` methods.
void SetLength(size_t length);
private:
// Make sure we don't accidentally over promise.
static_assert(kCustomLimit <= cord_internal::kMaxLargeFlatSize, "");
// Assume the cost of an 'uprounded' allocation to CeilPow2(size) versus
// the cost of allocating at least 1 extra flat <= 4KB:
// - Flat overhead = 13 bytes
// - Btree amortized cost / node =~ 13 bytes
// - 64 byte granularity of tcmalloc at 4K =~ 32 byte average
// CPU cost and efficiency requires we should at least 'save' something by
// splitting, as a poor man's measure, we say the slop needs to be
// at least double the cost offset to make it worth splitting: ~128 bytes.
static constexpr size_t kMaxPageSlop = 128;
// Overhead for allocation a flat.
static constexpr size_t kOverhead = cord_internal::kFlatOverhead;
using CordRepFlat = cord_internal::CordRepFlat;
// `Rep` is the internal data representation of a CordBuffer. The internal
// representation has an internal small size optimization similar to
// std::string (SSO).
struct Rep {
// Inline SSO size of a CordBuffer
static constexpr size_t kInlineCapacity = sizeof(intptr_t) * 2 - 1;
// Creates a default instance with kInlineCapacity.
Rep() : short_rep{} {}
// Creates an instance managing an allocated non zero CordRep.
explicit Rep(cord_internal::CordRepFlat* rep) : long_rep{rep} {
assert(rep != nullptr);
}
// Returns true if this instance manages the SSO internal buffer.
bool is_short() const {
constexpr size_t offset = offsetof(Short, raw_size);
return (reinterpret_cast<const char*>(this)[offset] & 1) != 0;
}
// Returns the available area of the internal SSO data
absl::Span<char> short_available() {
const size_t length = short_length();
return absl::Span<char>(short_rep.data + length,
kInlineCapacity - length);
}
// Returns the available area of the internal SSO data
absl::Span<char> long_available() const {
assert(!is_short());
const size_t length = long_rep.rep->length;
return absl::Span<char>(long_rep.rep->Data() + length,
long_rep.rep->Capacity() - length);
}
// Returns the length of the internal SSO data.
size_t short_length() const {
assert(is_short());
return static_cast<size_t>(short_rep.raw_size >> 1);
}
// Sets the length of the internal SSO data.
// Disregards any previously set CordRep instance.
void set_short_length(size_t length) {
short_rep.raw_size = static_cast<char>((length << 1) + 1);
}
// Adds `n` to the current short length.
void add_short_length(size_t n) {
assert(is_short());
short_rep.raw_size += static_cast<char>(n << 1);
}
// Returns reference to the internal SSO data buffer.
char* data() {
assert(is_short());
return short_rep.data;
}
const char* data() const {
assert(is_short());
return short_rep.data;
}
// Returns a pointer the external CordRep managed by this instance.
cord_internal::CordRepFlat* rep() const {
assert(!is_short());
return long_rep.rep;
}
// The internal representation takes advantage of the fact that allocated
// memory is always on an even address, and uses the least significant bit
// of the first or last byte (depending on endianness) as the inline size
// indicator overlapping with the least significant byte of the CordRep*.
#if defined(ABSL_IS_BIG_ENDIAN)
struct Long {
explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
void* padding;
cord_internal::CordRepFlat* rep;
};
struct Short {
char data[sizeof(Long) - 1];
char raw_size = 1;
};
#else
struct Long {
explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
cord_internal::CordRepFlat* rep;
void* padding;
};
struct Short {
char raw_size = 1;
char data[sizeof(Long) - 1];
};
#endif
union {
Long long_rep;
Short short_rep;
};
};
// Power2 functions
static bool IsPow2(size_t size) { return absl::has_single_bit(size); }
static size_t Log2Floor(size_t size) {
return static_cast<size_t>(absl::bit_width(size) - 1);
}
static size_t Log2Ceil(size_t size) {
return static_cast<size_t>(absl::bit_width(size - 1));
}
// Implementation of `CreateWithCustomLimit()`.
// This implementation allows for future memory allocation hints to
// be passed down into the CordRepFlat allocation function.
template <typename... AllocationHints>
static CordBuffer CreateWithCustomLimitImpl(size_t block_size,
size_t capacity,
AllocationHints... hints);
// Consumes the value contained in this instance and resets the instance.
// This method returns a non-null Cordrep* if the current instances manages a
// CordRep*, and resets the instance to an empty SSO instance. If the current
// instance is an SSO instance, then this method returns nullptr and sets
// `short_value` to the inlined data value. In either case, the current
// instance length is reset to zero.
// This method is intended to be used by Cord internal functions only.
cord_internal::CordRep* ConsumeValue(absl::string_view& short_value) {
cord_internal::CordRep* rep = nullptr;
if (rep_.is_short()) {
short_value = absl::string_view(rep_.data(), rep_.short_length());
} else {
rep = rep_.rep();
}
rep_.set_short_length(0);
return rep;
}
// Internal constructor.
explicit CordBuffer(cord_internal::CordRepFlat* rep) : rep_(rep) {
assert(rep != nullptr);
}
Rep rep_;
friend class Cord;
friend class CordBufferTestPeer;
};
inline constexpr size_t CordBuffer::MaximumPayload() {
return cord_internal::kMaxFlatLength;
}
inline constexpr size_t CordBuffer::MaximumPayload(size_t block_size) {
return (std::min)(kCustomLimit, block_size) - cord_internal::kFlatOverhead;
}
inline CordBuffer CordBuffer::CreateWithDefaultLimit(size_t capacity) {
if (capacity > Rep::kInlineCapacity) {
auto* rep = cord_internal::CordRepFlat::New(capacity);
rep->length = 0;
return CordBuffer(rep);
}
return CordBuffer();
}
template <typename... AllocationHints>
inline CordBuffer CordBuffer::CreateWithCustomLimitImpl(
size_t block_size, size_t capacity, AllocationHints... hints) {
assert(IsPow2(block_size));
capacity = (std::min)(capacity, kCustomLimit);
block_size = (std::min)(block_size, kCustomLimit);
if (capacity + kOverhead >= block_size) {
capacity = block_size;
} else if (capacity <= kDefaultLimit) {
capacity = capacity + kOverhead;
} else if (!IsPow2(capacity)) {
// Check if rounded up to next power 2 is a good enough fit
// with limited waste making it an acceptable direct fit.
const size_t rounded_up = size_t{1} << Log2Ceil(capacity);
const size_t slop = rounded_up - capacity;
if (slop >= kOverhead && slop <= kMaxPageSlop + kOverhead) {
capacity = rounded_up;
} else {
// Round down to highest power of 2 <= capacity.
// Consider a more aggressive step down if that may reduce the
// risk of fragmentation where 'people are holding it wrong'.
const size_t rounded_down = size_t{1} << Log2Floor(capacity);
capacity = rounded_down;
}
}
const size_t length = capacity - kOverhead;
auto* rep = CordRepFlat::New(CordRepFlat::Large(), length, hints...);
rep->length = 0;
return CordBuffer(rep);
}
inline CordBuffer CordBuffer::CreateWithCustomLimit(size_t block_size,
size_t capacity) {
return CreateWithCustomLimitImpl(block_size, capacity);
}
inline CordBuffer::~CordBuffer() {
if (!rep_.is_short()) {
cord_internal::CordRepFlat::Delete(rep_.rep());
}
}
inline CordBuffer::CordBuffer(CordBuffer&& rhs) noexcept : rep_(rhs.rep_) {
rhs.rep_.set_short_length(0);
}
inline CordBuffer& CordBuffer::operator=(CordBuffer&& rhs) noexcept {
if (!rep_.is_short()) cord_internal::CordRepFlat::Delete(rep_.rep());
rep_ = rhs.rep_;
rhs.rep_.set_short_length(0);
return *this;
}
inline absl::Span<char> CordBuffer::available() {
return rep_.is_short() ? rep_.short_available() : rep_.long_available();
}
inline absl::Span<char> CordBuffer::available_up_to(size_t size) {
return available().subspan(0, size);
}
inline char* CordBuffer::data() {
return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
}
inline const char* CordBuffer::data() const {
return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
}
inline size_t CordBuffer::capacity() const {
return rep_.is_short() ? Rep::kInlineCapacity : rep_.rep()->Capacity();
}
inline size_t CordBuffer::length() const {
return rep_.is_short() ? rep_.short_length() : rep_.rep()->length;
}
inline void CordBuffer::SetLength(size_t length) {
ABSL_HARDENING_ASSERT(length <= capacity());
if (rep_.is_short()) {
rep_.set_short_length(length);
} else {
rep_.rep()->length = length;
}
}
inline void CordBuffer::IncreaseLengthBy(size_t n) {
ABSL_HARDENING_ASSERT(n <= capacity() && length() + n <= capacity());
if (rep_.is_short()) {
rep_.add_short_length(n);
} else {
rep_.rep()->length += n;
}
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_CORD_BUFFER_H_
|