1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
// Copyright 2021 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
#define ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/macros.h"
#include "absl/base/nullability.h"
#include "absl/base/optimization.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/container/internal/container_memory.h"
#include "absl/strings/string_view.h"
// We can only add poisoning if we can detect consteval executions.
#if defined(ABSL_HAVE_CONSTANT_EVALUATED) && \
(defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_MEMORY_SANITIZER))
#define ABSL_INTERNAL_CORD_HAVE_SANITIZER 1
#endif
#define ABSL_CORD_INTERNAL_NO_SANITIZE \
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
// The overhead of a vtable is too much for Cord, so we roll our own subclasses
// using only a single byte to differentiate classes from each other - the "tag"
// byte. Define the subclasses first so we can provide downcasting helper
// functions in the base class.
struct CordRep;
struct CordRepConcat;
struct CordRepExternal;
struct CordRepFlat;
struct CordRepSubstring;
struct CordRepCrc;
class CordRepBtree;
class CordzInfo;
// Default feature enable states for cord ring buffers
enum CordFeatureDefaults { kCordShallowSubcordsDefault = false };
extern std::atomic<bool> shallow_subcords_enabled;
inline void enable_shallow_subcords(bool enable) {
shallow_subcords_enabled.store(enable, std::memory_order_relaxed);
}
enum Constants {
// The inlined size to use with absl::InlinedVector.
//
// Note: The InlinedVectors in this file (and in cord.h) do not need to use
// the same value for their inlined size. The fact that they do is historical.
// It may be desirable for each to use a different inlined size optimized for
// that InlinedVector's usage.
//
// TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
// the inlined vector size (47 exists for backward compatibility).
kInlinedVectorSize = 47,
// Prefer copying blocks of at most this size, otherwise reference count.
kMaxBytesToCopy = 511
};
// Emits a fatal error "Unexpected node type: xyz" and aborts the program.
[[noreturn]] void LogFatalNodeType(CordRep* rep);
// Fast implementation of memmove for up to 15 bytes. This implementation is
// safe for overlapping regions. If nullify_tail is true, the destination is
// padded with '\0' up to 15 bytes.
template <bool nullify_tail = false>
inline void SmallMemmove(char* dst, const char* src, size_t n) {
if (n >= 8) {
assert(n <= 15);
uint64_t buf1;
uint64_t buf2;
memcpy(&buf1, src, 8);
memcpy(&buf2, src + n - 8, 8);
if (nullify_tail) {
memset(dst + 7, 0, 8);
}
// GCC 12 has a false-positive -Wstringop-overflow warning here.
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#endif
memcpy(dst, &buf1, 8);
memcpy(dst + n - 8, &buf2, 8);
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic pop
#endif
} else if (n >= 4) {
uint32_t buf1;
uint32_t buf2;
memcpy(&buf1, src, 4);
memcpy(&buf2, src + n - 4, 4);
if (nullify_tail) {
memset(dst + 4, 0, 4);
memset(dst + 7, 0, 8);
}
memcpy(dst, &buf1, 4);
memcpy(dst + n - 4, &buf2, 4);
} else {
if (n != 0) {
dst[0] = src[0];
dst[n / 2] = src[n / 2];
dst[n - 1] = src[n - 1];
}
if (nullify_tail) {
memset(dst + 7, 0, 8);
memset(dst + n, 0, 8);
}
}
}
// Compact class for tracking the reference count and state flags for CordRep
// instances. Data is stored in an atomic int32_t for compactness and speed.
class RefcountAndFlags {
public:
constexpr RefcountAndFlags() : count_{kRefIncrement} {}
struct Immortal {};
explicit constexpr RefcountAndFlags(Immortal) : count_(kImmortalFlag) {}
// Increments the reference count. Imposes no memory ordering.
inline void Increment() {
count_.fetch_add(kRefIncrement, std::memory_order_relaxed);
}
// Asserts that the current refcount is greater than 0. If the refcount is
// greater than 1, decrements the reference count.
//
// Returns false if there are no references outstanding; true otherwise.
// Inserts barriers to ensure that state written before this method returns
// false will be visible to a thread that just observed this method returning
// false. Always returns false when the immortal bit is set.
inline bool Decrement() {
int32_t refcount = count_.load(std::memory_order_acquire);
assert(refcount > 0 || refcount & kImmortalFlag);
return refcount != kRefIncrement &&
count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) !=
kRefIncrement;
}
// Same as Decrement but expect that refcount is greater than 1.
inline bool DecrementExpectHighRefcount() {
int32_t refcount =
count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel);
assert(refcount > 0 || refcount & kImmortalFlag);
return refcount != kRefIncrement;
}
// Returns the current reference count using acquire semantics.
inline size_t Get() const {
return static_cast<size_t>(count_.load(std::memory_order_acquire) >>
kNumFlags);
}
// Returns whether the atomic integer is 1.
// If the reference count is used in the conventional way, a
// reference count of 1 implies that the current thread owns the
// reference and no other thread shares it.
// This call performs the test for a reference count of one, and
// performs the memory barrier needed for the owning thread
// to act on the object, knowing that it has exclusive access to the
// object. Always returns false when the immortal bit is set.
inline bool IsOne() {
return count_.load(std::memory_order_acquire) == kRefIncrement;
}
bool IsImmortal() const {
return (count_.load(std::memory_order_relaxed) & kImmortalFlag) != 0;
}
private:
// We reserve the bottom bit for flag.
// kImmortalBit indicates that this entity should never be collected; it is
// used for the StringConstant constructor to avoid collecting immutable
// constant cords.
enum Flags {
kNumFlags = 1,
kImmortalFlag = 0x1,
kRefIncrement = (1 << kNumFlags),
};
std::atomic<int32_t> count_;
};
// Various representations that we allow
enum CordRepKind {
UNUSED_0 = 0,
SUBSTRING = 1,
CRC = 2,
BTREE = 3,
UNUSED_4 = 4,
EXTERNAL = 5,
// We have different tags for different sized flat arrays,
// starting with FLAT, and limited to MAX_FLAT_TAG. The below values map to an
// allocated range of 32 bytes to 256 KB. The current granularity is:
// - 8 byte granularity for flat sizes in [32 - 512]
// - 64 byte granularity for flat sizes in (512 - 8KiB]
// - 4KiB byte granularity for flat sizes in (8KiB, 256 KiB]
// If a new tag is needed in the future, then 'FLAT' and 'MAX_FLAT_TAG' should
// be adjusted as well as the Tag <---> Size mapping logic so that FLAT still
// represents the minimum flat allocation size. (32 bytes as of now).
FLAT = 6,
MAX_FLAT_TAG = 248
};
// There are various locations where we want to check if some rep is a 'plain'
// data edge, i.e. an external or flat rep. By having FLAT == EXTERNAL + 1, we
// can perform this check in a single branch as 'tag >= EXTERNAL'
// Note that we can leave this optimization to the compiler. The compiler will
// DTRT when it sees a condition like `tag == EXTERNAL || tag >= FLAT`.
static_assert(FLAT == EXTERNAL + 1, "EXTERNAL and FLAT not consecutive");
struct CordRep {
// Result from an `extract edge` operation. Contains the (possibly changed)
// tree node as well as the extracted edge, or {tree, nullptr} if no edge
// could be extracted.
// On success, the returned `tree` value is null if `extracted` was the only
// data edge inside the tree, a data edge if there were only two data edges in
// the tree, or the (possibly new / smaller) remaining tree with the extracted
// data edge removed.
struct ExtractResult {
CordRep* tree;
CordRep* extracted;
};
CordRep() = default;
constexpr CordRep(RefcountAndFlags::Immortal immortal, size_t l)
: length(l), refcount(immortal), tag(EXTERNAL), storage{} {}
// The following three fields have to be less than 32 bytes since
// that is the smallest supported flat node size. Some code optimizations rely
// on the specific layout of these fields. Notably: the non-trivial field
// `refcount` being preceded by `length`, and being tailed by POD data
// members only.
// LINT.IfChange
size_t length;
RefcountAndFlags refcount;
// If tag < FLAT, it represents CordRepKind and indicates the type of node.
// Otherwise, the node type is CordRepFlat and the tag is the encoded size.
uint8_t tag;
// `storage` provides two main purposes:
// - the starting point for FlatCordRep.Data() [flexible-array-member]
// - 3 bytes of additional storage for use by derived classes.
// The latter is used by CordrepConcat and CordRepBtree. CordRepConcat stores
// a 'depth' value in storage[0], and the (future) CordRepBtree class stores
// `height`, `begin` and `end` in the 3 entries. Otherwise we would need to
// allocate room for these in the derived class, as not all compilers reuse
// padding space from the base class (clang and gcc do, MSVC does not, etc)
uint8_t storage[3];
// LINT.ThenChange(cord_rep_btree.h:copy_raw)
// Returns true if this instance's tag matches the requested type.
constexpr bool IsSubstring() const { return tag == SUBSTRING; }
constexpr bool IsCrc() const { return tag == CRC; }
constexpr bool IsExternal() const { return tag == EXTERNAL; }
constexpr bool IsFlat() const { return tag >= FLAT; }
constexpr bool IsBtree() const { return tag == BTREE; }
inline CordRepSubstring* substring();
inline const CordRepSubstring* substring() const;
inline CordRepCrc* crc();
inline const CordRepCrc* crc() const;
inline CordRepExternal* external();
inline const CordRepExternal* external() const;
inline CordRepFlat* flat();
inline const CordRepFlat* flat() const;
inline CordRepBtree* btree();
inline const CordRepBtree* btree() const;
// --------------------------------------------------------------------
// Memory management
// Destroys the provided `rep`.
static void Destroy(CordRep* rep);
// Increments the reference count of `rep`.
// Requires `rep` to be a non-null pointer value.
static inline CordRep* Ref(CordRep* rep);
// Decrements the reference count of `rep`. Destroys rep if count reaches
// zero. Requires `rep` to be a non-null pointer value.
static inline void Unref(CordRep* rep);
};
struct CordRepSubstring : public CordRep {
size_t start; // Starting offset of substring in child
CordRep* child;
// Creates a substring on `child`, adopting a reference on `child`.
// Requires `child` to be either a flat or external node, and `pos` and `n` to
// form a non-empty partial sub range of `'child`, i.e.:
// `n > 0 && n < length && n + pos <= length`
static inline CordRepSubstring* Create(CordRep* child, size_t pos, size_t n);
// Creates a substring of `rep`. Does not adopt a reference on `rep`.
// Requires `IsDataEdge(rep) && n > 0 && pos + n <= rep->length`.
// If `n == rep->length` then this method returns `CordRep::Ref(rep)`
// If `rep` is a substring of a flat or external node, then this method will
// return a new substring of that flat or external node with `pos` adjusted
// with the original `start` position.
static inline CordRep* Substring(CordRep* rep, size_t pos, size_t n);
};
// Type for function pointer that will invoke the releaser function and also
// delete the `CordRepExternalImpl` corresponding to the passed in
// `CordRepExternal`.
using ExternalReleaserInvoker = void (*)(CordRepExternal*);
// External CordReps are allocated together with a type erased releaser. The
// releaser is stored in the memory directly following the CordRepExternal.
struct CordRepExternal : public CordRep {
CordRepExternal() = default;
explicit constexpr CordRepExternal(absl::string_view str)
: CordRep(RefcountAndFlags::Immortal{}, str.size()),
base(str.data()),
releaser_invoker(nullptr) {}
const char* base;
// Pointer to function that knows how to call and destroy the releaser.
ExternalReleaserInvoker releaser_invoker;
// Deletes (releases) the external rep.
// Requires rep != nullptr and rep->IsExternal()
static void Delete(CordRep* rep);
};
// Use go/ranked-overloads for dispatching.
struct Rank0 {};
struct Rank1 : Rank0 {};
template <typename Releaser,
typename = ::std::invoke_result_t<Releaser, absl::string_view>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view data) {
::std::invoke(std::forward<Releaser>(releaser), data);
}
template <typename Releaser, typename = ::std::invoke_result_t<Releaser>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view) {
::std::invoke(std::forward<Releaser>(releaser));
}
// We use CompressedTuple so that we can benefit from EBCO.
template <typename Releaser>
struct CordRepExternalImpl
: public CordRepExternal,
public ::absl::container_internal::CompressedTuple<Releaser> {
// The extra int arg is so that we can avoid interfering with copy/move
// constructors while still benefitting from perfect forwarding.
template <typename T>
CordRepExternalImpl(T&& releaser, int)
: CordRepExternalImpl::CompressedTuple(std::forward<T>(releaser)) {
this->releaser_invoker = &Release;
}
~CordRepExternalImpl() {
InvokeReleaser(Rank1{}, std::move(this->template get<0>()),
absl::string_view(base, length));
}
static void Release(CordRepExternal* rep) {
delete static_cast<CordRepExternalImpl*>(rep);
}
};
inline CordRepSubstring* CordRepSubstring::Create(CordRep* child, size_t pos,
size_t n) {
assert(child != nullptr);
assert(n > 0);
assert(n < child->length);
assert(pos < child->length);
assert(n <= child->length - pos);
// Move to strategical places inside the Cord logic and make this an assert.
if (ABSL_PREDICT_FALSE(!(child->IsExternal() || child->IsFlat()))) {
LogFatalNodeType(child);
}
CordRepSubstring* rep = new CordRepSubstring();
rep->length = n;
rep->tag = SUBSTRING;
rep->start = pos;
rep->child = child;
return rep;
}
inline CordRep* CordRepSubstring::Substring(CordRep* rep, size_t pos,
size_t n) {
assert(rep != nullptr);
assert(n != 0);
assert(pos < rep->length);
assert(n <= rep->length - pos);
if (n == rep->length) return CordRep::Ref(rep);
if (rep->IsSubstring()) {
pos += rep->substring()->start;
rep = rep->substring()->child;
}
CordRepSubstring* substr = new CordRepSubstring();
substr->length = n;
substr->tag = SUBSTRING;
substr->start = pos;
substr->child = CordRep::Ref(rep);
return substr;
}
inline void CordRepExternal::Delete(CordRep* rep) {
assert(rep != nullptr && rep->IsExternal());
auto* rep_external = static_cast<CordRepExternal*>(rep);
assert(rep_external->releaser_invoker != nullptr);
rep_external->releaser_invoker(rep_external);
}
template <typename Str>
struct ConstInitExternalStorage {
ABSL_CONST_INIT static CordRepExternal value;
};
template <typename Str>
ABSL_CONST_INIT CordRepExternal
ConstInitExternalStorage<Str>::value(Str::value);
enum {
kMaxInline = 15,
};
constexpr char GetOrNull(absl::string_view data, size_t pos) {
return pos < data.size() ? data[pos] : '\0';
}
// We store cordz_info as 64 bit pointer value in little endian format. This
// guarantees that the least significant byte of cordz_info matches the first
// byte of the inline data representation in `data`, which holds the inlined
// size or the 'is_tree' bit.
using cordz_info_t = int64_t;
// Assert that the `cordz_info` pointer value perfectly overlaps the last half
// of `data` and can hold a pointer value.
static_assert(sizeof(cordz_info_t) * 2 == kMaxInline + 1, "");
static_assert(sizeof(cordz_info_t) >= sizeof(intptr_t), "");
// LittleEndianByte() creates a little endian representation of 'value', i.e.:
// a little endian value where the first byte in the host's representation
// holds 'value`, with all other bytes being 0.
static constexpr cordz_info_t LittleEndianByte(unsigned char value) {
#if defined(ABSL_IS_BIG_ENDIAN)
return static_cast<cordz_info_t>(value) << ((sizeof(cordz_info_t) - 1) * 8);
#else
return value;
#endif
}
class InlineData {
public:
// DefaultInitType forces the use of the default initialization constructor.
enum DefaultInitType { kDefaultInit };
// kNullCordzInfo holds the little endian representation of intptr_t(1)
// This is the 'null' / initial value of 'cordz_info'. The null value
// is specifically big endian 1 as with 64-bit pointers, the last
// byte of cordz_info overlaps with the last byte holding the tag.
static constexpr cordz_info_t kNullCordzInfo = LittleEndianByte(1);
// kTagOffset contains the offset of the control byte / tag. This constant is
// intended mostly for debugging purposes: do not remove this constant as it
// is actively inspected and used by gdb pretty printing code.
static constexpr size_t kTagOffset = 0;
// Implement `~InlineData()` conditionally: we only need this destructor to
// unpoison poisoned instances under *SAN, and it will only compile correctly
// if the current compiler supports `absl::is_constant_evaluated()`.
#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER
~InlineData() noexcept { unpoison(); }
#endif
constexpr InlineData() noexcept { poison_this(); }
explicit InlineData(DefaultInitType) noexcept : rep_(kDefaultInit) {
poison_this();
}
explicit InlineData(CordRep* rep) noexcept : rep_(rep) {
ABSL_ASSERT(rep != nullptr);
}
// Explicit constexpr constructor to create a constexpr InlineData
// value. Creates an inlined SSO value if `rep` is null, otherwise
// creates a tree instance value.
constexpr InlineData(absl::string_view sv, CordRep* rep) noexcept
: rep_(rep ? Rep(rep) : Rep(sv)) {
poison();
}
constexpr InlineData(const InlineData& rhs) noexcept;
InlineData& operator=(const InlineData& rhs) noexcept;
friend void swap(InlineData& lhs, InlineData& rhs) noexcept;
friend bool operator==(const InlineData& lhs, const InlineData& rhs) {
#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER
const Rep l = lhs.rep_.SanitizerSafeCopy();
const Rep r = rhs.rep_.SanitizerSafeCopy();
return memcmp(&l, &r, sizeof(l)) == 0;
#else
return memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
#endif
}
friend bool operator!=(const InlineData& lhs, const InlineData& rhs) {
return !operator==(lhs, rhs);
}
// Poisons the unused inlined SSO data if the current instance
// is inlined, else un-poisons the entire instance.
constexpr void poison();
// Un-poisons this instance.
constexpr void unpoison();
// Poisons the current instance. This is used on default initialization.
constexpr void poison_this();
// Returns true if the current instance is empty.
// The 'empty value' is an inlined data value of zero length.
bool is_empty() const { return rep_.tag() == 0; }
// Returns true if the current instance holds a tree value.
bool is_tree() const { return (rep_.tag() & 1) != 0; }
// Returns true if the current instance holds a cordz_info value.
// Requires the current instance to hold a tree value.
bool is_profiled() const {
assert(is_tree());
return rep_.cordz_info() != kNullCordzInfo;
}
// Returns true if either of the provided instances hold a cordz_info value.
// This method is more efficient than the equivalent `data1.is_profiled() ||
// data2.is_profiled()`. Requires both arguments to hold a tree.
static bool is_either_profiled(const InlineData& data1,
const InlineData& data2) {
assert(data1.is_tree() && data2.is_tree());
return (data1.rep_.cordz_info() | data2.rep_.cordz_info()) !=
kNullCordzInfo;
}
// Returns the cordz_info sampling instance for this instance, or nullptr
// if the current instance is not sampled and does not have CordzInfo data.
// Requires the current instance to hold a tree value.
CordzInfo* cordz_info() const {
assert(is_tree());
intptr_t info = static_cast<intptr_t>(absl::little_endian::ToHost64(
static_cast<uint64_t>(rep_.cordz_info())));
assert(info & 1);
return reinterpret_cast<CordzInfo*>(info - 1);
}
// Sets the current cordz_info sampling instance for this instance, or nullptr
// if the current instance is not sampled and does not have CordzInfo data.
// Requires the current instance to hold a tree value.
void set_cordz_info(CordzInfo* cordz_info) {
assert(is_tree());
uintptr_t info = reinterpret_cast<uintptr_t>(cordz_info) | 1;
rep_.set_cordz_info(
static_cast<cordz_info_t>(absl::little_endian::FromHost64(info)));
}
// Resets the current cordz_info to null / empty.
void clear_cordz_info() {
assert(is_tree());
rep_.set_cordz_info(kNullCordzInfo);
}
// Returns a read only pointer to the character data inside this instance.
// Requires the current instance to hold inline data.
const char* as_chars() const {
assert(!is_tree());
return rep_.as_chars();
}
// Returns a mutable pointer to the character data inside this instance.
// Should be used for 'write only' operations setting an inlined value.
// Applications can set the value of inlined data either before or after
// setting the inlined size, i.e., both of the below are valid:
//
// // Set inlined data and inline size
// memcpy(data_.as_chars(), data, size);
// data_.set_inline_size(size);
//
// // Set inlined size and inline data
// data_.set_inline_size(size);
// memcpy(data_.as_chars(), data, size);
//
// It's an error to read from the returned pointer without a preceding write
// if the current instance does not hold inline data, i.e.: is_tree() == true.
char* as_chars() { return rep_.as_chars(); }
// Returns the tree value of this value.
// Requires the current instance to hold a tree value.
CordRep* as_tree() const {
assert(is_tree());
return rep_.tree();
}
void set_inline_data(const char* data, size_t n) {
ABSL_ASSERT(n <= kMaxInline);
unpoison();
rep_.set_tag(static_cast<int8_t>(n << 1));
SmallMemmove<true>(rep_.as_chars(), data, n);
poison();
}
void CopyInlineToString(std::string* dst) const {
assert(!is_tree());
// As Cord can store only 15 bytes it is smaller than std::string's
// small string optimization buffer size. Therefore we will always trigger
// the fast assign short path.
//
// Copying with a size equal to the maximum allows more efficient, wider
// stores to be used and no branching.
dst->assign(rep_.SanitizerSafeCopy().as_chars(), kMaxInline);
// After the copy we then change the size and put in a 0 byte.
dst->erase(inline_size());
}
void copy_max_inline_to(char* dst) const {
assert(!is_tree());
memcpy(dst, rep_.SanitizerSafeCopy().as_chars(), kMaxInline);
}
// Initialize this instance to holding the tree value `rep`,
// initializing the cordz_info to null, i.e.: 'not profiled'.
void make_tree(CordRep* rep) {
unpoison();
rep_.make_tree(rep);
}
// Set the tree value of this instance to 'rep`.
// Requires the current instance to already hold a tree value.
// Does not affect the value of cordz_info.
void set_tree(CordRep* rep) {
assert(is_tree());
rep_.set_tree(rep);
}
// Returns the size of the inlined character data inside this instance.
// Requires the current instance to hold inline data.
size_t inline_size() const { return rep_.inline_size(); }
// Sets the size of the inlined character data inside this instance.
// Requires `size` to be <= kMaxInline.
// See the documentation on 'as_chars()' for more information and examples.
void set_inline_size(size_t size) {
unpoison();
rep_.set_inline_size(size);
poison();
}
// Compares 'this' inlined data with rhs. The comparison is a straightforward
// lexicographic comparison. `Compare()` returns values as follows:
//
// -1 'this' InlineData instance is smaller
// 0 the InlineData instances are equal
// 1 'this' InlineData instance larger
int Compare(const InlineData& rhs) const {
return Compare(rep_.SanitizerSafeCopy(), rhs.rep_.SanitizerSafeCopy());
}
private:
struct Rep {
// See cordz_info_t for forced alignment and size of `cordz_info` details.
struct AsTree {
explicit constexpr AsTree(absl::cord_internal::CordRep* tree)
: rep(tree) {}
cordz_info_t cordz_info = kNullCordzInfo;
absl::cord_internal::CordRep* rep;
};
explicit Rep(DefaultInitType) {}
constexpr Rep() : data{0} {}
constexpr Rep(const Rep&) = default;
constexpr Rep& operator=(const Rep&) = default;
explicit constexpr Rep(CordRep* rep) : as_tree(rep) {}
explicit constexpr Rep(absl::string_view chars)
: data{static_cast<char>((chars.size() << 1)),
GetOrNull(chars, 0),
GetOrNull(chars, 1),
GetOrNull(chars, 2),
GetOrNull(chars, 3),
GetOrNull(chars, 4),
GetOrNull(chars, 5),
GetOrNull(chars, 6),
GetOrNull(chars, 7),
GetOrNull(chars, 8),
GetOrNull(chars, 9),
GetOrNull(chars, 10),
GetOrNull(chars, 11),
GetOrNull(chars, 12),
GetOrNull(chars, 13),
GetOrNull(chars, 14)} {}
#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER
// Break compiler optimization for cases when value is allocated on the
// stack. Compiler assumes that the the variable is fully accessible
// regardless of our poisoning.
// Missing report: https://github.com/llvm/llvm-project/issues/100640
const Rep* self() const {
const Rep* volatile ptr = this;
return ptr;
}
Rep* self() {
Rep* volatile ptr = this;
return ptr;
}
#else
constexpr const Rep* self() const { return this; }
constexpr Rep* self() { return this; }
#endif
// Disable sanitizer as we must always be able to read `tag`.
ABSL_CORD_INTERNAL_NO_SANITIZE
int8_t tag() const { return reinterpret_cast<const int8_t*>(this)[0]; }
void set_tag(int8_t rhs) { reinterpret_cast<int8_t*>(self())[0] = rhs; }
char* as_chars() { return self()->data + 1; }
const char* as_chars() const { return self()->data + 1; }
bool is_tree() const { return (self()->tag() & 1) != 0; }
size_t inline_size() const {
ABSL_ASSERT(!self()->is_tree());
return static_cast<size_t>(self()->tag()) >> 1;
}
void set_inline_size(size_t size) {
ABSL_ASSERT(size <= kMaxInline);
self()->set_tag(static_cast<int8_t>(size << 1));
}
CordRep* tree() const { return self()->as_tree.rep; }
void set_tree(CordRep* rhs) { self()->as_tree.rep = rhs; }
cordz_info_t cordz_info() const { return self()->as_tree.cordz_info; }
void set_cordz_info(cordz_info_t rhs) { self()->as_tree.cordz_info = rhs; }
void make_tree(CordRep* tree) {
self()->as_tree.rep = tree;
self()->as_tree.cordz_info = kNullCordzInfo;
}
#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER
constexpr Rep SanitizerSafeCopy() const {
if (!absl::is_constant_evaluated()) {
Rep res;
if (is_tree()) {
res = *this;
} else {
res.set_tag(tag());
memcpy(res.as_chars(), as_chars(), inline_size());
}
return res;
} else {
return *this;
}
}
#else
constexpr const Rep& SanitizerSafeCopy() const { return *this; }
#endif
// If the data has length <= kMaxInline, we store it in `data`, and
// store the size in the first char of `data` shifted left + 1.
// Else we store it in a tree and store a pointer to that tree in
// `as_tree.rep` with a tagged pointer to make `tag() & 1` non zero.
union {
char data[kMaxInline + 1];
AsTree as_tree;
};
// TODO(b/145829486): see swap(InlineData, InlineData) for more info.
inline void SwapValue(Rep rhs, Rep& refrhs) {
memcpy(&refrhs, this, sizeof(*this));
memcpy(this, &rhs, sizeof(*this));
}
};
// Private implementation of `Compare()`
static inline int Compare(const Rep& lhs, const Rep& rhs) {
uint64_t x, y;
memcpy(&x, lhs.as_chars(), sizeof(x));
memcpy(&y, rhs.as_chars(), sizeof(y));
if (x == y) {
memcpy(&x, lhs.as_chars() + 7, sizeof(x));
memcpy(&y, rhs.as_chars() + 7, sizeof(y));
if (x == y) {
if (lhs.inline_size() == rhs.inline_size()) return 0;
return lhs.inline_size() < rhs.inline_size() ? -1 : 1;
}
}
x = absl::big_endian::FromHost64(x);
y = absl::big_endian::FromHost64(y);
return x < y ? -1 : 1;
}
Rep rep_;
};
static_assert(sizeof(InlineData) == kMaxInline + 1, "");
#ifdef ABSL_INTERNAL_CORD_HAVE_SANITIZER
constexpr InlineData::InlineData(const InlineData& rhs) noexcept
: rep_(rhs.rep_.SanitizerSafeCopy()) {
poison();
}
inline InlineData& InlineData::operator=(const InlineData& rhs) noexcept {
unpoison();
rep_ = rhs.rep_.SanitizerSafeCopy();
poison();
return *this;
}
constexpr void InlineData::poison_this() {
if (!absl::is_constant_evaluated()) {
container_internal::SanitizerPoisonObject(this);
}
}
constexpr void InlineData::unpoison() {
if (!absl::is_constant_evaluated()) {
container_internal::SanitizerUnpoisonObject(this);
}
}
constexpr void InlineData::poison() {
if (!absl::is_constant_evaluated()) {
if (is_tree()) {
container_internal::SanitizerUnpoisonObject(this);
} else if (const size_t size = inline_size()) {
if (size < kMaxInline) {
const char* end = rep_.as_chars() + size;
container_internal::SanitizerPoisonMemoryRegion(end, kMaxInline - size);
}
} else {
container_internal::SanitizerPoisonObject(this);
}
}
}
#else // ABSL_INTERNAL_CORD_HAVE_SANITIZER
constexpr InlineData::InlineData(const InlineData&) noexcept = default;
inline InlineData& InlineData::operator=(const InlineData&) noexcept = default;
constexpr void InlineData::poison_this() {}
constexpr void InlineData::unpoison() {}
constexpr void InlineData::poison() {}
#endif // ABSL_INTERNAL_CORD_HAVE_SANITIZER
inline CordRepSubstring* CordRep::substring() {
assert(IsSubstring());
return static_cast<CordRepSubstring*>(this);
}
inline const CordRepSubstring* CordRep::substring() const {
assert(IsSubstring());
return static_cast<const CordRepSubstring*>(this);
}
inline CordRepExternal* CordRep::external() {
assert(IsExternal());
return static_cast<CordRepExternal*>(this);
}
inline const CordRepExternal* CordRep::external() const {
assert(IsExternal());
return static_cast<const CordRepExternal*>(this);
}
inline CordRep* CordRep::Ref(CordRep* rep) {
// ABSL_ASSUME is a workaround for
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105585
ABSL_ASSUME(rep != nullptr);
rep->refcount.Increment();
return rep;
}
inline void CordRep::Unref(CordRep* rep) {
assert(rep != nullptr);
// Expect refcount to be 0. Avoiding the cost of an atomic decrement should
// typically outweigh the cost of an extra branch checking for ref == 1.
if (ABSL_PREDICT_FALSE(!rep->refcount.DecrementExpectHighRefcount())) {
Destroy(rep);
}
}
inline void swap(InlineData& lhs, InlineData& rhs) noexcept {
lhs.unpoison();
rhs.unpoison();
// TODO(b/145829486): `std::swap(lhs.rep_, rhs.rep_)` results in bad codegen
// on clang, spilling the temporary swap value on the stack. Since `Rep` is
// trivial, we can make clang DTRT by calling a hand-rolled `SwapValue` where
// we pass `rhs` both by value (register allocated) and by reference. The IR
// then folds and inlines correctly into an optimized swap without spill.
lhs.rep_.SwapValue(rhs.rep_, rhs.rep_);
rhs.poison();
lhs.poison();
}
} // namespace cord_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
|