1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/cordz_info.h"
#include <cstdint>
#include "absl/base/config.h"
#include "absl/base/internal/spinlock.h"
#include "absl/container/inlined_vector.h"
#include "absl/debugging/stacktrace.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_crc.h"
#include "absl/strings/internal/cordz_handle.h"
#include "absl/strings/internal/cordz_statistics.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/synchronization/mutex.h"
#include "absl/time/clock.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
ABSL_CONST_INIT CordzInfo::List CordzInfo::global_list_{absl::kConstInit};
namespace {
// CordRepAnalyzer performs the analysis of a cord.
//
// It computes absolute node counts and total memory usage, and an 'estimated
// fair share memory usage` statistic.
// Conceptually, it divides the 'memory usage' at each location in the 'cord
// graph' by the cumulative reference count of that location. The cumulative
// reference count is the factored total of all edges leading into that node.
//
// The top level node is treated specially: we assume the current thread
// (typically called from the CordzHandler) to hold a reference purely to
// perform a safe analysis, and not being part of the application. So we
// subtract 1 from the reference count of the top node to compute the
// 'application fair share' excluding the reference of the current thread.
//
// An example of fair sharing, and why we multiply reference counts:
// Assume we have 2 CordReps, both being a Substring referencing a Flat:
// CordSubstring A (refcount = 5) --> child Flat C (refcount = 2)
// CordSubstring B (refcount = 9) --> child Flat C (refcount = 2)
//
// Flat C has 2 incoming edges from the 2 substrings (refcount = 2) and is not
// referenced directly anywhere else. Translated into a 'fair share', we then
// attribute 50% of the memory (memory / refcount = 2) to each incoming edge.
// Rep A has a refcount of 5, so we attribute each incoming edge 1 / 5th of the
// memory cost below it, i.e.: the fair share of Rep A of the memory used by C
// is then 'memory C / (refcount C * refcount A) + (memory A / refcount A)'.
// It is also easy to see how all incoming edges add up to 100%.
class CordRepAnalyzer {
public:
// Creates an analyzer instance binding to `statistics`.
explicit CordRepAnalyzer(CordzStatistics& statistics)
: statistics_(statistics) {}
// Analyzes the memory statistics and node counts for the provided `rep`, and
// adds the results to `statistics`. Note that node counts and memory sizes
// are not initialized, computed values are added to any existing values.
void AnalyzeCordRep(const CordRep* rep) {
ABSL_ASSERT(rep != nullptr);
// Process all linear nodes.
// As per the class comments, use refcout - 1 on the top level node, as the
// top level node is assumed to be referenced only for analysis purposes.
size_t refcount = rep->refcount.Get();
RepRef repref{rep, (refcount > 1) ? refcount - 1 : 1};
// Process the top level CRC node, if present.
if (repref.tag() == CRC) {
statistics_.node_count++;
statistics_.node_counts.crc++;
memory_usage_.Add(sizeof(CordRepCrc), repref.refcount);
repref = repref.Child(repref.rep->crc()->child);
}
// Process all top level linear nodes (substrings and flats).
repref = CountLinearReps(repref, memory_usage_);
switch (repref.tag()) {
case CordRepKind::BTREE:
AnalyzeBtree(repref);
break;
default:
// We should have a btree node if not null.
ABSL_ASSERT(repref.tag() == CordRepKind::UNUSED_0);
break;
}
// Adds values to output
statistics_.estimated_memory_usage += memory_usage_.total;
statistics_.estimated_fair_share_memory_usage +=
static_cast<size_t>(memory_usage_.fair_share);
}
private:
// RepRef identifies a CordRep* inside the Cord tree with its cumulative
// refcount including itself. For example, a tree consisting of a substring
// with a refcount of 3 and a child flat with a refcount of 4 will have RepRef
// refcounts of 3 and 12 respectively.
struct RepRef {
const CordRep* rep;
size_t refcount;
// Returns a 'child' RepRef which contains the cumulative reference count
// of this instance multiplied by the child's reference count. Returns a
// nullptr RepRef value with a refcount of 0 if `child` is nullptr.
RepRef Child(const CordRep* child) const {
if (child == nullptr) return RepRef{nullptr, 0};
return RepRef{child, refcount * child->refcount.Get()};
}
// Returns the tag of this rep, or UNUSED_0 if this instance is null
constexpr CordRepKind tag() const {
ABSL_ASSERT(rep == nullptr || rep->tag != CordRepKind::UNUSED_0);
return rep ? static_cast<CordRepKind>(rep->tag) : CordRepKind::UNUSED_0;
}
};
// Memory usage values
struct MemoryUsage {
size_t total = 0;
double fair_share = 0.0;
// Adds 'size` memory usage to this class, with a cumulative (recursive)
// reference count of `refcount`
void Add(size_t size, size_t refcount) {
total += size;
fair_share += static_cast<double>(size) / refcount;
}
};
// Counts a flat of the provide allocated size
void CountFlat(size_t size) {
statistics_.node_count++;
statistics_.node_counts.flat++;
if (size <= 64) {
statistics_.node_counts.flat_64++;
} else if (size <= 128) {
statistics_.node_counts.flat_128++;
} else if (size <= 256) {
statistics_.node_counts.flat_256++;
} else if (size <= 512) {
statistics_.node_counts.flat_512++;
} else if (size <= 1024) {
statistics_.node_counts.flat_1k++;
}
}
// Processes 'linear' reps (substring, flat, external) not requiring iteration
// or recursion. Returns RefRep{null} if all reps were processed, else returns
// the top-most non-linear concat or ring cordrep.
// Node counts are updated into `statistics_`, memory usage is update into
// `memory_usage`, which typically references `memory_usage_` except for ring
// buffers where we count children unrounded.
RepRef CountLinearReps(RepRef rep, MemoryUsage& memory_usage) {
// Consume all substrings
while (rep.tag() == SUBSTRING) {
statistics_.node_count++;
statistics_.node_counts.substring++;
memory_usage.Add(sizeof(CordRepSubstring), rep.refcount);
rep = rep.Child(rep.rep->substring()->child);
}
// Consume possible FLAT
if (rep.tag() >= FLAT) {
size_t size = rep.rep->flat()->AllocatedSize();
CountFlat(size);
memory_usage.Add(size, rep.refcount);
return RepRef{nullptr, 0};
}
// Consume possible external
if (rep.tag() == EXTERNAL) {
statistics_.node_count++;
statistics_.node_counts.external++;
size_t size = rep.rep->length + sizeof(CordRepExternalImpl<intptr_t>);
memory_usage.Add(size, rep.refcount);
return RepRef{nullptr, 0};
}
return rep;
}
// Analyzes the provided btree.
void AnalyzeBtree(RepRef rep) {
statistics_.node_count++;
statistics_.node_counts.btree++;
memory_usage_.Add(sizeof(CordRepBtree), rep.refcount);
const CordRepBtree* tree = rep.rep->btree();
if (tree->height() > 0) {
for (CordRep* edge : tree->Edges()) {
AnalyzeBtree(rep.Child(edge));
}
} else {
for (CordRep* edge : tree->Edges()) {
CountLinearReps(rep.Child(edge), memory_usage_);
}
}
}
CordzStatistics& statistics_;
MemoryUsage memory_usage_;
};
} // namespace
CordzInfo* CordzInfo::Head(const CordzSnapshot& snapshot) {
ABSL_ASSERT(snapshot.is_snapshot());
// We can do an 'unsafe' load of 'head', as we are guaranteed that the
// instance it points to is kept alive by the provided CordzSnapshot, so we
// can simply return the current value using an acquire load.
// We do enforce in DEBUG builds that the 'head' value is present in the
// delete queue: ODR violations may lead to 'snapshot' and 'global_list_'
// being in different libraries / modules.
CordzInfo* head = global_list_.head.load(std::memory_order_acquire);
ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(head));
return head;
}
CordzInfo* CordzInfo::Next(const CordzSnapshot& snapshot) const {
ABSL_ASSERT(snapshot.is_snapshot());
// Similar to the 'Head()' function, we do not need a mutex here.
CordzInfo* next = ci_next_.load(std::memory_order_acquire);
ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(this));
ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(next));
return next;
}
void CordzInfo::TrackCord(InlineData& cord, MethodIdentifier method,
int64_t sampling_stride) {
assert(cord.is_tree());
assert(!cord.is_profiled());
CordzInfo* cordz_info =
new CordzInfo(cord.as_tree(), nullptr, method, sampling_stride);
cord.set_cordz_info(cordz_info);
cordz_info->Track();
}
void CordzInfo::TrackCord(InlineData& cord, const InlineData& src,
MethodIdentifier method) {
assert(cord.is_tree());
assert(src.is_tree());
// Unsample current as we the current cord is being replaced with 'src',
// so any method history is no longer relevant.
CordzInfo* cordz_info = cord.cordz_info();
if (cordz_info != nullptr) cordz_info->Untrack();
// Start new cord sample
cordz_info = new CordzInfo(cord.as_tree(), src.cordz_info(), method,
src.cordz_info()->sampling_stride());
cord.set_cordz_info(cordz_info);
cordz_info->Track();
}
void CordzInfo::MaybeTrackCordImpl(InlineData& cord, const InlineData& src,
MethodIdentifier method) {
if (src.is_profiled()) {
TrackCord(cord, src, method);
} else if (cord.is_profiled()) {
cord.cordz_info()->Untrack();
cord.clear_cordz_info();
}
}
CordzInfo::MethodIdentifier CordzInfo::GetParentMethod(const CordzInfo* src) {
if (src == nullptr) return MethodIdentifier::kUnknown;
return src->parent_method_ != MethodIdentifier::kUnknown ? src->parent_method_
: src->method_;
}
size_t CordzInfo::FillParentStack(const CordzInfo* src, void** stack) {
assert(stack);
if (src == nullptr) return 0;
if (src->parent_stack_depth_) {
memcpy(stack, src->parent_stack_, src->parent_stack_depth_ * sizeof(void*));
return src->parent_stack_depth_;
}
memcpy(stack, src->stack_, src->stack_depth_ * sizeof(void*));
return src->stack_depth_;
}
CordzInfo::CordzInfo(CordRep* rep, const CordzInfo* src,
MethodIdentifier method, int64_t sampling_stride)
: rep_(rep),
stack_depth_(
static_cast<size_t>(absl::GetStackTrace(stack_,
/*max_depth=*/kMaxStackDepth,
/*skip_count=*/1))),
parent_stack_depth_(FillParentStack(src, parent_stack_)),
method_(method),
parent_method_(GetParentMethod(src)),
create_time_(absl::Now()),
sampling_stride_(sampling_stride) {
update_tracker_.LossyAdd(method);
if (src) {
// Copy parent counters.
update_tracker_.LossyAdd(src->update_tracker_);
}
}
CordzInfo::~CordzInfo() {
// `rep_` is potentially kept alive if CordzInfo is included
// in a collection snapshot (which should be rare).
if (ABSL_PREDICT_FALSE(rep_)) {
CordRep::Unref(rep_);
}
}
void CordzInfo::Track() {
SpinLockHolder l(&list_->mutex);
CordzInfo* const head = list_->head.load(std::memory_order_acquire);
if (head != nullptr) {
head->ci_prev_.store(this, std::memory_order_release);
}
ci_next_.store(head, std::memory_order_release);
list_->head.store(this, std::memory_order_release);
}
void CordzInfo::Untrack() {
ODRCheck();
{
SpinLockHolder l(&list_->mutex);
CordzInfo* const head = list_->head.load(std::memory_order_acquire);
CordzInfo* const next = ci_next_.load(std::memory_order_acquire);
CordzInfo* const prev = ci_prev_.load(std::memory_order_acquire);
if (next) {
ABSL_ASSERT(next->ci_prev_.load(std::memory_order_acquire) == this);
next->ci_prev_.store(prev, std::memory_order_release);
}
if (prev) {
ABSL_ASSERT(head != this);
ABSL_ASSERT(prev->ci_next_.load(std::memory_order_acquire) == this);
prev->ci_next_.store(next, std::memory_order_release);
} else {
ABSL_ASSERT(head == this);
list_->head.store(next, std::memory_order_release);
}
}
// We can no longer be discovered: perform a fast path check if we are not
// listed on any delete queue, so we can directly delete this instance.
if (SafeToDelete()) {
UnsafeSetCordRep(nullptr);
delete this;
return;
}
// We are likely part of a snapshot, extend the life of the CordRep
{
absl::MutexLock lock(&mutex_);
if (rep_) CordRep::Ref(rep_);
}
CordzHandle::Delete(this);
}
void CordzInfo::Lock(MethodIdentifier method)
ABSL_EXCLUSIVE_LOCK_FUNCTION(mutex_) {
mutex_.Lock();
update_tracker_.LossyAdd(method);
assert(rep_);
}
void CordzInfo::Unlock() ABSL_UNLOCK_FUNCTION(mutex_) {
bool tracked = rep_ != nullptr;
mutex_.Unlock();
if (!tracked) {
Untrack();
}
}
absl::Span<void* const> CordzInfo::GetStack() const {
return absl::MakeConstSpan(stack_, stack_depth_);
}
absl::Span<void* const> CordzInfo::GetParentStack() const {
return absl::MakeConstSpan(parent_stack_, parent_stack_depth_);
}
CordzStatistics CordzInfo::GetCordzStatistics() const {
CordzStatistics stats;
stats.method = method_;
stats.parent_method = parent_method_;
stats.update_tracker = update_tracker_;
if (CordRep* rep = RefCordRep()) {
stats.size = rep->length;
CordRepAnalyzer analyzer(stats);
analyzer.AnalyzeCordRep(rep);
CordRep::Unref(rep);
}
return stats;
}
} // namespace cord_internal
ABSL_NAMESPACE_END
} // namespace absl
|