1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
|
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <assert.h>
#include <locale.h>
#include <stdarg.h>
#include <stdio.h>
#include <algorithm>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <cwctype>
#include <limits>
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <thread> // NOLINT
#include <type_traits>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/log/log.h"
#include "absl/numeric/int128.h"
#include "absl/strings/ascii.h"
#include "absl/strings/internal/str_format/arg.h"
#include "absl/strings/internal/str_format/bind.h"
#include "absl/strings/match.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
struct NativePrintfTraits {
bool hex_float_has_glibc_rounding;
bool hex_float_prefers_denormal_repr;
bool hex_float_uses_minimal_precision_when_not_specified;
bool hex_float_optimizes_leading_digit_bit_count;
};
template <typename T, size_t N>
size_t ArraySize(T (&)[N]) {
return N;
}
template <typename T>
struct AlwaysFalse : std::false_type {};
template <typename T>
std::string LengthModFor() {
static_assert(AlwaysFalse<T>::value, "Unsupported type");
return "";
}
template <>
std::string LengthModFor<char>() {
return "hh";
}
template <>
std::string LengthModFor<signed char>() {
return "hh";
}
template <>
std::string LengthModFor<unsigned char>() {
return "hh";
}
template <>
std::string LengthModFor<short>() { // NOLINT
return "h";
}
template <>
std::string LengthModFor<unsigned short>() { // NOLINT
return "h";
}
template <>
std::string LengthModFor<int>() {
return "";
}
template <>
std::string LengthModFor<unsigned>() {
return "";
}
template <>
std::string LengthModFor<long>() { // NOLINT
return "l";
}
template <>
std::string LengthModFor<unsigned long>() { // NOLINT
return "l";
}
template <>
std::string LengthModFor<long long>() { // NOLINT
return "ll";
}
template <>
std::string LengthModFor<unsigned long long>() { // NOLINT
return "ll";
}
// An integral type of the same rank and signedness as `wchar_t`, that isn't
// `wchar_t`.
using IntegralTypeForWCharT =
std::conditional_t<std::is_signed<wchar_t>::value,
// Some STLs are broken and return `wchar_t` from
// `std::make_[un]signed_t<wchar_t>` when the signedness
// matches. Work around by round-tripping through the
// opposite signedness.
std::make_signed_t<std::make_unsigned_t<wchar_t>>,
std::make_unsigned_t<std::make_signed_t<wchar_t>>>;
// Given an integral type `T`, returns a type of the same rank and signedness
// that is guaranteed to not be `wchar_t`.
template <typename T>
using MatchingIntegralType = std::conditional_t<std::is_same<T, wchar_t>::value,
IntegralTypeForWCharT, T>;
std::string EscCharImpl(int v) {
char buf[64];
int n = absl::ascii_isprint(static_cast<unsigned char>(v))
? snprintf(buf, sizeof(buf), "'%c'", v)
: snprintf(buf, sizeof(buf), "'\\x%.*x'", CHAR_BIT / 4,
static_cast<unsigned>(
static_cast<std::make_unsigned_t<char>>(v)));
assert(n > 0 && static_cast<size_t>(n) < sizeof(buf));
return std::string(buf, static_cast<size_t>(n));
}
std::string Esc(char v) { return EscCharImpl(v); }
std::string Esc(signed char v) { return EscCharImpl(v); }
std::string Esc(unsigned char v) { return EscCharImpl(v); }
std::string Esc(wchar_t v) {
char buf[64];
int n = std::iswprint(static_cast<wint_t>(v))
? snprintf(buf, sizeof(buf), "L'%lc'", static_cast<wint_t>(v))
: snprintf(buf, sizeof(buf), "L'\\x%.*llx'",
static_cast<int>(sizeof(wchar_t) * CHAR_BIT / 4),
static_cast<unsigned long long>(
static_cast<std::make_unsigned_t<wchar_t>>(v)));
assert(n > 0 && static_cast<size_t>(n) < sizeof(buf));
return std::string(buf, static_cast<size_t>(n));
}
template <typename T>
std::string Esc(const T &v) {
std::ostringstream oss;
oss << v;
return oss.str();
}
void StrAppendV(std::string *dst, const char *format, va_list ap) {
// First try with a small fixed size buffer
static const int kSpaceLength = 1024;
char space[kSpaceLength];
// It's possible for methods that use a va_list to invalidate
// the data in it upon use. The fix is to make a copy
// of the structure before using it and use that copy instead.
va_list backup_ap;
va_copy(backup_ap, ap);
int result = vsnprintf(space, kSpaceLength, format, backup_ap);
va_end(backup_ap);
if (result < kSpaceLength) {
if (result >= 0) {
// Normal case -- everything fit.
dst->append(space, static_cast<size_t>(result));
return;
}
if (result < 0) {
// Just an error.
return;
}
}
// Increase the buffer size to the size requested by vsnprintf,
// plus one for the closing \0.
size_t length = static_cast<size_t>(result) + 1;
char *buf = new char[length];
// Restore the va_list before we use it again
va_copy(backup_ap, ap);
result = vsnprintf(buf, length, format, backup_ap);
va_end(backup_ap);
if (result >= 0 && static_cast<size_t>(result) < length) {
// It fit
dst->append(buf, static_cast<size_t>(result));
}
delete[] buf;
}
void StrAppend(std::string *, const char *, ...) ABSL_PRINTF_ATTRIBUTE(2, 3);
void StrAppend(std::string *out, const char *format, ...) {
va_list ap;
va_start(ap, format);
StrAppendV(out, format, ap);
va_end(ap);
}
std::string StrPrint(const char *, ...) ABSL_PRINTF_ATTRIBUTE(1, 2);
std::string StrPrint(const char *format, ...) {
va_list ap;
va_start(ap, format);
std::string result;
StrAppendV(&result, format, ap);
va_end(ap);
return result;
}
NativePrintfTraits VerifyNativeImplementationImpl() {
NativePrintfTraits result;
// >>> hex_float_has_glibc_rounding. To have glibc's rounding behavior we need
// to meet three requirements:
//
// - The threshold for rounding up is 8 (for e.g. MSVC uses 9).
// - If the digits lower than than the 8 are non-zero then we round up.
// - If the digits lower than the 8 are all zero then we round toward even.
//
// The numbers below represent all the cases covering {below,at,above} the
// threshold (8) with both {zero,non-zero} lower bits and both {even,odd}
// preceding digits.
const double d0079 = 65657.0; // 0x1.0079p+16
const double d0179 = 65913.0; // 0x1.0179p+16
const double d0080 = 65664.0; // 0x1.0080p+16
const double d0180 = 65920.0; // 0x1.0180p+16
const double d0081 = 65665.0; // 0x1.0081p+16
const double d0181 = 65921.0; // 0x1.0181p+16
result.hex_float_has_glibc_rounding =
StartsWith(StrPrint("%.2a", d0079), "0x1.00") &&
StartsWith(StrPrint("%.2a", d0179), "0x1.01") &&
StartsWith(StrPrint("%.2a", d0080), "0x1.00") &&
StartsWith(StrPrint("%.2a", d0180), "0x1.02") &&
StartsWith(StrPrint("%.2a", d0081), "0x1.01") &&
StartsWith(StrPrint("%.2a", d0181), "0x1.02");
// >>> hex_float_prefers_denormal_repr. Formatting `denormal` on glibc yields
// "0x0.0000000000001p-1022", whereas on std libs that don't use denormal
// representation it would either be 0x1p-1074 or 0x1.0000000000000-1074.
const double denormal = std::numeric_limits<double>::denorm_min();
result.hex_float_prefers_denormal_repr =
StartsWith(StrPrint("%a", denormal), "0x0.0000000000001");
// >>> hex_float_uses_minimal_precision_when_not_specified. Some (non-glibc)
// libs will format the following as "0x1.0079000000000p+16".
result.hex_float_uses_minimal_precision_when_not_specified =
(StrPrint("%a", d0079) == "0x1.0079p+16");
// >>> hex_float_optimizes_leading_digit_bit_count. The number 1.5, when
// formatted by glibc should yield "0x1.8p+0" for `double` and "0xcp-3" for
// `long double`, i.e., number of bits in the leading digit is adapted to the
// number of bits in the mantissa.
const double d_15 = 1.5;
const long double ld_15 = 1.5;
result.hex_float_optimizes_leading_digit_bit_count =
StartsWith(StrPrint("%a", d_15), "0x1.8") &&
StartsWith(StrPrint("%La", ld_15), "0xc");
return result;
}
const NativePrintfTraits &VerifyNativeImplementation() {
static NativePrintfTraits native_traits = VerifyNativeImplementationImpl();
return native_traits;
}
class FormatConvertTest : public ::testing::Test { };
template <typename T>
void TestStringConvert(const T& str) {
const FormatArgImpl args[] = {FormatArgImpl(str)};
struct Expectation {
const char *out;
const char *fmt;
};
const Expectation kExpect[] = {
{"hello", "%1$s" },
{"", "%1$.s" },
{"", "%1$.0s" },
{"h", "%1$.1s" },
{"he", "%1$.2s" },
{"hello", "%1$.10s" },
{" hello", "%1$6s" },
{" he", "%1$5.2s" },
{"he ", "%1$-5.2s" },
{"hello ", "%1$-6.10s" },
};
for (const Expectation &e : kExpect) {
UntypedFormatSpecImpl format(e.fmt);
EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args)));
}
}
TEST_F(FormatConvertTest, BasicString) {
TestStringConvert("hello"); // As char array.
TestStringConvert(L"hello");
TestStringConvert(static_cast<const char*>("hello"));
TestStringConvert(static_cast<const wchar_t*>(L"hello"));
TestStringConvert(std::string("hello"));
TestStringConvert(std::wstring(L"hello"));
TestStringConvert(string_view("hello"));
TestStringConvert(std::string_view("hello"));
TestStringConvert(std::wstring_view(L"hello"));
}
TEST_F(FormatConvertTest, NullString) {
const char* p = nullptr;
UntypedFormatSpecImpl format("%s");
EXPECT_EQ("", FormatPack(format, {FormatArgImpl(p)}));
const wchar_t* wp = nullptr;
UntypedFormatSpecImpl wformat("%ls");
EXPECT_EQ("", FormatPack(wformat, {FormatArgImpl(wp)}));
}
TEST_F(FormatConvertTest, StringPrecision) {
// We cap at the precision.
char c = 'a';
const char* p = &c;
UntypedFormatSpecImpl format("%.1s");
EXPECT_EQ("a", FormatPack(format, {FormatArgImpl(p)}));
wchar_t wc = L'a';
const wchar_t* wp = &wc;
UntypedFormatSpecImpl wformat("%.1ls");
EXPECT_EQ("a", FormatPack(wformat, {FormatArgImpl(wp)}));
// We cap at the NUL-terminator.
p = "ABC";
UntypedFormatSpecImpl format2("%.10s");
EXPECT_EQ("ABC", FormatPack(format2, {FormatArgImpl(p)}));
wp = L"ABC";
UntypedFormatSpecImpl wformat2("%.10ls");
EXPECT_EQ("ABC", FormatPack(wformat2, {FormatArgImpl(wp)}));
}
// Pointer formatting is implementation defined. This checks that the argument
// can be matched to `ptr`.
MATCHER_P(MatchesPointerString, ptr, "") {
if (ptr == nullptr && arg == "(nil)") {
return true;
}
void* parsed = nullptr;
if (sscanf(arg.c_str(), "%p", &parsed) != 1) {
LOG(FATAL) << "Could not parse " << arg;
}
return ptr == parsed;
}
TEST_F(FormatConvertTest, Pointer) {
static int x = 0;
const int *xp = &x;
char c = 'h';
char *mcp = &c;
const char *cp = "hi";
const char *cnil = nullptr;
wchar_t wc = L'h';
wchar_t *mwcp = &wc;
const wchar_t *wcp = L"hi";
const wchar_t *wcnil = nullptr;
const int *inil = nullptr;
using VoidF = void (*)();
VoidF fp = [] {}, fnil = nullptr;
volatile char vc;
volatile char *vcp = &vc;
volatile char *vcnil = nullptr;
volatile wchar_t vwc;
volatile wchar_t *vwcp = &vwc;
volatile wchar_t *vwcnil = nullptr;
const FormatArgImpl args_array[] = {
FormatArgImpl(xp), FormatArgImpl(cp), FormatArgImpl(wcp),
FormatArgImpl(inil), FormatArgImpl(cnil), FormatArgImpl(wcnil),
FormatArgImpl(mcp), FormatArgImpl(mwcp), FormatArgImpl(fp),
FormatArgImpl(fnil), FormatArgImpl(vcp), FormatArgImpl(vwcp),
FormatArgImpl(vcnil), FormatArgImpl(vwcnil),
};
auto args = absl::MakeConstSpan(args_array);
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%20p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.1p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.20p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%30.20p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-20p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-.1p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%.20p"), args),
MatchesPointerString(&x));
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%-30.20p"), args),
MatchesPointerString(&x));
// const int*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%1$p"), args),
MatchesPointerString(xp));
// const char*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%2$p"), args),
MatchesPointerString(cp));
// const wchar_t*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%3$p"), args),
MatchesPointerString(wcp));
// null const int*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%4$p"), args),
MatchesPointerString(nullptr));
// null const char*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%5$p"), args),
MatchesPointerString(nullptr));
// null const wchar_t*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%6$p"), args),
MatchesPointerString(nullptr));
// nonconst char*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%7$p"), args),
MatchesPointerString(mcp));
// nonconst wchar_t*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%8$p"), args),
MatchesPointerString(mwcp));
// function pointer
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%9$p"), args),
MatchesPointerString(reinterpret_cast<const void *>(fp)));
// null function pointer
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%10$p"), args),
MatchesPointerString(nullptr));
// volatile char*
EXPECT_THAT(
FormatPack(UntypedFormatSpecImpl("%11$p"), args),
MatchesPointerString(reinterpret_cast<volatile const void *>(vcp)));
// volatile wchar_t*
EXPECT_THAT(
FormatPack(UntypedFormatSpecImpl("%12$p"), args),
MatchesPointerString(reinterpret_cast<volatile const void *>(vwcp)));
// null volatile char*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%13$p"), args),
MatchesPointerString(nullptr));
// null volatile wchar_t*
EXPECT_THAT(FormatPack(UntypedFormatSpecImpl("%14$p"), args),
MatchesPointerString(nullptr));
}
struct Cardinal {
enum Pos { k1 = 1, k2 = 2, k3 = 3 };
enum Neg { kM1 = -1, kM2 = -2, kM3 = -3 };
};
TEST_F(FormatConvertTest, Enum) {
const Cardinal::Pos k3 = Cardinal::k3;
const Cardinal::Neg km3 = Cardinal::kM3;
const FormatArgImpl args[] = {FormatArgImpl(k3), FormatArgImpl(km3)};
UntypedFormatSpecImpl format("%1$d");
UntypedFormatSpecImpl format2("%2$d");
EXPECT_EQ("3", FormatPack(format, absl::MakeSpan(args)));
EXPECT_EQ("-3", FormatPack(format2, absl::MakeSpan(args)));
}
template <typename T>
class TypedFormatConvertTest : public FormatConvertTest { };
TYPED_TEST_SUITE_P(TypedFormatConvertTest);
std::vector<std::string> AllFlagCombinations() {
const char kFlags[] = {'-', '#', '0', '+', ' '};
std::vector<std::string> result;
for (size_t fsi = 0; fsi < (1ull << ArraySize(kFlags)); ++fsi) {
std::string flag_set;
for (size_t fi = 0; fi < ArraySize(kFlags); ++fi)
if (fsi & (1ull << fi))
flag_set += kFlags[fi];
result.push_back(flag_set);
}
return result;
}
TYPED_TEST_P(TypedFormatConvertTest, AllIntsWithFlags) {
typedef TypeParam T;
typedef typename std::make_unsigned<T>::type UnsignedT;
using remove_volatile_t = typename std::remove_volatile<T>::type;
const T kMin = std::numeric_limits<remove_volatile_t>::min();
const T kMax = std::numeric_limits<remove_volatile_t>::max();
const T kVals[] = {
remove_volatile_t(1),
remove_volatile_t(2),
remove_volatile_t(3),
remove_volatile_t(123),
remove_volatile_t(-1),
remove_volatile_t(-2),
remove_volatile_t(-3),
remove_volatile_t(-123),
remove_volatile_t(0),
kMax - remove_volatile_t(1),
kMax,
kMin + remove_volatile_t(1),
kMin,
};
const char kConvChars[] = {'d', 'i', 'u', 'o', 'x', 'X'};
const std::string kWid[] = {"", "4", "10"};
const std::string kPrec[] = {"", ".", ".0", ".4", ".10"};
const std::vector<std::string> flag_sets = AllFlagCombinations();
for (size_t vi = 0; vi < ArraySize(kVals); ++vi) {
const T val = kVals[vi];
SCOPED_TRACE(Esc(val));
const FormatArgImpl args[] = {FormatArgImpl(val)};
for (size_t ci = 0; ci < ArraySize(kConvChars); ++ci) {
const char conv_char = kConvChars[ci];
for (size_t fsi = 0; fsi < flag_sets.size(); ++fsi) {
const std::string &flag_set = flag_sets[fsi];
for (size_t wi = 0; wi < ArraySize(kWid); ++wi) {
const std::string &wid = kWid[wi];
for (size_t pi = 0; pi < ArraySize(kPrec); ++pi) {
const std::string &prec = kPrec[pi];
const bool is_signed_conv = (conv_char == 'd' || conv_char == 'i');
const bool is_unsigned_to_signed =
!std::is_signed<T>::value && is_signed_conv;
// Don't consider sign-related flags '+' and ' ' when doing
// unsigned to signed conversions.
if (is_unsigned_to_signed &&
flag_set.find_first_of("+ ") != std::string::npos) {
continue;
}
std::string new_fmt("%");
new_fmt += flag_set;
new_fmt += wid;
new_fmt += prec;
// old and new always agree up to here.
std::string old_fmt = new_fmt;
new_fmt += conv_char;
std::string old_result;
if (is_unsigned_to_signed) {
// don't expect agreement on unsigned formatted as signed,
// as printf can't do that conversion properly. For those
// cases, we do expect agreement with printf with a "%u"
// and the unsigned equivalent of 'val'.
UnsignedT uval =
static_cast<std::remove_volatile_t<UnsignedT>>(val);
old_fmt += LengthModFor<
MatchingIntegralType<std::remove_cv_t<decltype(uval)>>>();
old_fmt += "u";
old_result = StrPrint(old_fmt.c_str(), uval);
} else {
old_fmt += LengthModFor<
MatchingIntegralType<std::remove_cv_t<decltype(val)>>>();
old_fmt += conv_char;
old_result = StrPrint(old_fmt.c_str(), val);
}
SCOPED_TRACE(std::string() + " old_fmt: \"" + old_fmt +
"\"'"
" new_fmt: \"" +
new_fmt + "\"");
UntypedFormatSpecImpl format(new_fmt);
EXPECT_EQ(old_result, FormatPack(format, absl::MakeSpan(args)));
}
}
}
}
}
}
template <typename T>
absl::optional<std::string> StrPrintChar(T c) {
return StrPrint("%c", static_cast<int>(c));
}
template <>
absl::optional<std::string> StrPrintChar(wchar_t c) {
// musl libc has a bug where ("%lc", 0) writes no characters, and Android
// doesn't support forcing UTF-8 via setlocale(). Hardcode the expected
// answers for ASCII inputs to maximize test coverage on these platforms.
if (static_cast<std::make_unsigned_t<wchar_t>>(c) < 0x80) {
return std::string(1, static_cast<char>(c));
}
// Force a UTF-8 locale to match the expected `StrFormat()` behavior.
// It's important to copy the string returned by `old_locale` here, because
// its contents are not guaranteed to be valid after the next `setlocale()`
// call.
std::string old_locale = setlocale(LC_CTYPE, nullptr);
if (!setlocale(LC_CTYPE, "en_US.UTF-8")) {
return absl::nullopt;
}
const std::string output = StrPrint("%lc", static_cast<wint_t>(c));
setlocale(LC_CTYPE, old_locale.c_str());
return output;
}
template <typename T>
typename std::remove_volatile<T>::type GetMaxForConversion() {
return static_cast<typename std::remove_volatile<T>::type>(
std::numeric_limits<int>::max());
}
template <>
wchar_t GetMaxForConversion<wchar_t>() {
// Don't return values that aren't legal Unicode. For wchar_t conversions in a
// UTF-8 locale, conversion behavior for such values is unspecified, and we
// don't care about matching it.
return (sizeof(wchar_t) * CHAR_BIT <= 16) ? wchar_t{0xffff}
: static_cast<wchar_t>(0x10ffff);
}
TYPED_TEST_P(TypedFormatConvertTest, Char) {
// Pass a bunch of values of type TypeParam to both FormatPack and libc's
// vsnprintf("%c", ...) (wrapped in StrPrint) to make sure we get the same
// value.
typedef TypeParam T;
using remove_volatile_t = typename std::remove_volatile<T>::type;
std::vector<remove_volatile_t> vals = {
remove_volatile_t(1), remove_volatile_t(2), remove_volatile_t(10), //
remove_volatile_t(-1), remove_volatile_t(-2), remove_volatile_t(-10), //
remove_volatile_t(0),
};
// We'd like to test values near std::numeric_limits::min() and
// std::numeric_limits::max(), too, but vsnprintf("%c", ...) can't handle
// anything larger than an int. Add in the most extreme values we can without
// exceeding that range.
// Special case: Formatting a wchar_t should behave like vsnprintf("%lc").
// Technically vsnprintf can accept a wint_t in this case, but since we must
// pass a wchar_t to FormatPack, the largest type we can use here is wchar_t.
using ArgType =
std::conditional_t<std::is_same<T, wchar_t>::value, wchar_t, int>;
static const T kMin =
static_cast<remove_volatile_t>(std::numeric_limits<ArgType>::min());
static const T kMax = GetMaxForConversion<T>();
vals.insert(vals.end(), {static_cast<remove_volatile_t>(kMin + 1), kMin,
static_cast<remove_volatile_t>(kMax - 1), kMax});
static const auto kMaxWCharT =
static_cast<remove_volatile_t>(GetMaxForConversion<wchar_t>());
for (const T c : vals) {
SCOPED_TRACE(Esc(c));
const FormatArgImpl args[] = {FormatArgImpl(c)};
UntypedFormatSpecImpl format("%c");
absl::optional<std::string> result = StrPrintChar(c);
if (result.has_value()) {
EXPECT_EQ(result.value(), FormatPack(format, absl::MakeSpan(args)));
}
// Also test that if the format specifier is "%lc", the argument is treated
// as if it's a `wchar_t`.
const T wc =
std::max(remove_volatile_t{0},
std::min(static_cast<remove_volatile_t>(c), kMaxWCharT));
SCOPED_TRACE(Esc(wc));
const FormatArgImpl wide_args[] = {FormatArgImpl(wc)};
UntypedFormatSpecImpl wide_format("%lc");
result = StrPrintChar(static_cast<wchar_t>(wc));
if (result.has_value()) {
EXPECT_EQ(result.value(),
FormatPack(wide_format, absl::MakeSpan(wide_args)));
}
}
}
REGISTER_TYPED_TEST_SUITE_P(TypedFormatConvertTest, AllIntsWithFlags, Char);
typedef ::testing::Types<int, unsigned, volatile int, short, // NOLINT
unsigned short, long, unsigned long, // NOLINT
long long, unsigned long long, // NOLINT
signed char, unsigned char, char, wchar_t>
AllIntTypes;
INSTANTIATE_TYPED_TEST_SUITE_P(TypedFormatConvertTestWithAllIntTypes,
TypedFormatConvertTest, AllIntTypes);
TEST_F(FormatConvertTest, VectorBool) {
// Make sure vector<bool>'s values behave as bools.
std::vector<bool> v = {true, false};
const std::vector<bool> cv = {true, false};
EXPECT_EQ("1,0,1,0",
FormatPack(UntypedFormatSpecImpl("%d,%d,%d,%d"),
absl::Span<const FormatArgImpl>(
{FormatArgImpl(v[0]), FormatArgImpl(v[1]),
FormatArgImpl(cv[0]), FormatArgImpl(cv[1])})));
}
TEST_F(FormatConvertTest, UnicodeWideString) {
// StrFormat() should be able to convert wide strings containing Unicode
// characters (to UTF-8).
const FormatArgImpl args[] = {FormatArgImpl(L"\u47e3 \U00011112")};
// `u8""` forces UTF-8 encoding; MSVC will default to e.g. CP1252 (and warn)
// without it. However, the resulting character type differs between pre-C++20
// (`char`) and C++20 (`char8_t`). So deduce the right character type for all
// C++ versions, init it with UTF-8, then `memcpy()` to get the result as a
// `char*`.
using ConstChar8T = std::remove_reference_t<decltype(*u8"a")>;
ConstChar8T kOutputUtf8[] = u8"\u47e3 \U00011112";
char output[sizeof kOutputUtf8];
std::memcpy(output, kOutputUtf8, sizeof kOutputUtf8);
EXPECT_EQ(output,
FormatPack(UntypedFormatSpecImpl("%ls"), absl::MakeSpan(args)));
}
TEST_F(FormatConvertTest, Int128) {
absl::int128 positive = static_cast<absl::int128>(0x1234567890abcdef) * 1979;
absl::int128 negative = -positive;
absl::int128 max = absl::Int128Max(), min = absl::Int128Min();
const FormatArgImpl args[] = {FormatArgImpl(positive),
FormatArgImpl(negative), FormatArgImpl(max),
FormatArgImpl(min)};
struct Case {
const char* format;
const char* expected;
} cases[] = {
{"%1$d", "2595989796776606496405"},
{"%1$30d", " 2595989796776606496405"},
{"%1$-30d", "2595989796776606496405 "},
{"%1$u", "2595989796776606496405"},
{"%1$x", "8cba9876066020f695"},
{"%2$d", "-2595989796776606496405"},
{"%2$30d", " -2595989796776606496405"},
{"%2$-30d", "-2595989796776606496405 "},
{"%2$u", "340282366920938460867384810655161715051"},
{"%2$x", "ffffffffffffff73456789f99fdf096b"},
{"%3$d", "170141183460469231731687303715884105727"},
{"%3$u", "170141183460469231731687303715884105727"},
{"%3$x", "7fffffffffffffffffffffffffffffff"},
{"%4$d", "-170141183460469231731687303715884105728"},
{"%4$x", "80000000000000000000000000000000"},
};
for (auto c : cases) {
UntypedFormatSpecImpl format(c.format);
EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args)));
}
}
TEST_F(FormatConvertTest, Uint128) {
absl::uint128 v = static_cast<absl::uint128>(0x1234567890abcdef) * 1979;
absl::uint128 max = absl::Uint128Max();
const FormatArgImpl args[] = {FormatArgImpl(v), FormatArgImpl(max)};
struct Case {
const char* format;
const char* expected;
} cases[] = {
{"%1$d", "2595989796776606496405"},
{"%1$30d", " 2595989796776606496405"},
{"%1$-30d", "2595989796776606496405 "},
{"%1$u", "2595989796776606496405"},
{"%1$x", "8cba9876066020f695"},
{"%2$d", "340282366920938463463374607431768211455"},
{"%2$u", "340282366920938463463374607431768211455"},
{"%2$x", "ffffffffffffffffffffffffffffffff"},
};
for (auto c : cases) {
UntypedFormatSpecImpl format(c.format);
EXPECT_EQ(c.expected, FormatPack(format, absl::MakeSpan(args)));
}
}
template <typename Floating>
void TestWithMultipleFormatsHelper(Floating tested_float) {
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
// Reserve the space to ensure we don't allocate memory in the output itself.
std::string str_format_result;
str_format_result.reserve(1 << 20);
std::string string_printf_result;
string_printf_result.reserve(1 << 20);
const char *const kFormats[] = {
"%", "%.3", "%8.5", "%500", "%.5000", "%.60", "%.30", "%03",
"%+", "% ", "%-10", "%#15.3", "%#.0", "%.0", "%1$*2$", "%1$.*2$"};
for (const char *fmt : kFormats) {
for (char f : {'f', 'F', //
'g', 'G', //
'a', 'A', //
'e', 'E'}) {
std::string fmt_str = std::string(fmt) + f;
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' &&
f != 'a' && f != 'A') {
// This particular test takes way too long with snprintf.
// Disable for the case we are not implementing natively.
continue;
}
if ((f == 'a' || f == 'A') &&
!native_traits.hex_float_has_glibc_rounding) {
continue;
}
if (!native_traits.hex_float_prefers_denormal_repr &&
(f == 'a' || f == 'A') &&
std::fpclassify(tested_float) == FP_SUBNORMAL) {
continue;
}
int i = -10;
FormatArgImpl args[2] = {FormatArgImpl(tested_float), FormatArgImpl(i)};
UntypedFormatSpecImpl format(fmt_str);
string_printf_result.clear();
StrAppend(&string_printf_result, fmt_str.c_str(), tested_float, i);
str_format_result.clear();
{
AppendPack(&str_format_result, format, absl::MakeSpan(args));
}
// For values that we know won't match the standard library
// implementation we skip verification, but still run the algorithm to
// catch asserts/sanitizer bugs.
#ifdef _MSC_VER
// MSVC has a different rounding policy than us so we can't test our
// implementation against the native one there.
continue;
#elif defined(__APPLE__)
// Apple formats NaN differently (+nan) vs. (nan)
if (std::isnan(tested_float)) continue;
#endif
// We use ASSERT_EQ here because failures are usually correlated and a
// bug would print way too many failed expectations causing the test
// to time out.
ASSERT_EQ(string_printf_result, str_format_result)
<< fmt_str << " " << StrPrint("%.18g", tested_float) << " "
<< StrPrint("%a", tested_float) << " "
<< StrPrint("%.50f", tested_float);
}
}
}
TEST_F(FormatConvertTest, Float) {
std::vector<float> floats = {0.0f,
-0.0f,
.9999999f,
9999999.f,
std::numeric_limits<float>::max(),
-std::numeric_limits<float>::max(),
std::numeric_limits<float>::min(),
-std::numeric_limits<float>::min(),
std::numeric_limits<float>::lowest(),
-std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::epsilon(),
std::numeric_limits<float>::epsilon() + 1.0f,
std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity(),
std::nanf("")};
// Some regression tests.
floats.push_back(0.999999989f);
if (std::numeric_limits<float>::has_denorm != std::denorm_absent) {
floats.push_back(std::numeric_limits<float>::denorm_min());
floats.push_back(-std::numeric_limits<float>::denorm_min());
}
for (float base :
{1.f, 12.f, 123.f, 1234.f, 12345.f, 123456.f, 1234567.f, 12345678.f,
123456789.f, 1234567890.f, 12345678901.f, 12345678.f, 12345678.f}) {
for (int exp = -123; exp <= 123; ++exp) {
for (int sign : {1, -1}) {
floats.push_back(sign * std::ldexp(base, exp));
}
}
}
for (int exp = -300; exp <= 300; ++exp) {
const float all_ones_mantissa = 0xffffff;
floats.push_back(std::ldexp(all_ones_mantissa, exp));
}
// Remove duplicates to speed up the logic below.
std::sort(floats.begin(), floats.end(), [](const float a, const float b) {
if (std::isnan(a)) return false;
if (std::isnan(b)) return true;
return a < b;
});
floats.erase(std::unique(floats.begin(), floats.end()), floats.end());
for (float f : floats) {
TestWithMultipleFormatsHelper(f);
}
}
TEST_F(FormatConvertTest, Double) {
std::vector<double> doubles = {0.0,
-0.0,
.99999999999999,
99999999999999.,
std::numeric_limits<double>::max(),
-std::numeric_limits<double>::max(),
std::numeric_limits<double>::min(),
-std::numeric_limits<double>::min(),
std::numeric_limits<double>::lowest(),
-std::numeric_limits<double>::lowest(),
std::numeric_limits<double>::epsilon(),
std::numeric_limits<double>::epsilon() + 1,
std::numeric_limits<double>::infinity(),
-std::numeric_limits<double>::infinity(),
std::nan("")};
// Some regression tests.
doubles.push_back(0.99999999999999989);
if (std::numeric_limits<double>::has_denorm != std::denorm_absent) {
doubles.push_back(std::numeric_limits<double>::denorm_min());
doubles.push_back(-std::numeric_limits<double>::denorm_min());
}
for (double base :
{1., 12., 123., 1234., 12345., 123456., 1234567., 12345678., 123456789.,
1234567890., 12345678901., 123456789012., 1234567890123.}) {
for (int exp = -123; exp <= 123; ++exp) {
for (int sign : {1, -1}) {
doubles.push_back(sign * std::ldexp(base, exp));
}
}
}
for (int exp = -300; exp <= 300; ++exp) {
const double all_ones_mantissa = 0x1fffffffffffff;
doubles.push_back(std::ldexp(all_ones_mantissa, exp));
}
// Remove duplicates to speed up the logic below.
std::sort(doubles.begin(), doubles.end(), [](const double a, const double b) {
if (std::isnan(a)) return false;
if (std::isnan(b)) return true;
return a < b;
});
doubles.erase(std::unique(doubles.begin(), doubles.end()), doubles.end());
for (double d : doubles) {
TestWithMultipleFormatsHelper(d);
}
}
TEST_F(FormatConvertTest, DoubleRound) {
std::string s;
const auto format = [&](const char *fmt, double d) -> std::string & {
s.clear();
FormatArgImpl args[1] = {FormatArgImpl(d)};
AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
#if !defined(_MSC_VER)
// MSVC has a different rounding policy than us so we can't test our
// implementation against the native one there.
EXPECT_EQ(StrPrint(fmt, d), s);
#endif // _MSC_VER
return s;
};
// All of these values have to be exactly represented.
// Otherwise we might not be testing what we think we are testing.
// These values can fit in a 64bit "fast" representation.
const double exact_value = 0.00000000000005684341886080801486968994140625;
assert(exact_value == std::pow(2, -44));
// Round up at a 5xx.
EXPECT_EQ(format("%.13f", exact_value), "0.0000000000001");
// Round up at a >5
EXPECT_EQ(format("%.14f", exact_value), "0.00000000000006");
// Round down at a <5
EXPECT_EQ(format("%.16f", exact_value), "0.0000000000000568");
// Nine handling
EXPECT_EQ(format("%.35f", exact_value),
"0.00000000000005684341886080801486969");
EXPECT_EQ(format("%.36f", exact_value),
"0.000000000000056843418860808014869690");
// Round down the last nine.
EXPECT_EQ(format("%.37f", exact_value),
"0.0000000000000568434188608080148696899");
EXPECT_EQ(format("%.10f", 0.000003814697265625), "0.0000038147");
// Round up the last nine
EXPECT_EQ(format("%.11f", 0.000003814697265625), "0.00000381470");
EXPECT_EQ(format("%.12f", 0.000003814697265625), "0.000003814697");
// Round to even (down)
EXPECT_EQ(format("%.43f", exact_value),
"0.0000000000000568434188608080148696899414062");
// Exact
EXPECT_EQ(format("%.44f", exact_value),
"0.00000000000005684341886080801486968994140625");
// Round to even (up), let make the last digits 75 instead of 25
EXPECT_EQ(format("%.43f", exact_value + std::pow(2, -43)),
"0.0000000000001705302565824240446090698242188");
// Exact, just to check.
EXPECT_EQ(format("%.44f", exact_value + std::pow(2, -43)),
"0.00000000000017053025658242404460906982421875");
// This value has to be small enough that it won't fit in the uint128
// representation for printing.
const double small_exact_value =
0.000000000000000000000000000000000000752316384526264005099991383822237233803945956334136013765601092018187046051025390625; // NOLINT
assert(small_exact_value == std::pow(2, -120));
// Round up at a 5xx.
EXPECT_EQ(format("%.37f", small_exact_value),
"0.0000000000000000000000000000000000008");
// Round down at a <5
EXPECT_EQ(format("%.38f", small_exact_value),
"0.00000000000000000000000000000000000075");
// Round up at a >5
EXPECT_EQ(format("%.41f", small_exact_value),
"0.00000000000000000000000000000000000075232");
// Nine handling
EXPECT_EQ(format("%.55f", small_exact_value),
"0.0000000000000000000000000000000000007523163845262640051");
EXPECT_EQ(format("%.56f", small_exact_value),
"0.00000000000000000000000000000000000075231638452626400510");
EXPECT_EQ(format("%.57f", small_exact_value),
"0.000000000000000000000000000000000000752316384526264005100");
EXPECT_EQ(format("%.58f", small_exact_value),
"0.0000000000000000000000000000000000007523163845262640051000");
// Round down the last nine
EXPECT_EQ(format("%.59f", small_exact_value),
"0.00000000000000000000000000000000000075231638452626400509999");
// Round up the last nine
EXPECT_EQ(format("%.79f", small_exact_value),
"0.000000000000000000000000000000000000"
"7523163845262640050999913838222372338039460");
// Round to even (down)
EXPECT_EQ(format("%.119f", small_exact_value),
"0.000000000000000000000000000000000000"
"75231638452626400509999138382223723380"
"394595633413601376560109201818704605102539062");
// Exact
EXPECT_EQ(format("%.120f", small_exact_value),
"0.000000000000000000000000000000000000"
"75231638452626400509999138382223723380"
"3945956334136013765601092018187046051025390625");
// Round to even (up), let make the last digits 75 instead of 25
EXPECT_EQ(format("%.119f", small_exact_value + std::pow(2, -119)),
"0.000000000000000000000000000000000002"
"25694915357879201529997415146671170141"
"183786900240804129680327605456113815307617188");
// Exact, just to check.
EXPECT_EQ(format("%.120f", small_exact_value + std::pow(2, -119)),
"0.000000000000000000000000000000000002"
"25694915357879201529997415146671170141"
"1837869002408041296803276054561138153076171875");
}
TEST_F(FormatConvertTest, DoubleRoundA) {
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
std::string s;
const auto format = [&](const char *fmt, double d) -> std::string & {
s.clear();
FormatArgImpl args[1] = {FormatArgImpl(d)};
AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
if (native_traits.hex_float_has_glibc_rounding) {
EXPECT_EQ(StrPrint(fmt, d), s);
}
return s;
};
// 0x1.00018000p+100
const double on_boundary_odd = 1267679614447900152596896153600.0;
EXPECT_EQ(format("%.0a", on_boundary_odd), "0x1p+100");
EXPECT_EQ(format("%.1a", on_boundary_odd), "0x1.0p+100");
EXPECT_EQ(format("%.2a", on_boundary_odd), "0x1.00p+100");
EXPECT_EQ(format("%.3a", on_boundary_odd), "0x1.000p+100");
EXPECT_EQ(format("%.4a", on_boundary_odd), "0x1.0002p+100"); // round
EXPECT_EQ(format("%.5a", on_boundary_odd), "0x1.00018p+100");
EXPECT_EQ(format("%.6a", on_boundary_odd), "0x1.000180p+100");
// 0x1.00028000p-2
const double on_boundary_even = 0.250009536743164062500;
EXPECT_EQ(format("%.0a", on_boundary_even), "0x1p-2");
EXPECT_EQ(format("%.1a", on_boundary_even), "0x1.0p-2");
EXPECT_EQ(format("%.2a", on_boundary_even), "0x1.00p-2");
EXPECT_EQ(format("%.3a", on_boundary_even), "0x1.000p-2");
EXPECT_EQ(format("%.4a", on_boundary_even), "0x1.0002p-2"); // no round
EXPECT_EQ(format("%.5a", on_boundary_even), "0x1.00028p-2");
EXPECT_EQ(format("%.6a", on_boundary_even), "0x1.000280p-2");
// 0x1.00018001p+1
const double slightly_over = 2.00004577683284878730773925781250;
EXPECT_EQ(format("%.0a", slightly_over), "0x1p+1");
EXPECT_EQ(format("%.1a", slightly_over), "0x1.0p+1");
EXPECT_EQ(format("%.2a", slightly_over), "0x1.00p+1");
EXPECT_EQ(format("%.3a", slightly_over), "0x1.000p+1");
EXPECT_EQ(format("%.4a", slightly_over), "0x1.0002p+1");
EXPECT_EQ(format("%.5a", slightly_over), "0x1.00018p+1");
EXPECT_EQ(format("%.6a", slightly_over), "0x1.000180p+1");
// 0x1.00017fffp+0
const double slightly_under = 1.000022887950763106346130371093750;
EXPECT_EQ(format("%.0a", slightly_under), "0x1p+0");
EXPECT_EQ(format("%.1a", slightly_under), "0x1.0p+0");
EXPECT_EQ(format("%.2a", slightly_under), "0x1.00p+0");
EXPECT_EQ(format("%.3a", slightly_under), "0x1.000p+0");
EXPECT_EQ(format("%.4a", slightly_under), "0x1.0001p+0");
EXPECT_EQ(format("%.5a", slightly_under), "0x1.00018p+0");
EXPECT_EQ(format("%.6a", slightly_under), "0x1.000180p+0");
EXPECT_EQ(format("%.7a", slightly_under), "0x1.0001800p+0");
// 0x1.1b3829ac28058p+3
const double hex_value = 8.85060580848964661981881363317370414733886718750;
EXPECT_EQ(format("%.0a", hex_value), "0x1p+3");
EXPECT_EQ(format("%.1a", hex_value), "0x1.2p+3");
EXPECT_EQ(format("%.2a", hex_value), "0x1.1bp+3");
EXPECT_EQ(format("%.3a", hex_value), "0x1.1b4p+3");
EXPECT_EQ(format("%.4a", hex_value), "0x1.1b38p+3");
EXPECT_EQ(format("%.5a", hex_value), "0x1.1b383p+3");
EXPECT_EQ(format("%.6a", hex_value), "0x1.1b382ap+3");
EXPECT_EQ(format("%.7a", hex_value), "0x1.1b3829bp+3");
EXPECT_EQ(format("%.8a", hex_value), "0x1.1b3829acp+3");
EXPECT_EQ(format("%.9a", hex_value), "0x1.1b3829ac3p+3");
EXPECT_EQ(format("%.10a", hex_value), "0x1.1b3829ac28p+3");
EXPECT_EQ(format("%.11a", hex_value), "0x1.1b3829ac280p+3");
EXPECT_EQ(format("%.12a", hex_value), "0x1.1b3829ac2806p+3");
EXPECT_EQ(format("%.13a", hex_value), "0x1.1b3829ac28058p+3");
EXPECT_EQ(format("%.14a", hex_value), "0x1.1b3829ac280580p+3");
EXPECT_EQ(format("%.15a", hex_value), "0x1.1b3829ac2805800p+3");
EXPECT_EQ(format("%.16a", hex_value), "0x1.1b3829ac28058000p+3");
EXPECT_EQ(format("%.17a", hex_value), "0x1.1b3829ac280580000p+3");
EXPECT_EQ(format("%.18a", hex_value), "0x1.1b3829ac2805800000p+3");
EXPECT_EQ(format("%.19a", hex_value), "0x1.1b3829ac28058000000p+3");
EXPECT_EQ(format("%.20a", hex_value), "0x1.1b3829ac280580000000p+3");
EXPECT_EQ(format("%.21a", hex_value), "0x1.1b3829ac2805800000000p+3");
// 0x1.0818283848586p+3
const double hex_value2 = 8.2529488658208371987257123691961169242858886718750;
EXPECT_EQ(format("%.0a", hex_value2), "0x1p+3");
EXPECT_EQ(format("%.1a", hex_value2), "0x1.1p+3");
EXPECT_EQ(format("%.2a", hex_value2), "0x1.08p+3");
EXPECT_EQ(format("%.3a", hex_value2), "0x1.082p+3");
EXPECT_EQ(format("%.4a", hex_value2), "0x1.0818p+3");
EXPECT_EQ(format("%.5a", hex_value2), "0x1.08183p+3");
EXPECT_EQ(format("%.6a", hex_value2), "0x1.081828p+3");
EXPECT_EQ(format("%.7a", hex_value2), "0x1.0818284p+3");
EXPECT_EQ(format("%.8a", hex_value2), "0x1.08182838p+3");
EXPECT_EQ(format("%.9a", hex_value2), "0x1.081828385p+3");
EXPECT_EQ(format("%.10a", hex_value2), "0x1.0818283848p+3");
EXPECT_EQ(format("%.11a", hex_value2), "0x1.08182838486p+3");
EXPECT_EQ(format("%.12a", hex_value2), "0x1.081828384858p+3");
EXPECT_EQ(format("%.13a", hex_value2), "0x1.0818283848586p+3");
EXPECT_EQ(format("%.14a", hex_value2), "0x1.08182838485860p+3");
EXPECT_EQ(format("%.15a", hex_value2), "0x1.081828384858600p+3");
EXPECT_EQ(format("%.16a", hex_value2), "0x1.0818283848586000p+3");
EXPECT_EQ(format("%.17a", hex_value2), "0x1.08182838485860000p+3");
EXPECT_EQ(format("%.18a", hex_value2), "0x1.081828384858600000p+3");
EXPECT_EQ(format("%.19a", hex_value2), "0x1.0818283848586000000p+3");
EXPECT_EQ(format("%.20a", hex_value2), "0x1.08182838485860000000p+3");
EXPECT_EQ(format("%.21a", hex_value2), "0x1.081828384858600000000p+3");
}
TEST_F(FormatConvertTest, LongDoubleRoundA) {
if (std::numeric_limits<long double>::digits % 4 != 0) {
// This test doesn't really make sense to run on platforms where a long
// double has a different mantissa size (mod 4) than Prod, since then the
// leading digit will be formatted differently.
return;
}
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
std::string s;
const auto format = [&](const char *fmt, long double d) -> std::string & {
s.clear();
FormatArgImpl args[1] = {FormatArgImpl(d)};
AppendPack(&s, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
if (native_traits.hex_float_has_glibc_rounding &&
native_traits.hex_float_optimizes_leading_digit_bit_count) {
EXPECT_EQ(StrPrint(fmt, d), s);
}
return s;
};
// 0x8.8p+4
const long double on_boundary_even = 136.0;
EXPECT_EQ(format("%.0La", on_boundary_even), "0x8p+4");
EXPECT_EQ(format("%.1La", on_boundary_even), "0x8.8p+4");
EXPECT_EQ(format("%.2La", on_boundary_even), "0x8.80p+4");
EXPECT_EQ(format("%.3La", on_boundary_even), "0x8.800p+4");
EXPECT_EQ(format("%.4La", on_boundary_even), "0x8.8000p+4");
EXPECT_EQ(format("%.5La", on_boundary_even), "0x8.80000p+4");
EXPECT_EQ(format("%.6La", on_boundary_even), "0x8.800000p+4");
// 0x9.8p+4
const long double on_boundary_odd = 152.0;
EXPECT_EQ(format("%.0La", on_boundary_odd), "0xap+4");
EXPECT_EQ(format("%.1La", on_boundary_odd), "0x9.8p+4");
EXPECT_EQ(format("%.2La", on_boundary_odd), "0x9.80p+4");
EXPECT_EQ(format("%.3La", on_boundary_odd), "0x9.800p+4");
EXPECT_EQ(format("%.4La", on_boundary_odd), "0x9.8000p+4");
EXPECT_EQ(format("%.5La", on_boundary_odd), "0x9.80000p+4");
EXPECT_EQ(format("%.6La", on_boundary_odd), "0x9.800000p+4");
// 0x8.80001p+24
const long double slightly_over = 142606352.0;
EXPECT_EQ(format("%.0La", slightly_over), "0x9p+24");
EXPECT_EQ(format("%.1La", slightly_over), "0x8.8p+24");
EXPECT_EQ(format("%.2La", slightly_over), "0x8.80p+24");
EXPECT_EQ(format("%.3La", slightly_over), "0x8.800p+24");
EXPECT_EQ(format("%.4La", slightly_over), "0x8.8000p+24");
EXPECT_EQ(format("%.5La", slightly_over), "0x8.80001p+24");
EXPECT_EQ(format("%.6La", slightly_over), "0x8.800010p+24");
// 0x8.7ffffp+24
const long double slightly_under = 142606320.0;
EXPECT_EQ(format("%.0La", slightly_under), "0x8p+24");
EXPECT_EQ(format("%.1La", slightly_under), "0x8.8p+24");
EXPECT_EQ(format("%.2La", slightly_under), "0x8.80p+24");
EXPECT_EQ(format("%.3La", slightly_under), "0x8.800p+24");
EXPECT_EQ(format("%.4La", slightly_under), "0x8.8000p+24");
EXPECT_EQ(format("%.5La", slightly_under), "0x8.7ffffp+24");
EXPECT_EQ(format("%.6La", slightly_under), "0x8.7ffff0p+24");
EXPECT_EQ(format("%.7La", slightly_under), "0x8.7ffff00p+24");
// 0xc.0828384858688000p+128
const long double eights = 4094231060438608800781871108094404067328.0;
EXPECT_EQ(format("%.0La", eights), "0xcp+128");
EXPECT_EQ(format("%.1La", eights), "0xc.1p+128");
EXPECT_EQ(format("%.2La", eights), "0xc.08p+128");
EXPECT_EQ(format("%.3La", eights), "0xc.083p+128");
EXPECT_EQ(format("%.4La", eights), "0xc.0828p+128");
EXPECT_EQ(format("%.5La", eights), "0xc.08284p+128");
EXPECT_EQ(format("%.6La", eights), "0xc.082838p+128");
EXPECT_EQ(format("%.7La", eights), "0xc.0828385p+128");
EXPECT_EQ(format("%.8La", eights), "0xc.08283848p+128");
EXPECT_EQ(format("%.9La", eights), "0xc.082838486p+128");
EXPECT_EQ(format("%.10La", eights), "0xc.0828384858p+128");
EXPECT_EQ(format("%.11La", eights), "0xc.08283848587p+128");
EXPECT_EQ(format("%.12La", eights), "0xc.082838485868p+128");
EXPECT_EQ(format("%.13La", eights), "0xc.0828384858688p+128");
EXPECT_EQ(format("%.14La", eights), "0xc.08283848586880p+128");
EXPECT_EQ(format("%.15La", eights), "0xc.082838485868800p+128");
EXPECT_EQ(format("%.16La", eights), "0xc.0828384858688000p+128");
}
// We don't actually store the results. This is just to exercise the rest of the
// machinery.
struct NullSink {
friend void AbslFormatFlush(NullSink *, string_view) {}
};
template <typename... T>
bool FormatWithNullSink(absl::string_view fmt, const T &... a) {
NullSink sink;
FormatArgImpl args[] = {FormatArgImpl(a)...};
return FormatUntyped(&sink, UntypedFormatSpecImpl(fmt), absl::MakeSpan(args));
}
TEST_F(FormatConvertTest, ExtremeWidthPrecision) {
for (const char *fmt : {"f"}) {
for (double d : {1e-100, 1.0, 1e100}) {
constexpr int max = std::numeric_limits<int>::max();
EXPECT_TRUE(FormatWithNullSink(std::string("%.*") + fmt, max, d));
EXPECT_TRUE(FormatWithNullSink(std::string("%1.*") + fmt, max, d));
EXPECT_TRUE(FormatWithNullSink(std::string("%*") + fmt, max, d));
EXPECT_TRUE(FormatWithNullSink(std::string("%*.*") + fmt, max, max, d));
}
}
}
TEST_F(FormatConvertTest, LongDouble) {
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
const char *const kFormats[] = {"%", "%.3", "%8.5", "%9", "%.5000",
"%.60", "%+", "% ", "%-10"};
std::vector<long double> doubles = {
0.0,
-0.0,
std::numeric_limits<long double>::max(),
-std::numeric_limits<long double>::max(),
std::numeric_limits<long double>::min(),
-std::numeric_limits<long double>::min(),
std::numeric_limits<long double>::infinity(),
-std::numeric_limits<long double>::infinity()};
for (long double base : {1.L, 12.L, 123.L, 1234.L, 12345.L, 123456.L,
1234567.L, 12345678.L, 123456789.L, 1234567890.L,
12345678901.L, 123456789012.L, 1234567890123.L,
// This value is not representable in double, but it
// is in long double that uses the extended format.
// This is to verify that we are not truncating the
// value mistakenly through a double.
10000000000000000.25L}) {
for (int exp : {-1000, -500, 0, 500, 1000}) {
for (int sign : {1, -1}) {
doubles.push_back(sign * std::ldexp(base, exp));
doubles.push_back(sign / std::ldexp(base, exp));
}
}
}
// Regression tests
//
// Using a string literal because not all platforms support hex literals or it
// might be out of range.
doubles.push_back(std::strtold("-0xf.ffffffb5feafffbp-16324L", nullptr));
for (const char *fmt : kFormats) {
for (char f : {'f', 'F', //
'g', 'G', //
'a', 'A', //
'e', 'E'}) {
std::string fmt_str = std::string(fmt) + 'L' + f;
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F' &&
f != 'a' && f != 'A') {
// This particular test takes way too long with snprintf.
// Disable for the case we are not implementing natively.
continue;
}
if (f == 'a' || f == 'A') {
if (!native_traits.hex_float_has_glibc_rounding ||
!native_traits.hex_float_optimizes_leading_digit_bit_count) {
continue;
}
}
for (auto d : doubles) {
FormatArgImpl arg(d);
UntypedFormatSpecImpl format(fmt_str);
std::string result = FormatPack(format, {&arg, 1});
#ifdef _MSC_VER
// MSVC has a different rounding policy than us so we can't test our
// implementation against the native one there.
continue;
#endif // _MSC_VER
// We use ASSERT_EQ here because failures are usually correlated and a
// bug would print way too many failed expectations causing the test to
// time out.
ASSERT_EQ(StrPrint(fmt_str.c_str(), d), result)
<< fmt_str << " " << StrPrint("%.18Lg", d) << " "
<< StrPrint("%La", d) << " " << StrPrint("%.1080Lf", d);
}
}
}
}
TEST_F(FormatConvertTest, IntAsDouble) {
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
const int kMin = std::numeric_limits<int>::min();
const int kMax = std::numeric_limits<int>::max();
const int ia[] = {
1, 2, 3, 123,
-1, -2, -3, -123,
0, kMax - 1, kMax, kMin + 1, kMin };
for (const int fx : ia) {
SCOPED_TRACE(fx);
const FormatArgImpl args[] = {FormatArgImpl(fx)};
struct Expectation {
int line;
std::string out;
const char *fmt;
};
const double dx = static_cast<double>(fx);
std::vector<Expectation> expect = {
{__LINE__, StrPrint("%f", dx), "%f"},
{__LINE__, StrPrint("%12f", dx), "%12f"},
{__LINE__, StrPrint("%.12f", dx), "%.12f"},
{__LINE__, StrPrint("%.12a", dx), "%.12a"},
};
if (native_traits.hex_float_uses_minimal_precision_when_not_specified) {
Expectation ex = {__LINE__, StrPrint("%12a", dx), "%12a"};
expect.push_back(ex);
}
for (const Expectation &e : expect) {
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UntypedFormatSpecImpl format(e.fmt);
EXPECT_EQ(e.out, FormatPack(format, absl::MakeSpan(args)));
}
}
}
template <typename T>
bool FormatFails(const char* test_format, T value) {
std::string format_string = std::string("<<") + test_format + ">>";
UntypedFormatSpecImpl format(format_string);
int one = 1;
const FormatArgImpl args[] = {FormatArgImpl(value), FormatArgImpl(one)};
EXPECT_EQ(FormatPack(format, absl::MakeSpan(args)), "")
<< "format=" << test_format << " value=" << value;
return FormatPack(format, absl::MakeSpan(args)).empty();
}
TEST_F(FormatConvertTest, ExpectedFailures) {
// Int input
EXPECT_TRUE(FormatFails("%p", 1));
EXPECT_TRUE(FormatFails("%s", 1));
EXPECT_TRUE(FormatFails("%n", 1));
// Double input
EXPECT_TRUE(FormatFails("%p", 1.));
EXPECT_TRUE(FormatFails("%s", 1.));
EXPECT_TRUE(FormatFails("%n", 1.));
EXPECT_TRUE(FormatFails("%c", 1.));
EXPECT_TRUE(FormatFails("%d", 1.));
EXPECT_TRUE(FormatFails("%x", 1.));
EXPECT_TRUE(FormatFails("%*d", 1.));
// String input
EXPECT_TRUE(FormatFails("%n", ""));
EXPECT_TRUE(FormatFails("%c", ""));
EXPECT_TRUE(FormatFails("%d", ""));
EXPECT_TRUE(FormatFails("%x", ""));
EXPECT_TRUE(FormatFails("%f", ""));
EXPECT_TRUE(FormatFails("%*d", ""));
}
// Sanity check to make sure that we are testing what we think we're testing on
// e.g. the x86_64+glibc platform.
TEST_F(FormatConvertTest, GlibcHasCorrectTraits) {
#if defined(__GLIBC__) && defined(__x86_64__)
constexpr bool kIsSupportedGlibc = true;
#else
constexpr bool kIsSupportedGlibc = false;
#endif
if (!kIsSupportedGlibc) {
GTEST_SKIP() << "Test does not support this platform";
}
const NativePrintfTraits &native_traits = VerifyNativeImplementation();
// If one of the following tests break then it is either because the above PP
// macro guards failed to exclude a new platform (likely) or because something
// has changed in the implementation of glibc sprintf float formatting
// behavior. If the latter, then the code that computes these flags needs to
// be revisited and/or possibly the StrFormat implementation.
EXPECT_TRUE(native_traits.hex_float_has_glibc_rounding);
EXPECT_TRUE(native_traits.hex_float_prefers_denormal_repr);
EXPECT_TRUE(
native_traits.hex_float_uses_minimal_precision_when_not_specified);
EXPECT_TRUE(native_traits.hex_float_optimizes_leading_digit_bit_count);
}
} // namespace
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
|