1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
|
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/str_format/float_conversion.h"
#include <string.h>
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <limits>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/functional/function_ref.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
#include "absl/numeric/internal/representation.h"
#include "absl/strings/numbers.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
using ::absl::numeric_internal::IsDoubleDouble;
// The code below wants to avoid heap allocations.
// To do so it needs to allocate memory on the stack.
// `StackArray` will allocate memory on the stack in the form of a uint32_t
// array and call the provided callback with said memory.
// It will allocate memory in increments of 512 bytes. We could allocate the
// largest needed unconditionally, but that is more than we need in most of
// cases. This way we use less stack in the common cases.
class StackArray {
using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>;
static constexpr size_t kStep = 512 / sizeof(uint32_t);
// 5 steps is 2560 bytes, which is enough to hold a long double with the
// largest/smallest exponents.
// The operations below will static_assert their particular maximum.
static constexpr size_t kNumSteps = 5;
// We do not want this function to be inlined.
// Otherwise the caller will allocate the stack space unnecessarily for all
// the variants even though it only calls one.
template <size_t steps>
ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) {
uint32_t values[steps * kStep]{};
f(absl::MakeSpan(values));
}
public:
static constexpr size_t kMaxCapacity = kStep * kNumSteps;
static void RunWithCapacity(size_t capacity, Func f) {
assert(capacity <= kMaxCapacity);
const size_t step = (capacity + kStep - 1) / kStep;
assert(step <= kNumSteps);
switch (step) {
case 1:
return RunWithCapacityImpl<1>(f);
case 2:
return RunWithCapacityImpl<2>(f);
case 3:
return RunWithCapacityImpl<3>(f);
case 4:
return RunWithCapacityImpl<4>(f);
case 5:
return RunWithCapacityImpl<5>(f);
}
assert(false && "Invalid capacity");
}
};
// Calculates `10 * (*v) + carry` and stores the result in `*v` and returns
// the carry.
// Requires: `0 <= carry <= 9`
template <typename Int>
inline char MultiplyBy10WithCarry(Int* v, char carry) {
using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>;
BiggerInt tmp =
10 * static_cast<BiggerInt>(*v) + static_cast<BiggerInt>(carry);
*v = static_cast<Int>(tmp);
return static_cast<char>(tmp >> (sizeof(Int) * 8));
}
// Calculates `(2^64 * carry + *v) / 10`.
// Stores the quotient in `*v` and returns the remainder.
// Requires: `0 <= carry <= 9`
inline char DivideBy10WithCarry(uint64_t* v, char carry) {
constexpr uint64_t divisor = 10;
// 2^64 / divisor = chunk_quotient + chunk_remainder / divisor
constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2);
constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor;
const uint64_t carry_u64 = static_cast<uint64_t>(carry);
const uint64_t mod = *v % divisor;
const uint64_t next_carry = chunk_remainder * carry_u64 + mod;
*v = *v / divisor + carry_u64 * chunk_quotient + next_carry / divisor;
return static_cast<char>(next_carry % divisor);
}
using MaxFloatType =
typename std::conditional<IsDoubleDouble(), double, long double>::type;
// Generates the decimal representation for an integer of the form `v * 2^exp`,
// where `v` and `exp` are both positive integers.
// It generates the digits from the left (ie the most significant digit first)
// to allow for direct printing into the sink.
//
// Requires `0 <= exp` and `exp <= numeric_limits<MaxFloatType>::max_exponent`.
class BinaryToDecimal {
static constexpr size_t ChunksNeeded(int exp) {
// We will left shift a uint128 by `exp` bits, so we need `128+exp` total
// bits. Round up to 32.
// See constructor for details about adding `10%` to the value.
return static_cast<size_t>((128 + exp + 31) / 32 * 11 / 10);
}
public:
// Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`.
// This function will allocate enough stack space to perform the conversion.
static void RunConversion(uint128 v, int exp,
absl::FunctionRef<void(BinaryToDecimal)> f) {
assert(exp > 0);
assert(exp <= std::numeric_limits<MaxFloatType>::max_exponent);
static_assert(
StackArray::kMaxCapacity >=
ChunksNeeded(std::numeric_limits<MaxFloatType>::max_exponent),
"");
StackArray::RunWithCapacity(
ChunksNeeded(exp),
[=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); });
}
size_t TotalDigits() const {
return (decimal_end_ - decimal_start_) * kDigitsPerChunk +
CurrentDigits().size();
}
// See the current block of digits.
absl::string_view CurrentDigits() const {
return absl::string_view(&digits_[kDigitsPerChunk - size_], size_);
}
// Advance the current view of digits.
// Returns `false` when no more digits are available.
bool AdvanceDigits() {
if (decimal_start_ >= decimal_end_) return false;
uint32_t w = data_[decimal_start_++];
for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) {
digits_[kDigitsPerChunk - ++size_] = w % 10 + '0';
}
return true;
}
private:
BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) {
// We need to print the digits directly into the sink object without
// buffering them all first. To do this we need two things:
// - to know the total number of digits to do padding when necessary
// - to generate the decimal digits from the left.
//
// In order to do this, we do a two pass conversion.
// On the first pass we convert the binary representation of the value into
// a decimal representation in which each uint32_t chunk holds up to 9
// decimal digits. In the second pass we take each decimal-holding-uint32_t
// value and generate the ascii decimal digits into `digits_`.
//
// The binary and decimal representations actually share the same memory
// region. As we go converting the chunks from binary to decimal we free
// them up and reuse them for the decimal representation. One caveat is that
// the decimal representation is around 7% less efficient in space than the
// binary one. We allocate an extra 10% memory to account for this. See
// ChunksNeeded for this calculation.
size_t after_chunk_index = static_cast<size_t>(exp / 32 + 1);
decimal_start_ = decimal_end_ = ChunksNeeded(exp);
const int offset = exp % 32;
// Left shift v by exp bits.
data_[after_chunk_index - 1] = static_cast<uint32_t>(v << offset);
for (v >>= (32 - offset); v; v >>= 32)
data_[++after_chunk_index - 1] = static_cast<uint32_t>(v);
while (after_chunk_index > 0) {
// While we have more than one chunk available, go in steps of 1e9.
// `data_[after_chunk_index - 1]` holds the highest non-zero binary chunk,
// so keep the variable updated.
uint32_t carry = 0;
for (size_t i = after_chunk_index; i > 0; --i) {
uint64_t tmp = uint64_t{data_[i - 1]} + (uint64_t{carry} << 32);
data_[i - 1] = static_cast<uint32_t>(tmp / uint64_t{1000000000});
carry = static_cast<uint32_t>(tmp % uint64_t{1000000000});
}
// If the highest chunk is now empty, remove it from view.
if (data_[after_chunk_index - 1] == 0)
--after_chunk_index;
--decimal_start_;
assert(decimal_start_ != after_chunk_index - 1);
data_[decimal_start_] = carry;
}
// Fill the first set of digits. The first chunk might not be complete, so
// handle differently.
for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) {
digits_[kDigitsPerChunk - ++size_] = first % 10 + '0';
}
}
private:
static constexpr size_t kDigitsPerChunk = 9;
size_t decimal_start_;
size_t decimal_end_;
std::array<char, kDigitsPerChunk> digits_;
size_t size_ = 0;
absl::Span<uint32_t> data_;
};
// Converts a value of the form `x * 2^-exp` into a sequence of decimal digits.
// Requires `-exp < 0` and
// `-exp >= limits<MaxFloatType>::min_exponent - limits<MaxFloatType>::digits`.
class FractionalDigitGenerator {
public:
// Run the conversion for `v * 2^exp` and call `f(generator)`.
// This function will allocate enough stack space to perform the conversion.
static void RunConversion(
uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) {
using Limits = std::numeric_limits<MaxFloatType>;
assert(-exp < 0);
assert(-exp >= Limits::min_exponent - 128);
static_assert(StackArray::kMaxCapacity >=
(Limits::digits + 128 - Limits::min_exponent + 31) / 32,
"");
StackArray::RunWithCapacity(
static_cast<size_t>((Limits::digits + exp + 31) / 32),
[=](absl::Span<uint32_t> input) {
f(FractionalDigitGenerator(input, v, exp));
});
}
// Returns true if there are any more non-zero digits left.
bool HasMoreDigits() const { return next_digit_ != 0 || after_chunk_index_; }
// Returns true if the remainder digits are greater than 5000...
bool IsGreaterThanHalf() const {
return next_digit_ > 5 || (next_digit_ == 5 && after_chunk_index_);
}
// Returns true if the remainder digits are exactly 5000...
bool IsExactlyHalf() const { return next_digit_ == 5 && !after_chunk_index_; }
struct Digits {
char digit_before_nine;
size_t num_nines;
};
// Get the next set of digits.
// They are composed by a non-9 digit followed by a runs of zero or more 9s.
Digits GetDigits() {
Digits digits{next_digit_, 0};
next_digit_ = GetOneDigit();
while (next_digit_ == 9) {
++digits.num_nines;
next_digit_ = GetOneDigit();
}
return digits;
}
private:
// Return the next digit.
char GetOneDigit() {
if (!after_chunk_index_)
return 0;
char carry = 0;
for (size_t i = after_chunk_index_; i > 0; --i) {
carry = MultiplyBy10WithCarry(&data_[i - 1], carry);
}
// If the lowest chunk is now empty, remove it from view.
if (data_[after_chunk_index_ - 1] == 0)
--after_chunk_index_;
return carry;
}
FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp)
: after_chunk_index_(static_cast<size_t>(exp / 32 + 1)), data_(data) {
const int offset = exp % 32;
// Right shift `v` by `exp` bits.
data_[after_chunk_index_ - 1] = static_cast<uint32_t>(v << (32 - offset));
v >>= offset;
// Make sure we don't overflow the data. We already calculated that
// non-zero bits fit, so we might not have space for leading zero bits.
for (size_t pos = after_chunk_index_ - 1; v; v >>= 32)
data_[--pos] = static_cast<uint32_t>(v);
// Fill next_digit_, as GetDigits expects it to be populated always.
next_digit_ = GetOneDigit();
}
char next_digit_;
size_t after_chunk_index_;
absl::Span<uint32_t> data_;
};
// Count the number of leading zero bits.
int LeadingZeros(uint64_t v) { return countl_zero(v); }
int LeadingZeros(uint128 v) {
auto high = static_cast<uint64_t>(v >> 64);
auto low = static_cast<uint64_t>(v);
return high != 0 ? countl_zero(high) : 64 + countl_zero(low);
}
// Round up the text digits starting at `p`.
// The buffer must have an extra digit that is known to not need rounding.
// This is done below by having an extra '0' digit on the left.
void RoundUp(char *p) {
while (*p == '9' || *p == '.') {
if (*p == '9') *p = '0';
--p;
}
++*p;
}
// Check the previous digit and round up or down to follow the round-to-even
// policy.
void RoundToEven(char *p) {
if (*p == '.') --p;
if (*p % 2 == 1) RoundUp(p);
}
// Simple integral decimal digit printing for values that fit in 64-bits.
// Returns the pointer to the last written digit.
char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) {
do {
*--p = DivideBy10WithCarry(&v, 0) + '0';
} while (v != 0);
return p;
}
// Simple integral decimal digit printing for values that fit in 128-bits.
// Returns the pointer to the last written digit.
char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) {
auto high = static_cast<uint64_t>(v >> 64);
auto low = static_cast<uint64_t>(v);
while (high != 0) {
char carry = DivideBy10WithCarry(&high, 0);
carry = DivideBy10WithCarry(&low, carry);
*--p = carry + '0';
}
return PrintIntegralDigitsFromRightFast(low, p);
}
// Simple fractional decimal digit printing for values that fir in 64-bits after
// shifting.
// Performs rounding if necessary to fit within `precision`.
// Returns the pointer to one after the last character written.
char* PrintFractionalDigitsFast(uint64_t v,
char* start,
int exp,
size_t precision) {
char *p = start;
v <<= (64 - exp);
while (precision > 0) {
if (!v) return p;
*p++ = MultiplyBy10WithCarry(&v, 0) + '0';
--precision;
}
// We need to round.
if (v < 0x8000000000000000) {
// We round down, so nothing to do.
} else if (v > 0x8000000000000000) {
// We round up.
RoundUp(p - 1);
} else {
RoundToEven(p - 1);
}
return p;
}
// Simple fractional decimal digit printing for values that fir in 128-bits
// after shifting.
// Performs rounding if necessary to fit within `precision`.
// Returns the pointer to one after the last character written.
char* PrintFractionalDigitsFast(uint128 v,
char* start,
int exp,
size_t precision) {
char *p = start;
v <<= (128 - exp);
auto high = static_cast<uint64_t>(v >> 64);
auto low = static_cast<uint64_t>(v);
// While we have digits to print and `low` is not empty, do the long
// multiplication.
while (precision > 0 && low != 0) {
char carry = MultiplyBy10WithCarry(&low, 0);
carry = MultiplyBy10WithCarry(&high, carry);
*p++ = carry + '0';
--precision;
}
// Now `low` is empty, so use a faster approach for the rest of the digits.
// This block is pretty much the same as the main loop for the 64-bit case
// above.
while (precision > 0) {
if (!high) return p;
*p++ = MultiplyBy10WithCarry(&high, 0) + '0';
--precision;
}
// We need to round.
if (high < 0x8000000000000000) {
// We round down, so nothing to do.
} else if (high > 0x8000000000000000 || low != 0) {
// We round up.
RoundUp(p - 1);
} else {
RoundToEven(p - 1);
}
return p;
}
struct FormatState {
char sign_char;
size_t precision;
const FormatConversionSpecImpl &conv;
FormatSinkImpl *sink;
// In `alt` mode (flag #) we keep the `.` even if there are no fractional
// digits. In non-alt mode, we strip it.
bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); }
};
struct Padding {
size_t left_spaces;
size_t zeros;
size_t right_spaces;
};
Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) {
if (state.conv.width() < 0 ||
static_cast<size_t>(state.conv.width()) <= total_size) {
return {0, 0, 0};
}
size_t missing_chars = static_cast<size_t>(state.conv.width()) - total_size;
if (state.conv.has_left_flag()) {
return {0, 0, missing_chars};
} else if (state.conv.has_zero_flag()) {
return {0, missing_chars, 0};
} else {
return {missing_chars, 0, 0};
}
}
void FinalPrint(const FormatState& state,
absl::string_view data,
size_t padding_offset,
size_t trailing_zeros,
absl::string_view data_postfix) {
if (state.conv.width() < 0) {
// No width specified. Fast-path.
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
state.sink->Append(data);
state.sink->Append(trailing_zeros, '0');
state.sink->Append(data_postfix);
return;
}
auto padding =
ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + data.size() +
data_postfix.size() + trailing_zeros,
state);
state.sink->Append(padding.left_spaces, ' ');
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
// Padding in general needs to be inserted somewhere in the middle of `data`.
state.sink->Append(data.substr(0, padding_offset));
state.sink->Append(padding.zeros, '0');
state.sink->Append(data.substr(padding_offset));
state.sink->Append(trailing_zeros, '0');
state.sink->Append(data_postfix);
state.sink->Append(padding.right_spaces, ' ');
}
// Fastpath %f formatter for when the shifted value fits in a simple integral
// type.
// Prints `v*2^exp` with the options from `state`.
template <typename Int>
void FormatFFast(Int v, int exp, const FormatState &state) {
constexpr int input_bits = sizeof(Int) * 8;
static constexpr size_t integral_size =
/* in case we need to round up an extra digit */ 1 +
/* decimal digits for uint128 */ 40 + 1;
char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128];
buffer[integral_size] = '.';
char *const integral_digits_end = buffer + integral_size;
char *integral_digits_start;
char *const fractional_digits_start = buffer + integral_size + 1;
char *fractional_digits_end = fractional_digits_start;
if (exp >= 0) {
const int total_bits = input_bits - LeadingZeros(v) + exp;
integral_digits_start =
total_bits <= 64
? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp,
integral_digits_end)
: PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp,
integral_digits_end);
} else {
exp = -exp;
integral_digits_start = PrintIntegralDigitsFromRightFast(
exp < input_bits ? v >> exp : 0, integral_digits_end);
// PrintFractionalDigits may pull a carried 1 all the way up through the
// integral portion.
integral_digits_start[-1] = '0';
fractional_digits_end =
exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp,
state.precision)
: PrintFractionalDigitsFast(static_cast<uint128>(v),
fractional_digits_start, exp,
state.precision);
// There was a carry, so include the first digit too.
if (integral_digits_start[-1] != '0') --integral_digits_start;
}
size_t size =
static_cast<size_t>(fractional_digits_end - integral_digits_start);
// In `alt` mode (flag #) we keep the `.` even if there are no fractional
// digits. In non-alt mode, we strip it.
if (!state.ShouldPrintDot()) --size;
FinalPrint(state, absl::string_view(integral_digits_start, size),
/*padding_offset=*/0,
state.precision - static_cast<size_t>(fractional_digits_end -
fractional_digits_start),
/*data_postfix=*/"");
}
// Slow %f formatter for when the shifted value does not fit in a uint128, and
// `exp > 0`.
// Prints `v*2^exp` with the options from `state`.
// This one is guaranteed to not have fractional digits, so we don't have to
// worry about anything after the `.`.
void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) {
BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) {
const size_t total_digits =
btd.TotalDigits() + (state.ShouldPrintDot() ? state.precision + 1 : 0);
const auto padding = ExtraWidthToPadding(
total_digits + (state.sign_char != '\0' ? 1 : 0), state);
state.sink->Append(padding.left_spaces, ' ');
if (state.sign_char != '\0')
state.sink->Append(1, state.sign_char);
state.sink->Append(padding.zeros, '0');
do {
state.sink->Append(btd.CurrentDigits());
} while (btd.AdvanceDigits());
if (state.ShouldPrintDot())
state.sink->Append(1, '.');
state.sink->Append(state.precision, '0');
state.sink->Append(padding.right_spaces, ' ');
});
}
// Slow %f formatter for when the shifted value does not fit in a uint128, and
// `exp < 0`.
// Prints `v*2^exp` with the options from `state`.
// This one is guaranteed to be < 1.0, so we don't have to worry about integral
// digits.
void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) {
const size_t total_digits =
/* 0 */ 1 + (state.ShouldPrintDot() ? state.precision + 1 : 0);
auto padding =
ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state);
padding.zeros += 1;
state.sink->Append(padding.left_spaces, ' ');
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
state.sink->Append(padding.zeros, '0');
if (state.ShouldPrintDot()) state.sink->Append(1, '.');
// Print digits
size_t digits_to_go = state.precision;
FractionalDigitGenerator::RunConversion(
v, exp, [&](FractionalDigitGenerator digit_gen) {
// There are no digits to print here.
if (state.precision == 0) return;
// We go one digit at a time, while keeping track of runs of nines.
// The runs of nines are used to perform rounding when necessary.
while (digits_to_go > 0 && digit_gen.HasMoreDigits()) {
auto digits = digit_gen.GetDigits();
// Now we have a digit and a run of nines.
// See if we can print them all.
if (digits.num_nines + 1 < digits_to_go) {
// We don't have to round yet, so print them.
state.sink->Append(1, digits.digit_before_nine + '0');
state.sink->Append(digits.num_nines, '9');
digits_to_go -= digits.num_nines + 1;
} else {
// We can't print all the nines, see where we have to truncate.
bool round_up = false;
if (digits.num_nines + 1 > digits_to_go) {
// We round up at a nine. No need to print them.
round_up = true;
} else {
// We can fit all the nines, but truncate just after it.
if (digit_gen.IsGreaterThanHalf()) {
round_up = true;
} else if (digit_gen.IsExactlyHalf()) {
// Round to even
round_up =
digits.num_nines != 0 || digits.digit_before_nine % 2 == 1;
}
}
if (round_up) {
state.sink->Append(1, digits.digit_before_nine + '1');
--digits_to_go;
// The rest will be zeros.
} else {
state.sink->Append(1, digits.digit_before_nine + '0');
state.sink->Append(digits_to_go - 1, '9');
digits_to_go = 0;
}
return;
}
}
});
state.sink->Append(digits_to_go, '0');
state.sink->Append(padding.right_spaces, ' ');
}
template <typename Int>
void FormatF(Int mantissa, int exp, const FormatState &state) {
if (exp >= 0) {
const int total_bits =
static_cast<int>(sizeof(Int) * 8) - LeadingZeros(mantissa) + exp;
// Fallback to the slow stack-based approach if we can't do it in a 64 or
// 128 bit state.
if (ABSL_PREDICT_FALSE(total_bits > 128)) {
return FormatFPositiveExpSlow(mantissa, exp, state);
}
} else {
// Fallback to the slow stack-based approach if we can't do it in a 64 or
// 128 bit state.
if (ABSL_PREDICT_FALSE(exp < -128)) {
return FormatFNegativeExpSlow(mantissa, -exp, state);
}
}
return FormatFFast(mantissa, exp, state);
}
// Grab the group of four bits (nibble) from `n`. E.g., nibble 1 corresponds to
// bits 4-7.
template <typename Int>
uint8_t GetNibble(Int n, size_t nibble_index) {
constexpr Int mask_low_nibble = Int{0xf};
int shift = static_cast<int>(nibble_index * 4);
n &= mask_low_nibble << shift;
return static_cast<uint8_t>((n >> shift) & 0xf);
}
// Add one to the given nibble, applying carry to higher nibbles. Returns true
// if overflow, false otherwise.
template <typename Int>
bool IncrementNibble(size_t nibble_index, Int* n) {
constexpr size_t kShift = sizeof(Int) * 8 - 1;
constexpr size_t kNumNibbles = sizeof(Int) * 8 / 4;
Int before = *n >> kShift;
// Here we essentially want to take the number 1 and move it into the
// requested nibble, then add it to *n to effectively increment the nibble.
// However, ASan will complain if we try to shift the 1 beyond the limits of
// the Int, i.e., if the nibble_index is out of range. So therefore we check
// for this and if we are out of range we just add 0 which leaves *n
// unchanged, which seems like the reasonable thing to do in that case.
*n += ((nibble_index >= kNumNibbles)
? 0
: (Int{1} << static_cast<int>(nibble_index * 4)));
Int after = *n >> kShift;
return (before && !after) || (nibble_index >= kNumNibbles);
}
// Return a mask with 1's in the given nibble and all lower nibbles.
template <typename Int>
Int MaskUpToNibbleInclusive(size_t nibble_index) {
constexpr size_t kNumNibbles = sizeof(Int) * 8 / 4;
static const Int ones = ~Int{0};
++nibble_index;
return ones >> static_cast<int>(
4 * (std::max(kNumNibbles, nibble_index) - nibble_index));
}
// Return a mask with 1's below the given nibble.
template <typename Int>
Int MaskUpToNibbleExclusive(size_t nibble_index) {
return nibble_index == 0 ? 0 : MaskUpToNibbleInclusive<Int>(nibble_index - 1);
}
template <typename Int>
Int MoveToNibble(uint8_t nibble, size_t nibble_index) {
return Int{nibble} << static_cast<int>(4 * nibble_index);
}
// Given mantissa size, find optimal # of mantissa bits to put in initial digit.
//
// In the hex representation we keep a single hex digit to the left of the dot.
// However, the question as to how many bits of the mantissa should be put into
// that hex digit in theory is arbitrary, but in practice it is optimal to
// choose based on the size of the mantissa. E.g., for a `double`, there are 53
// mantissa bits, so that means that we should put 1 bit to the left of the dot,
// thereby leaving 52 bits to the right, which is evenly divisible by four and
// thus all fractional digits represent actual precision. For a `long double`,
// on the other hand, there are 64 bits of mantissa, thus we can use all four
// bits for the initial hex digit and still have a number left over (60) that is
// a multiple of four. Once again, the goal is to have all fractional digits
// represent real precision.
template <typename Float>
constexpr size_t HexFloatLeadingDigitSizeInBits() {
return std::numeric_limits<Float>::digits % 4 > 0
? static_cast<size_t>(std::numeric_limits<Float>::digits % 4)
: size_t{4};
}
// This function captures the rounding behavior of glibc for hex float
// representations. E.g. when rounding 0x1.ab800000 to a precision of .2
// ("%.2a") glibc will round up because it rounds toward the even number (since
// 0xb is an odd number, it will round up to 0xc). However, when rounding at a
// point that is not followed by 800000..., it disregards the parity and rounds
// up if > 8 and rounds down if < 8.
template <typename Int>
bool HexFloatNeedsRoundUp(Int mantissa,
size_t final_nibble_displayed,
uint8_t leading) {
// If the last nibble (hex digit) to be displayed is the lowest on in the
// mantissa then that means that we don't have any further nibbles to inform
// rounding, so don't round.
if (final_nibble_displayed == 0) {
return false;
}
size_t rounding_nibble_idx = final_nibble_displayed - 1;
constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4;
assert(final_nibble_displayed <= kTotalNibbles);
Int mantissa_up_to_rounding_nibble_inclusive =
mantissa & MaskUpToNibbleInclusive<Int>(rounding_nibble_idx);
Int eight = MoveToNibble<Int>(8, rounding_nibble_idx);
if (mantissa_up_to_rounding_nibble_inclusive != eight) {
return mantissa_up_to_rounding_nibble_inclusive > eight;
}
// Nibble in question == 8.
uint8_t round_if_odd = (final_nibble_displayed == kTotalNibbles)
? leading
: GetNibble(mantissa, final_nibble_displayed);
return round_if_odd % 2 == 1;
}
// Stores values associated with a Float type needed by the FormatA
// implementation in order to avoid templatizing that function by the Float
// type.
struct HexFloatTypeParams {
template <typename Float>
explicit HexFloatTypeParams(Float)
: min_exponent(std::numeric_limits<Float>::min_exponent - 1),
leading_digit_size_bits(HexFloatLeadingDigitSizeInBits<Float>()) {
assert(leading_digit_size_bits >= 1 && leading_digit_size_bits <= 4);
}
int min_exponent;
size_t leading_digit_size_bits;
};
// Hex Float Rounding. First check if we need to round; if so, then we do that
// by manipulating (incrementing) the mantissa, that way we can later print the
// mantissa digits by iterating through them in the same way regardless of
// whether a rounding happened.
template <typename Int>
void FormatARound(bool precision_specified, const FormatState &state,
uint8_t *leading, Int *mantissa, int *exp) {
constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4;
// Index of the last nibble that we could display given precision.
size_t final_nibble_displayed =
precision_specified
? (std::max(kTotalNibbles, state.precision) - state.precision)
: 0;
if (HexFloatNeedsRoundUp(*mantissa, final_nibble_displayed, *leading)) {
// Need to round up.
bool overflow = IncrementNibble(final_nibble_displayed, mantissa);
*leading += (overflow ? 1 : 0);
if (ABSL_PREDICT_FALSE(*leading > 15)) {
// We have overflowed the leading digit. This would mean that we would
// need two hex digits to the left of the dot, which is not allowed. So
// adjust the mantissa and exponent so that the result is always 1.0eXXX.
*leading = 1;
*mantissa = 0;
*exp += 4;
}
}
// Now that we have handled a possible round-up we can go ahead and zero out
// all the nibbles of the mantissa that we won't need.
if (precision_specified) {
*mantissa &= ~MaskUpToNibbleExclusive<Int>(final_nibble_displayed);
}
}
template <typename Int>
void FormatANormalize(const HexFloatTypeParams float_traits, uint8_t *leading,
Int *mantissa, int *exp) {
constexpr size_t kIntBits = sizeof(Int) * 8;
static const Int kHighIntBit = Int{1} << (kIntBits - 1);
const size_t kLeadDigitBitsCount = float_traits.leading_digit_size_bits;
// Normalize mantissa so that highest bit set is in MSB position, unless we
// get interrupted by the exponent threshold.
while (*mantissa && !(*mantissa & kHighIntBit)) {
if (ABSL_PREDICT_FALSE(*exp - 1 < float_traits.min_exponent)) {
*mantissa >>= (float_traits.min_exponent - *exp);
*exp = float_traits.min_exponent;
return;
}
*mantissa <<= 1;
--*exp;
}
// Extract bits for leading digit then shift them away leaving the
// fractional part.
*leading = static_cast<uint8_t>(
*mantissa >> static_cast<int>(kIntBits - kLeadDigitBitsCount));
*exp -= (*mantissa != 0) ? static_cast<int>(kLeadDigitBitsCount) : *exp;
*mantissa <<= static_cast<int>(kLeadDigitBitsCount);
}
template <typename Int>
void FormatA(const HexFloatTypeParams float_traits, Int mantissa, int exp,
bool uppercase, const FormatState &state) {
// Int properties.
constexpr size_t kIntBits = sizeof(Int) * 8;
constexpr size_t kTotalNibbles = sizeof(Int) * 8 / 4;
// Did the user specify a precision explicitly?
const bool precision_specified = state.conv.precision() >= 0;
// ========== Normalize/Denormalize ==========
exp += kIntBits; // make all digits fractional digits.
// This holds the (up to four) bits of leading digit, i.e., the '1' in the
// number 0x1.e6fp+2. It's always > 0 unless number is zero or denormal.
uint8_t leading = 0;
FormatANormalize(float_traits, &leading, &mantissa, &exp);
// =============== Rounding ==================
// Check if we need to round; if so, then we do that by manipulating
// (incrementing) the mantissa before beginning to print characters.
FormatARound(precision_specified, state, &leading, &mantissa, &exp);
// ============= Format Result ===============
// This buffer holds the "0x1.ab1de3" portion of "0x1.ab1de3pe+2". Compute the
// size with long double which is the largest of the floats.
constexpr size_t kBufSizeForHexFloatRepr =
2 // 0x
+ std::numeric_limits<MaxFloatType>::digits / 4 // number of hex digits
+ 1 // round up
+ 1; // "." (dot)
char digits_buffer[kBufSizeForHexFloatRepr];
char *digits_iter = digits_buffer;
const char *const digits =
static_cast<const char *>("0123456789ABCDEF0123456789abcdef") +
(uppercase ? 0 : 16);
// =============== Hex Prefix ================
*digits_iter++ = '0';
*digits_iter++ = uppercase ? 'X' : 'x';
// ========== Non-Fractional Digit ===========
*digits_iter++ = digits[leading];
// ================== Dot ====================
// There are three reasons we might need a dot. Keep in mind that, at this
// point, the mantissa holds only the fractional part.
if ((precision_specified && state.precision > 0) ||
(!precision_specified && mantissa > 0) || state.conv.has_alt_flag()) {
*digits_iter++ = '.';
}
// ============ Fractional Digits ============
size_t digits_emitted = 0;
while (mantissa > 0) {
*digits_iter++ = digits[GetNibble(mantissa, kTotalNibbles - 1)];
mantissa <<= 4;
++digits_emitted;
}
size_t trailing_zeros = 0;
if (precision_specified) {
assert(state.precision >= digits_emitted);
trailing_zeros = state.precision - digits_emitted;
}
auto digits_result = string_view(
digits_buffer, static_cast<size_t>(digits_iter - digits_buffer));
// =============== Exponent ==================
constexpr size_t kBufSizeForExpDecRepr =
numbers_internal::kFastToBufferSize // required for FastIntToBuffer
+ 1 // 'p' or 'P'
+ 1; // '+' or '-'
char exp_buffer[kBufSizeForExpDecRepr];
exp_buffer[0] = uppercase ? 'P' : 'p';
exp_buffer[1] = exp >= 0 ? '+' : '-';
numbers_internal::FastIntToBuffer(exp < 0 ? -exp : exp, exp_buffer + 2);
// ============ Assemble Result ==============
FinalPrint(state,
digits_result, // 0xN.NNN...
2, // offset of any padding
static_cast<size_t>(trailing_zeros), // remaining mantissa padding
exp_buffer); // exponent
}
char *CopyStringTo(absl::string_view v, char *out) {
std::memcpy(out, v.data(), v.size());
return out + v.size();
}
template <typename Float>
bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink) {
int w = conv.width() >= 0 ? conv.width() : 0;
int p = conv.precision() >= 0 ? conv.precision() : -1;
char fmt[32];
{
char *fp = fmt;
*fp++ = '%';
fp = CopyStringTo(FormatConversionSpecImplFriend::FlagsToString(conv), fp);
fp = CopyStringTo("*.*", fp);
if (std::is_same<long double, Float>()) {
*fp++ = 'L';
}
*fp++ = FormatConversionCharToChar(conv.conversion_char());
*fp = 0;
assert(fp < fmt + sizeof(fmt));
}
std::string space(512, '\0');
absl::string_view result;
while (true) {
int n = snprintf(&space[0], space.size(), fmt, w, p, v);
if (n < 0) return false;
if (static_cast<size_t>(n) < space.size()) {
result = absl::string_view(space.data(), static_cast<size_t>(n));
break;
}
space.resize(static_cast<size_t>(n) + 1);
}
sink->Append(result);
return true;
}
// 128-bits in decimal: ceil(128*log(2)/log(10))
// or std::numeric_limits<__uint128_t>::digits10
constexpr size_t kMaxFixedPrecision = 39;
constexpr size_t kBufferLength = /*sign*/ 1 +
/*integer*/ kMaxFixedPrecision +
/*point*/ 1 +
/*fraction*/ kMaxFixedPrecision +
/*exponent e+123*/ 5;
struct Buffer {
void push_front(char c) {
assert(begin > data);
*--begin = c;
}
void push_back(char c) {
assert(end < data + sizeof(data));
*end++ = c;
}
void pop_back() {
assert(begin < end);
--end;
}
char &back() const {
assert(begin < end);
return end[-1];
}
char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
size_t size() const { return static_cast<size_t>(end - begin); }
char data[kBufferLength];
char *begin;
char *end;
};
enum class FormatStyle { Fixed, Precision };
// If the value is Inf or Nan, print it and return true.
// Otherwise, return false.
template <typename Float>
bool ConvertNonNumericFloats(char sign_char, Float v,
const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink) {
char text[4], *ptr = text;
if (sign_char != '\0') *ptr++ = sign_char;
if (std::isnan(v)) {
ptr = std::copy_n(
FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3,
ptr);
} else if (std::isinf(v)) {
ptr = std::copy_n(
FormatConversionCharIsUpper(conv.conversion_char()) ? "INF" : "inf", 3,
ptr);
} else {
return false;
}
return sink->PutPaddedString(
string_view(text, static_cast<size_t>(ptr - text)), conv.width(), -1,
conv.has_left_flag());
}
// Round up the last digit of the value.
// It will carry over and potentially overflow. 'exp' will be adjusted in that
// case.
template <FormatStyle mode>
void RoundUp(Buffer *buffer, int *exp) {
char *p = &buffer->back();
while (p >= buffer->begin && (*p == '9' || *p == '.')) {
if (*p == '9') *p = '0';
--p;
}
if (p < buffer->begin) {
*p = '1';
buffer->begin = p;
if (mode == FormatStyle::Precision) {
std::swap(p[1], p[2]); // move the .
++*exp;
buffer->pop_back();
}
} else {
++*p;
}
}
void PrintExponent(int exp, char e, Buffer *out) {
out->push_back(e);
if (exp < 0) {
out->push_back('-');
exp = -exp;
} else {
out->push_back('+');
}
// Exponent digits.
if (exp > 99) {
out->push_back(static_cast<char>(exp / 100 + '0'));
out->push_back(static_cast<char>(exp / 10 % 10 + '0'));
out->push_back(static_cast<char>(exp % 10 + '0'));
} else {
out->push_back(static_cast<char>(exp / 10 + '0'));
out->push_back(static_cast<char>(exp % 10 + '0'));
}
}
template <typename Float, typename Int>
constexpr bool CanFitMantissa() {
return
#if defined(__clang__) && (__clang_major__ < 9) && !defined(__SSE3__)
// Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
// Casting from long double to uint64_t is miscompiled and drops bits.
(!std::is_same<Float, long double>::value ||
!std::is_same<Int, uint64_t>::value) &&
#endif
std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
}
template <typename Float>
struct Decomposed {
using MantissaType =
absl::conditional_t<std::is_same<long double, Float>::value, uint128,
uint64_t>;
static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8,
"");
MantissaType mantissa;
int exponent;
};
// Decompose the double into an integer mantissa and an exponent.
template <typename Float>
Decomposed<Float> Decompose(Float v) {
int exp;
Float m = std::frexp(v, &exp);
m = std::ldexp(m, std::numeric_limits<Float>::digits);
exp -= std::numeric_limits<Float>::digits;
return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp};
}
// Print 'digits' as decimal.
// In Fixed mode, we add a '.' at the end.
// In Precision mode, we add a '.' after the first digit.
template <FormatStyle mode, typename Int>
size_t PrintIntegralDigits(Int digits, Buffer* out) {
size_t printed = 0;
if (digits) {
for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
printed = out->size();
if (mode == FormatStyle::Precision) {
out->push_front(*out->begin);
out->begin[1] = '.';
} else {
out->push_back('.');
}
} else if (mode == FormatStyle::Fixed) {
out->push_front('0');
out->push_back('.');
printed = 1;
}
return printed;
}
// Back out 'extra_digits' digits and round up if necessary.
void RemoveExtraPrecision(size_t extra_digits,
bool has_leftover_value,
Buffer* out,
int* exp_out) {
// Back out the extra digits
out->end -= extra_digits;
bool needs_to_round_up = [&] {
// We look at the digit just past the end.
// There must be 'extra_digits' extra valid digits after end.
if (*out->end > '5') return true;
if (*out->end < '5') return false;
if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
[](char c) { return c != '0'; }))
return true;
// Ends in ...50*, round to even.
return out->last_digit() % 2 == 1;
}();
if (needs_to_round_up) {
RoundUp<FormatStyle::Precision>(out, exp_out);
}
}
// Print the value into the buffer.
// This will not include the exponent, which will be returned in 'exp_out' for
// Precision mode.
template <typename Int, typename Float, FormatStyle mode>
bool FloatToBufferImpl(Int int_mantissa,
int exp,
size_t precision,
Buffer* out,
int* exp_out) {
assert((CanFitMantissa<Float, Int>()));
const int int_bits = std::numeric_limits<Int>::digits;
// In precision mode, we start printing one char to the right because it will
// also include the '.'
// In fixed mode we put the dot afterwards on the right.
out->begin = out->end =
out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
if (exp >= 0) {
if (std::numeric_limits<Float>::digits + exp > int_bits) {
// The value will overflow the Int
return false;
}
size_t digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
size_t digits_to_zero_pad = precision;
if (mode == FormatStyle::Precision) {
*exp_out = static_cast<int>(digits_printed - 1);
if (digits_to_zero_pad < digits_printed - 1) {
RemoveExtraPrecision(digits_printed - 1 - digits_to_zero_pad, false,
out, exp_out);
return true;
}
digits_to_zero_pad -= digits_printed - 1;
}
for (; digits_to_zero_pad-- > 0;) out->push_back('0');
return true;
}
exp = -exp;
// We need at least 4 empty bits for the next decimal digit.
// We will multiply by 10.
if (exp > int_bits - 4) return false;
const Int mask = (Int{1} << exp) - 1;
// Print the integral part first.
size_t digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
int_mantissa &= mask;
size_t fractional_count = precision;
if (mode == FormatStyle::Precision) {
if (digits_printed == 0) {
// Find the first non-zero digit, when in Precision mode.
*exp_out = 0;
if (int_mantissa) {
while (int_mantissa <= mask) {
int_mantissa *= 10;
--*exp_out;
}
}
out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
out->push_back('.');
int_mantissa &= mask;
} else {
// We already have a digit, and a '.'
*exp_out = static_cast<int>(digits_printed - 1);
if (fractional_count < digits_printed - 1) {
// If we had enough digits, return right away.
// The code below will try to round again otherwise.
RemoveExtraPrecision(digits_printed - 1 - fractional_count,
int_mantissa != 0, out, exp_out);
return true;
}
fractional_count -= digits_printed - 1;
}
}
auto get_next_digit = [&] {
int_mantissa *= 10;
char digit = static_cast<char>(int_mantissa >> exp);
int_mantissa &= mask;
return digit;
};
// Print fractional_count more digits, if available.
for (; fractional_count > 0; --fractional_count) {
out->push_back(get_next_digit() + '0');
}
char next_digit = get_next_digit();
if (next_digit > 5 ||
(next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
RoundUp<mode>(out, exp_out);
}
return true;
}
template <FormatStyle mode, typename Float>
bool FloatToBuffer(Decomposed<Float> decomposed,
size_t precision,
Buffer* out,
int* exp) {
if (precision > kMaxFixedPrecision) return false;
// Try with uint64_t.
if (CanFitMantissa<Float, std::uint64_t>() &&
FloatToBufferImpl<std::uint64_t, Float, mode>(
static_cast<std::uint64_t>(decomposed.mantissa), decomposed.exponent,
precision, out, exp))
return true;
#if defined(ABSL_HAVE_INTRINSIC_INT128)
// If that is not enough, try with __uint128_t.
return CanFitMantissa<Float, __uint128_t>() &&
FloatToBufferImpl<__uint128_t, Float, mode>(
static_cast<__uint128_t>(decomposed.mantissa), decomposed.exponent,
precision, out, exp);
#endif
return false;
}
void WriteBufferToSink(char sign_char, absl::string_view str,
const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink) {
size_t left_spaces = 0, zeros = 0, right_spaces = 0;
size_t missing_chars = 0;
if (conv.width() >= 0) {
const size_t conv_width_size_t = static_cast<size_t>(conv.width());
const size_t existing_chars =
str.size() + static_cast<size_t>(sign_char != 0);
if (conv_width_size_t > existing_chars)
missing_chars = conv_width_size_t - existing_chars;
}
if (conv.has_left_flag()) {
right_spaces = missing_chars;
} else if (conv.has_zero_flag()) {
zeros = missing_chars;
} else {
left_spaces = missing_chars;
}
sink->Append(left_spaces, ' ');
if (sign_char != '\0') sink->Append(1, sign_char);
sink->Append(zeros, '0');
sink->Append(str);
sink->Append(right_spaces, ' ');
}
template <typename Float>
bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink) {
// Print the sign or the sign column.
Float abs_v = v;
char sign_char = 0;
if (std::signbit(abs_v)) {
sign_char = '-';
abs_v = -abs_v;
} else if (conv.has_show_pos_flag()) {
sign_char = '+';
} else if (conv.has_sign_col_flag()) {
sign_char = ' ';
}
// Print nan/inf.
if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
return true;
}
size_t precision =
conv.precision() < 0 ? 6 : static_cast<size_t>(conv.precision());
int exp = 0;
auto decomposed = Decompose(abs_v);
Buffer buffer;
FormatConversionChar c = conv.conversion_char();
if (c == FormatConversionCharInternal::f ||
c == FormatConversionCharInternal::F) {
FormatF(decomposed.mantissa, decomposed.exponent,
{sign_char, precision, conv, sink});
return true;
} else if (c == FormatConversionCharInternal::e ||
c == FormatConversionCharInternal::E) {
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
&exp)) {
return FallbackToSnprintf(v, conv, sink);
}
if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back();
PrintExponent(
exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
&buffer);
} else if (c == FormatConversionCharInternal::g ||
c == FormatConversionCharInternal::G) {
precision = std::max(precision, size_t{1}) - 1;
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
&exp)) {
return FallbackToSnprintf(v, conv, sink);
}
if ((exp < 0 || precision + 1 > static_cast<size_t>(exp)) && exp >= -4) {
if (exp < 0) {
// Have 1.23456, needs 0.00123456
// Move the first digit
buffer.begin[1] = *buffer.begin;
// Add some zeros
for (; exp < -1; ++exp) *buffer.begin-- = '0';
*buffer.begin-- = '.';
*buffer.begin = '0';
} else if (exp > 0) {
// Have 1.23456, needs 1234.56
// Move the '.' exp positions to the right.
std::rotate(buffer.begin + 1, buffer.begin + 2, buffer.begin + exp + 2);
}
exp = 0;
}
if (!conv.has_alt_flag()) {
while (buffer.back() == '0') buffer.pop_back();
if (buffer.back() == '.') buffer.pop_back();
}
if (exp) {
PrintExponent(
exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
&buffer);
}
} else if (c == FormatConversionCharInternal::a ||
c == FormatConversionCharInternal::A) {
bool uppercase = (c == FormatConversionCharInternal::A);
FormatA(HexFloatTypeParams(Float{}), decomposed.mantissa,
decomposed.exponent, uppercase, {sign_char, precision, conv, sink});
return true;
} else {
return false;
}
WriteBufferToSink(
sign_char,
absl::string_view(buffer.begin,
static_cast<size_t>(buffer.end - buffer.begin)),
conv, sink);
return true;
}
} // namespace
bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink) {
if (IsDoubleDouble()) {
// This is the `double-double` representation of `long double`. We do not
// handle it natively. Fallback to snprintf.
return FallbackToSnprintf(v, conv, sink);
}
return FloatToSink(v, conv, sink);
}
bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink) {
return FloatToSink(static_cast<double>(v), conv, sink);
}
bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv,
FormatSinkImpl *sink) {
return FloatToSink(v, conv, sink);
}
} // namespace str_format_internal
ABSL_NAMESPACE_END
} // namespace absl
|