1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file contains string processing functions related to
// numeric values.
#include "absl/strings/numbers.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cfloat> // for DBL_DIG and FLT_DIG
#include <cmath> // for HUGE_VAL
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iterator>
#include <limits>
#include <system_error> // NOLINT(build/c++11)
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/nullability.h"
#include "absl/base/optimization.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/ascii.h"
#include "absl/strings/charconv.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
bool SimpleAtof(absl::string_view str, float* absl_nonnull out) {
*out = 0.0;
str = StripAsciiWhitespace(str);
// std::from_chars doesn't accept an initial +, but SimpleAtof does, so if one
// is present, skip it, while avoiding accepting "+-0" as valid.
if (!str.empty() && str[0] == '+') {
str.remove_prefix(1);
if (!str.empty() && str[0] == '-') {
return false;
}
}
auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
if (result.ec == std::errc::invalid_argument) {
return false;
}
if (result.ptr != str.data() + str.size()) {
// not all non-whitespace characters consumed
return false;
}
// from_chars() with DR 3081's current wording will return max() on
// overflow. SimpleAtof returns infinity instead.
if (result.ec == std::errc::result_out_of_range) {
if (*out > 1.0) {
*out = std::numeric_limits<float>::infinity();
} else if (*out < -1.0) {
*out = -std::numeric_limits<float>::infinity();
}
}
return true;
}
bool SimpleAtod(absl::string_view str, double* absl_nonnull out) {
*out = 0.0;
str = StripAsciiWhitespace(str);
// std::from_chars doesn't accept an initial +, but SimpleAtod does, so if one
// is present, skip it, while avoiding accepting "+-0" as valid.
if (!str.empty() && str[0] == '+') {
str.remove_prefix(1);
if (!str.empty() && str[0] == '-') {
return false;
}
}
auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
if (result.ec == std::errc::invalid_argument) {
return false;
}
if (result.ptr != str.data() + str.size()) {
// not all non-whitespace characters consumed
return false;
}
// from_chars() with DR 3081's current wording will return max() on
// overflow. SimpleAtod returns infinity instead.
if (result.ec == std::errc::result_out_of_range) {
if (*out > 1.0) {
*out = std::numeric_limits<double>::infinity();
} else if (*out < -1.0) {
*out = -std::numeric_limits<double>::infinity();
}
}
return true;
}
bool SimpleAtob(absl::string_view str, bool* absl_nonnull out) {
ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr.");
if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") ||
EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") ||
EqualsIgnoreCase(str, "1")) {
*out = true;
return true;
}
if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") ||
EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") ||
EqualsIgnoreCase(str, "0")) {
*out = false;
return true;
}
return false;
}
// ----------------------------------------------------------------------
// FastIntToBuffer() overloads
//
// Like the Fast*ToBuffer() functions above, these are intended for speed.
// Unlike the Fast*ToBuffer() functions, however, these functions write
// their output to the beginning of the buffer. The caller is responsible
// for ensuring that the buffer has enough space to hold the output.
//
// Returns a pointer to the end of the string (i.e. the null character
// terminating the string).
// ----------------------------------------------------------------------
namespace {
// Various routines to encode integers to strings.
// We split data encodings into a group of 2 digits, 4 digits, 8 digits as
// it's easier to combine powers of two into scalar arithmetic.
// Previous implementation used a lookup table of 200 bytes for every 2 bytes
// and it was memory bound, any L1 cache miss would result in a much slower
// result. When benchmarking with a cache eviction rate of several percent,
// this implementation proved to be better.
// These constants represent '00', '0000' and '00000000' as ascii strings in
// integers. We can add these numbers if we encode to bytes from 0 to 9. as
// 'i' = '0' + i for 0 <= i <= 9.
constexpr uint32_t kTwoZeroBytes = 0x0101 * '0';
constexpr uint64_t kFourZeroBytes = 0x01010101 * '0';
constexpr uint64_t kEightZeroBytes = 0x0101010101010101ull * '0';
// * 103 / 1024 is a division by 10 for values from 0 to 99. It's also a
// division of a structure [k takes 2 bytes][m takes 2 bytes], then * 103 / 1024
// will be [k / 10][m / 10]. It allows parallel division.
constexpr uint64_t kDivisionBy10Mul = 103u;
constexpr uint64_t kDivisionBy10Div = 1 << 10;
// * 10486 / 1048576 is a division by 100 for values from 0 to 9999.
constexpr uint64_t kDivisionBy100Mul = 10486u;
constexpr uint64_t kDivisionBy100Div = 1 << 20;
// Encode functions write the ASCII output of input `n` to `out_str`.
inline char* EncodeHundred(uint32_t n, char* absl_nonnull out_str) {
int num_digits = static_cast<int>(n - 10) >> 8;
uint32_t div10 = (n * kDivisionBy10Mul) / kDivisionBy10Div;
uint32_t mod10 = n - 10u * div10;
uint32_t base = kTwoZeroBytes + div10 + (mod10 << 8);
base >>= num_digits & 8;
little_endian::Store16(out_str, static_cast<uint16_t>(base));
return out_str + 2 + num_digits;
}
inline char* EncodeTenThousand(uint32_t n, char* absl_nonnull out_str) {
// We split lower 2 digits and upper 2 digits of n into 2 byte consecutive
// blocks. 123 -> [\0\1][\0\23]. We divide by 10 both blocks
// (it's 1 division + zeroing upper bits), and compute modulo 10 as well "in
// parallel". Then we combine both results to have both ASCII digits,
// strip trailing zeros, add ASCII '0000' and return.
uint32_t div100 = (n * kDivisionBy100Mul) / kDivisionBy100Div;
uint32_t mod100 = n - 100ull * div100;
uint32_t hundreds = (mod100 << 16) + div100;
uint32_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div;
tens &= (0xFull << 16) | 0xFull;
tens += (hundreds - 10ull * tens) << 8;
ABSL_ASSUME(tens != 0);
// The result can contain trailing zero bits, we need to strip them to a first
// significant byte in a final representation. For example, for n = 123, we
// have tens to have representation \0\1\2\3. We do `& -8` to round
// to a multiple to 8 to strip zero bytes, not all zero bits.
// countr_zero to help.
// 0 minus 8 to make MSVC happy.
uint32_t zeroes = static_cast<uint32_t>(absl::countr_zero(tens)) & (0 - 8u);
tens += kFourZeroBytes;
tens >>= zeroes;
little_endian::Store32(out_str, tens);
return out_str + sizeof(tens) - zeroes / 8;
}
// Helper function to produce an ASCII representation of `i`.
//
// Function returns an 8-byte integer which when summed with `kEightZeroBytes`,
// can be treated as a printable buffer with ascii representation of `i`,
// possibly with leading zeros.
//
// Example:
//
// uint64_t buffer = PrepareEightDigits(102030) + kEightZeroBytes;
// char* ascii = reinterpret_cast<char*>(&buffer);
// // Note two leading zeros:
// EXPECT_EQ(absl::string_view(ascii, 8), "00102030");
//
// Pre-condition: `i` must be less than 100000000.
inline uint64_t PrepareEightDigits(uint32_t i) {
ABSL_ASSUME(i < 10000'0000);
// Prepare 2 blocks of 4 digits "in parallel".
uint32_t hi = i / 10000;
uint32_t lo = i % 10000;
uint64_t merged = hi | (uint64_t{lo} << 32);
uint64_t div100 = ((merged * kDivisionBy100Mul) / kDivisionBy100Div) &
((0x7Full << 32) | 0x7Full);
uint64_t mod100 = merged - 100ull * div100;
uint64_t hundreds = (mod100 << 16) + div100;
uint64_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div;
tens &= (0xFull << 48) | (0xFull << 32) | (0xFull << 16) | 0xFull;
tens += (hundreds - 10ull * tens) << 8;
return tens;
}
inline ABSL_ATTRIBUTE_ALWAYS_INLINE char* absl_nonnull EncodeFullU32(
uint32_t n, char* absl_nonnull out_str) {
if (n < 10) {
*out_str = static_cast<char>('0' + n);
return out_str + 1;
}
if (n < 100'000'000) {
uint64_t bottom = PrepareEightDigits(n);
ABSL_ASSUME(bottom != 0);
// 0 minus 8 to make MSVC happy.
uint32_t zeroes =
static_cast<uint32_t>(absl::countr_zero(bottom)) & (0 - 8u);
little_endian::Store64(out_str, (bottom + kEightZeroBytes) >> zeroes);
return out_str + sizeof(bottom) - zeroes / 8;
}
uint32_t div08 = n / 100'000'000;
uint32_t mod08 = n % 100'000'000;
uint64_t bottom = PrepareEightDigits(mod08) + kEightZeroBytes;
out_str = EncodeHundred(div08, out_str);
little_endian::Store64(out_str, bottom);
return out_str + sizeof(bottom);
}
inline ABSL_ATTRIBUTE_ALWAYS_INLINE char* EncodeFullU64(uint64_t i,
char* buffer) {
if (i <= std::numeric_limits<uint32_t>::max()) {
return EncodeFullU32(static_cast<uint32_t>(i), buffer);
}
uint32_t mod08;
if (i < 1'0000'0000'0000'0000ull) {
uint32_t div08 = static_cast<uint32_t>(i / 100'000'000ull);
mod08 = static_cast<uint32_t>(i % 100'000'000ull);
buffer = EncodeFullU32(div08, buffer);
} else {
uint64_t div08 = i / 100'000'000ull;
mod08 = static_cast<uint32_t>(i % 100'000'000ull);
uint32_t div016 = static_cast<uint32_t>(div08 / 100'000'000ull);
uint32_t div08mod08 = static_cast<uint32_t>(div08 % 100'000'000ull);
uint64_t mid_result = PrepareEightDigits(div08mod08) + kEightZeroBytes;
buffer = EncodeTenThousand(div016, buffer);
little_endian::Store64(buffer, mid_result);
buffer += sizeof(mid_result);
}
uint64_t mod_result = PrepareEightDigits(mod08) + kEightZeroBytes;
little_endian::Store64(buffer, mod_result);
return buffer + sizeof(mod_result);
}
} // namespace
void numbers_internal::PutTwoDigits(uint32_t i, char* absl_nonnull buf) {
assert(i < 100);
uint32_t base = kTwoZeroBytes;
uint32_t div10 = (i * kDivisionBy10Mul) / kDivisionBy10Div;
uint32_t mod10 = i - 10u * div10;
base += div10 + (mod10 << 8);
little_endian::Store16(buf, static_cast<uint16_t>(base));
}
char* absl_nonnull numbers_internal::FastIntToBuffer(
uint32_t n, char* absl_nonnull out_str) {
out_str = EncodeFullU32(n, out_str);
*out_str = '\0';
return out_str;
}
char* absl_nonnull numbers_internal::FastIntToBuffer(
int32_t i, char* absl_nonnull buffer) {
uint32_t u = static_cast<uint32_t>(i);
if (i < 0) {
*buffer++ = '-';
// We need to do the negation in modular (i.e., "unsigned")
// arithmetic; MSVC++ apparently warns for plain "-u", so
// we write the equivalent expression "0 - u" instead.
u = 0 - u;
}
buffer = EncodeFullU32(u, buffer);
*buffer = '\0';
return buffer;
}
char* absl_nonnull numbers_internal::FastIntToBuffer(
uint64_t i, char* absl_nonnull buffer) {
buffer = EncodeFullU64(i, buffer);
*buffer = '\0';
return buffer;
}
char* absl_nonnull numbers_internal::FastIntToBuffer(
int64_t i, char* absl_nonnull buffer) {
uint64_t u = static_cast<uint64_t>(i);
if (i < 0) {
*buffer++ = '-';
// We need to do the negation in modular (i.e., "unsigned")
// arithmetic; MSVC++ apparently warns for plain "-u", so
// we write the equivalent expression "0 - u" instead.
u = 0 - u;
}
buffer = EncodeFullU64(u, buffer);
*buffer = '\0';
return buffer;
}
// Given a 128-bit number expressed as a pair of uint64_t, high half first,
// return that number multiplied by the given 32-bit value. If the result is
// too large to fit in a 128-bit number, divide it by 2 until it fits.
static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
uint32_t mul) {
uint64_t bits0_31 = num.second & 0xFFFFFFFF;
uint64_t bits32_63 = num.second >> 32;
uint64_t bits64_95 = num.first & 0xFFFFFFFF;
uint64_t bits96_127 = num.first >> 32;
// The picture so far: each of these 64-bit values has only the lower 32 bits
// filled in.
// bits96_127: [ 00000000 xxxxxxxx ]
// bits64_95: [ 00000000 xxxxxxxx ]
// bits32_63: [ 00000000 xxxxxxxx ]
// bits0_31: [ 00000000 xxxxxxxx ]
bits0_31 *= mul;
bits32_63 *= mul;
bits64_95 *= mul;
bits96_127 *= mul;
// Now the top halves may also have value, though all 64 of their bits will
// never be set at the same time, since they are a result of a 32x32 bit
// multiply. This makes the carry calculation slightly easier.
// bits96_127: [ mmmmmmmm | mmmmmmmm ]
// bits64_95: [ | mmmmmmmm mmmmmmmm | ]
// bits32_63: | [ mmmmmmmm | mmmmmmmm ]
// bits0_31: | [ | mmmmmmmm mmmmmmmm ]
// eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ]
uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
(bits0_63 < bits0_31);
uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
if (bits128_up == 0) return {bits64_127, bits0_63};
auto shift = static_cast<unsigned>(bit_width(bits128_up));
uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
return {hi, lo};
}
// Compute num * 5 ^ expfive, and return the first 128 bits of the result,
// where the first bit is always a one. So PowFive(1, 0) starts 0b100000,
// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.
static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
std::pair<uint64_t, uint64_t> result = {num, 0};
while (expfive >= 13) {
// 5^13 is the highest power of five that will fit in a 32-bit integer.
result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
expfive -= 13;
}
constexpr uint32_t powers_of_five[13] = {
1,
5,
5 * 5,
5 * 5 * 5,
5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
result = Mul32(result, powers_of_five[expfive & 15]);
int shift = countl_zero(result.first);
if (shift != 0) {
result.first = (result.first << shift) + (result.second >> (64 - shift));
result.second = (result.second << shift);
}
return result;
}
struct ExpDigits {
int32_t exponent;
char digits[6];
};
// SplitToSix converts value, a positive double-precision floating-point number,
// into a base-10 exponent and 6 ASCII digits, where the first digit is never
// zero. For example, SplitToSix(1) returns an exponent of zero and a digits
// array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between
// two possible representations, e.g. value = 100000.5, then "round to even" is
// performed.
static ExpDigits SplitToSix(const double value) {
ExpDigits exp_dig;
int exp = 5;
double d = value;
// First step: calculate a close approximation of the output, where the
// value d will be between 100,000 and 999,999, representing the digits
// in the output ASCII array, and exp is the base-10 exponent. It would be
// faster to use a table here, and to look up the base-2 exponent of value,
// however value is an IEEE-754 64-bit number, so the table would have 2,000
// entries, which is not cache-friendly.
if (d >= 999999.5) {
if (d >= 1e+261) exp += 256, d *= 1e-256;
if (d >= 1e+133) exp += 128, d *= 1e-128;
if (d >= 1e+69) exp += 64, d *= 1e-64;
if (d >= 1e+37) exp += 32, d *= 1e-32;
if (d >= 1e+21) exp += 16, d *= 1e-16;
if (d >= 1e+13) exp += 8, d *= 1e-8;
if (d >= 1e+9) exp += 4, d *= 1e-4;
if (d >= 1e+7) exp += 2, d *= 1e-2;
if (d >= 1e+6) exp += 1, d *= 1e-1;
} else {
if (d < 1e-250) exp -= 256, d *= 1e256;
if (d < 1e-122) exp -= 128, d *= 1e128;
if (d < 1e-58) exp -= 64, d *= 1e64;
if (d < 1e-26) exp -= 32, d *= 1e32;
if (d < 1e-10) exp -= 16, d *= 1e16;
if (d < 1e-2) exp -= 8, d *= 1e8;
if (d < 1e+2) exp -= 4, d *= 1e4;
if (d < 1e+4) exp -= 2, d *= 1e2;
if (d < 1e+5) exp -= 1, d *= 1e1;
}
// At this point, d is in the range [99999.5..999999.5) and exp is in the
// range [-324..308]. Since we need to round d up, we want to add a half
// and truncate.
// However, the technique above may have lost some precision, due to its
// repeated multiplication by constants that each may be off by half a bit
// of precision. This only matters if we're close to the edge though.
// Since we'd like to know if the fractional part of d is close to a half,
// we multiply it by 65536 and see if the fractional part is close to 32768.
// (The number doesn't have to be a power of two,but powers of two are faster)
uint64_t d64k = static_cast<uint64_t>(d * 65536);
uint32_t dddddd; // A 6-digit decimal integer.
if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
// OK, it's fairly likely that precision was lost above, which is
// not a surprise given only 52 mantissa bits are available. Therefore
// redo the calculation using 128-bit numbers. (64 bits are not enough).
// Start out with digits rounded down; maybe add one below.
dddddd = static_cast<uint32_t>(d64k / 65536);
// mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual
// value we're representing, of course, is M.mmm... * 2^exp2.
int exp2;
double m = std::frexp(value, &exp2);
uint64_t mantissa =
static_cast<uint64_t>(m * (32768.0 * 65536.0 * 65536.0 * 65536.0));
// std::frexp returns an m value in the range [0.5, 1.0), however we
// can't multiply it by 2^64 and convert to an integer because some FPUs
// throw an exception when converting an number higher than 2^63 into an
// integer - even an unsigned 64-bit integer! Fortunately it doesn't matter
// since m only has 52 significant bits anyway.
mantissa <<= 1;
exp2 -= 64; // not needed, but nice for debugging
// OK, we are here to compare:
// (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2
// so we can round up dddddd if appropriate. Those values span the full
// range of 600 orders of magnitude of IEE 64-bit floating-point.
// Fortunately, we already know they are very close, so we don't need to
// track the base-2 exponent of both sides. This greatly simplifies the
// the math since the 2^exp2 calculation is unnecessary and the power-of-10
// calculation can become a power-of-5 instead.
std::pair<uint64_t, uint64_t> edge, val;
if (exp >= 6) {
// Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa
// Since we're tossing powers of two, 2 * dddddd + 1 is the
// same as dddddd + 0.5
edge = PowFive(2 * dddddd + 1, exp - 5);
val.first = mantissa;
val.second = 0;
} else {
// We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did
// above because (exp - 5) is negative. So we compare (dddddd + 0.5) to
// mantissa * 5 ^ (5 - exp)
edge = PowFive(2 * dddddd + 1, 0);
val = PowFive(mantissa, 5 - exp);
}
// printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,
// val.second, edge.first, edge.second);
if (val > edge) {
dddddd++;
} else if (val == edge) {
dddddd += (dddddd & 1);
}
} else {
// Here, we are not close to the edge.
dddddd = static_cast<uint32_t>((d64k + 32768) / 65536);
}
if (dddddd == 1000000) {
dddddd = 100000;
exp += 1;
}
exp_dig.exponent = exp;
uint32_t two_digits = dddddd / 10000;
dddddd -= two_digits * 10000;
numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[0]);
two_digits = dddddd / 100;
dddddd -= two_digits * 100;
numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[2]);
numbers_internal::PutTwoDigits(dddddd, &exp_dig.digits[4]);
return exp_dig;
}
// Helper function for fast formatting of floating-point.
// The result is the same as "%g", a.k.a. "%.6g".
size_t numbers_internal::SixDigitsToBuffer(double d,
char* absl_nonnull const buffer) {
static_assert(std::numeric_limits<float>::is_iec559,
"IEEE-754/IEC-559 support only");
char* out = buffer; // we write data to out, incrementing as we go, but
// FloatToBuffer always returns the address of the buffer
// passed in.
if (std::isnan(d)) {
strcpy(out, "nan"); // NOLINT(runtime/printf)
return 3;
}
if (d == 0) { // +0 and -0 are handled here
if (std::signbit(d)) *out++ = '-';
*out++ = '0';
*out = 0;
return static_cast<size_t>(out - buffer);
}
if (d < 0) {
*out++ = '-';
d = -d;
}
if (d > std::numeric_limits<double>::max()) {
strcpy(out, "inf"); // NOLINT(runtime/printf)
return static_cast<size_t>(out + 3 - buffer);
}
auto exp_dig = SplitToSix(d);
int exp = exp_dig.exponent;
const char* digits = exp_dig.digits;
out[0] = '0';
out[1] = '.';
switch (exp) {
case 5:
memcpy(out, &digits[0], 6), out += 6;
*out = 0;
return static_cast<size_t>(out - buffer);
case 4:
memcpy(out, &digits[0], 5), out += 5;
if (digits[5] != '0') {
*out++ = '.';
*out++ = digits[5];
}
*out = 0;
return static_cast<size_t>(out - buffer);
case 3:
memcpy(out, &digits[0], 4), out += 4;
if ((digits[5] | digits[4]) != '0') {
*out++ = '.';
*out++ = digits[4];
if (digits[5] != '0') *out++ = digits[5];
}
*out = 0;
return static_cast<size_t>(out - buffer);
case 2:
memcpy(out, &digits[0], 3), out += 3;
*out++ = '.';
memcpy(out, &digits[3], 3);
out += 3;
while (out[-1] == '0') --out;
if (out[-1] == '.') --out;
*out = 0;
return static_cast<size_t>(out - buffer);
case 1:
memcpy(out, &digits[0], 2), out += 2;
*out++ = '.';
memcpy(out, &digits[2], 4);
out += 4;
while (out[-1] == '0') --out;
if (out[-1] == '.') --out;
*out = 0;
return static_cast<size_t>(out - buffer);
case 0:
memcpy(out, &digits[0], 1), out += 1;
*out++ = '.';
memcpy(out, &digits[1], 5);
out += 5;
while (out[-1] == '0') --out;
if (out[-1] == '.') --out;
*out = 0;
return static_cast<size_t>(out - buffer);
case -4:
out[2] = '0';
++out;
ABSL_FALLTHROUGH_INTENDED;
case -3:
out[2] = '0';
++out;
ABSL_FALLTHROUGH_INTENDED;
case -2:
out[2] = '0';
++out;
ABSL_FALLTHROUGH_INTENDED;
case -1:
out += 2;
memcpy(out, &digits[0], 6);
out += 6;
while (out[-1] == '0') --out;
*out = 0;
return static_cast<size_t>(out - buffer);
}
assert(exp < -4 || exp >= 6);
out[0] = digits[0];
assert(out[1] == '.');
out += 2;
memcpy(out, &digits[1], 5), out += 5;
while (out[-1] == '0') --out;
if (out[-1] == '.') --out;
*out++ = 'e';
if (exp > 0) {
*out++ = '+';
} else {
*out++ = '-';
exp = -exp;
}
if (exp > 99) {
int dig1 = exp / 100;
exp -= dig1 * 100;
*out++ = '0' + static_cast<char>(dig1);
}
PutTwoDigits(static_cast<uint32_t>(exp), out);
out += 2;
*out = 0;
return static_cast<size_t>(out - buffer);
}
namespace {
// Represents integer values of digits.
// Uses 36 to indicate an invalid character since we support
// bases up to 36.
static constexpr std::array<int8_t, 256> kAsciiToInt = {
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s.
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
// Parse the sign and optional hex or oct prefix in text.
inline bool safe_parse_sign_and_base(
absl::string_view* absl_nonnull text /*inout*/,
int* absl_nonnull base_ptr /*inout*/,
bool* absl_nonnull negative_ptr /*output*/) {
if (text->data() == nullptr) {
return false;
}
const char* start = text->data();
const char* end = start + text->size();
int base = *base_ptr;
// Consume whitespace.
while (start < end &&
absl::ascii_isspace(static_cast<unsigned char>(start[0]))) {
++start;
}
while (start < end &&
absl::ascii_isspace(static_cast<unsigned char>(end[-1]))) {
--end;
}
if (start >= end) {
return false;
}
// Consume sign.
*negative_ptr = (start[0] == '-');
if (*negative_ptr || start[0] == '+') {
++start;
if (start >= end) {
return false;
}
}
// Consume base-dependent prefix.
// base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
// base 16: "0x" -> base 16
// Also validate the base.
if (base == 0) {
if (end - start >= 2 && start[0] == '0' &&
(start[1] == 'x' || start[1] == 'X')) {
base = 16;
start += 2;
if (start >= end) {
// "0x" with no digits after is invalid.
return false;
}
} else if (end - start >= 1 && start[0] == '0') {
base = 8;
start += 1;
} else {
base = 10;
}
} else if (base == 16) {
if (end - start >= 2 && start[0] == '0' &&
(start[1] == 'x' || start[1] == 'X')) {
start += 2;
if (start >= end) {
// "0x" with no digits after is invalid.
return false;
}
}
} else if (base >= 2 && base <= 36) {
// okay
} else {
return false;
}
*text = absl::string_view(start, static_cast<size_t>(end - start));
*base_ptr = base;
return true;
}
// Consume digits.
//
// The classic loop:
//
// for each digit
// value = value * base + digit
// value *= sign
//
// The classic loop needs overflow checking. It also fails on the most
// negative integer, -2147483648 in 32-bit two's complement representation.
//
// My improved loop:
//
// if (!negative)
// for each digit
// value = value * base
// value = value + digit
// else
// for each digit
// value = value * base
// value = value - digit
//
// Overflow checking becomes simple.
// Lookup tables per IntType:
// vmax/base and vmin/base are precomputed because division costs at least 8ns.
// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
// struct of arrays) would probably be better in terms of d-cache for the most
// commonly used bases.
template <typename IntType>
struct LookupTables {
ABSL_CONST_INIT static const IntType kVmaxOverBase[];
ABSL_CONST_INIT static const IntType kVminOverBase[];
};
// An array initializer macro for X/base where base in [0, 36].
// However, note that lookups for base in [0, 1] should never happen because
// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
#define X_OVER_BASE_INITIALIZER(X) \
{ \
0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \
X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \
X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \
X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \
X / 35, X / 36, \
}
// This kVmaxOverBase is generated with
// for (int base = 2; base < 37; ++base) {
// absl::uint128 max = std::numeric_limits<absl::uint128>::max();
// auto result = max / base;
// std::cout << " MakeUint128(" << absl::Uint128High64(result) << "u, "
// << absl::Uint128Low64(result) << "u),\n";
// }
// See https://godbolt.org/z/aneYsb
//
// uint128& operator/=(uint128) is not constexpr, so hardcode the resulting
// array to avoid a static initializer.
template <>
ABSL_CONST_INIT const uint128 LookupTables<uint128>::kVmaxOverBase[] = {
0,
0,
MakeUint128(9223372036854775807u, 18446744073709551615u),
MakeUint128(6148914691236517205u, 6148914691236517205u),
MakeUint128(4611686018427387903u, 18446744073709551615u),
MakeUint128(3689348814741910323u, 3689348814741910323u),
MakeUint128(3074457345618258602u, 12297829382473034410u),
MakeUint128(2635249153387078802u, 5270498306774157604u),
MakeUint128(2305843009213693951u, 18446744073709551615u),
MakeUint128(2049638230412172401u, 14347467612885206812u),
MakeUint128(1844674407370955161u, 11068046444225730969u),
MakeUint128(1676976733973595601u, 8384883669867978007u),
MakeUint128(1537228672809129301u, 6148914691236517205u),
MakeUint128(1418980313362273201u, 4256940940086819603u),
MakeUint128(1317624576693539401u, 2635249153387078802u),
MakeUint128(1229782938247303441u, 1229782938247303441u),
MakeUint128(1152921504606846975u, 18446744073709551615u),
MakeUint128(1085102592571150095u, 1085102592571150095u),
MakeUint128(1024819115206086200u, 16397105843297379214u),
MakeUint128(970881267037344821u, 16504981539634861972u),
MakeUint128(922337203685477580u, 14757395258967641292u),
MakeUint128(878416384462359600u, 14054662151397753612u),
MakeUint128(838488366986797800u, 13415813871788764811u),
MakeUint128(802032351030850070u, 4812194106185100421u),
MakeUint128(768614336404564650u, 12297829382473034410u),
MakeUint128(737869762948382064u, 11805916207174113034u),
MakeUint128(709490156681136600u, 11351842506898185609u),
MakeUint128(683212743470724133u, 17080318586768103348u),
MakeUint128(658812288346769700u, 10540996613548315209u),
MakeUint128(636094623231363848u, 15266270957552732371u),
MakeUint128(614891469123651720u, 9838263505978427528u),
MakeUint128(595056260442243600u, 9520900167075897608u),
MakeUint128(576460752303423487u, 18446744073709551615u),
MakeUint128(558992244657865200u, 8943875914525843207u),
MakeUint128(542551296285575047u, 9765923333140350855u),
MakeUint128(527049830677415760u, 8432797290838652167u),
MakeUint128(512409557603043100u, 8198552921648689607u),
};
// This kVmaxOverBase generated with
// for (int base = 2; base < 37; ++base) {
// absl::int128 max = std::numeric_limits<absl::int128>::max();
// auto result = max / base;
// std::cout << "\tMakeInt128(" << absl::Int128High64(result) << ", "
// << absl::Int128Low64(result) << "u),\n";
// }
// See https://godbolt.org/z/7djYWz
//
// int128& operator/=(int128) is not constexpr, so hardcode the resulting array
// to avoid a static initializer.
template <>
ABSL_CONST_INIT const int128 LookupTables<int128>::kVmaxOverBase[] = {
0,
0,
MakeInt128(4611686018427387903, 18446744073709551615u),
MakeInt128(3074457345618258602, 12297829382473034410u),
MakeInt128(2305843009213693951, 18446744073709551615u),
MakeInt128(1844674407370955161, 11068046444225730969u),
MakeInt128(1537228672809129301, 6148914691236517205u),
MakeInt128(1317624576693539401, 2635249153387078802u),
MakeInt128(1152921504606846975, 18446744073709551615u),
MakeInt128(1024819115206086200, 16397105843297379214u),
MakeInt128(922337203685477580, 14757395258967641292u),
MakeInt128(838488366986797800, 13415813871788764811u),
MakeInt128(768614336404564650, 12297829382473034410u),
MakeInt128(709490156681136600, 11351842506898185609u),
MakeInt128(658812288346769700, 10540996613548315209u),
MakeInt128(614891469123651720, 9838263505978427528u),
MakeInt128(576460752303423487, 18446744073709551615u),
MakeInt128(542551296285575047, 9765923333140350855u),
MakeInt128(512409557603043100, 8198552921648689607u),
MakeInt128(485440633518672410, 17475862806672206794u),
MakeInt128(461168601842738790, 7378697629483820646u),
MakeInt128(439208192231179800, 7027331075698876806u),
MakeInt128(419244183493398900, 6707906935894382405u),
MakeInt128(401016175515425035, 2406097053092550210u),
MakeInt128(384307168202282325, 6148914691236517205u),
MakeInt128(368934881474191032, 5902958103587056517u),
MakeInt128(354745078340568300, 5675921253449092804u),
MakeInt128(341606371735362066, 17763531330238827482u),
MakeInt128(329406144173384850, 5270498306774157604u),
MakeInt128(318047311615681924, 7633135478776366185u),
MakeInt128(307445734561825860, 4919131752989213764u),
MakeInt128(297528130221121800, 4760450083537948804u),
MakeInt128(288230376151711743, 18446744073709551615u),
MakeInt128(279496122328932600, 4471937957262921603u),
MakeInt128(271275648142787523, 14106333703424951235u),
MakeInt128(263524915338707880, 4216398645419326083u),
MakeInt128(256204778801521550, 4099276460824344803u),
};
// This kVminOverBase generated with
// for (int base = 2; base < 37; ++base) {
// absl::int128 min = std::numeric_limits<absl::int128>::min();
// auto result = min / base;
// std::cout << "\tMakeInt128(" << absl::Int128High64(result) << ", "
// << absl::Int128Low64(result) << "u),\n";
// }
//
// See https://godbolt.org/z/7djYWz
//
// int128& operator/=(int128) is not constexpr, so hardcode the resulting array
// to avoid a static initializer.
template <>
ABSL_CONST_INIT const int128 LookupTables<int128>::kVminOverBase[] = {
0,
0,
MakeInt128(-4611686018427387904, 0u),
MakeInt128(-3074457345618258603, 6148914691236517206u),
MakeInt128(-2305843009213693952, 0u),
MakeInt128(-1844674407370955162, 7378697629483820647u),
MakeInt128(-1537228672809129302, 12297829382473034411u),
MakeInt128(-1317624576693539402, 15811494920322472814u),
MakeInt128(-1152921504606846976, 0u),
MakeInt128(-1024819115206086201, 2049638230412172402u),
MakeInt128(-922337203685477581, 3689348814741910324u),
MakeInt128(-838488366986797801, 5030930201920786805u),
MakeInt128(-768614336404564651, 6148914691236517206u),
MakeInt128(-709490156681136601, 7094901566811366007u),
MakeInt128(-658812288346769701, 7905747460161236407u),
MakeInt128(-614891469123651721, 8608480567731124088u),
MakeInt128(-576460752303423488, 0u),
MakeInt128(-542551296285575048, 8680820740569200761u),
MakeInt128(-512409557603043101, 10248191152060862009u),
MakeInt128(-485440633518672411, 970881267037344822u),
MakeInt128(-461168601842738791, 11068046444225730970u),
MakeInt128(-439208192231179801, 11419412998010674810u),
MakeInt128(-419244183493398901, 11738837137815169211u),
MakeInt128(-401016175515425036, 16040647020617001406u),
MakeInt128(-384307168202282326, 12297829382473034411u),
MakeInt128(-368934881474191033, 12543785970122495099u),
MakeInt128(-354745078340568301, 12770822820260458812u),
MakeInt128(-341606371735362067, 683212743470724134u),
MakeInt128(-329406144173384851, 13176245766935394012u),
MakeInt128(-318047311615681925, 10813608594933185431u),
MakeInt128(-307445734561825861, 13527612320720337852u),
MakeInt128(-297528130221121801, 13686293990171602812u),
MakeInt128(-288230376151711744, 0u),
MakeInt128(-279496122328932601, 13974806116446630013u),
MakeInt128(-271275648142787524, 4340410370284600381u),
MakeInt128(-263524915338707881, 14230345428290225533u),
MakeInt128(-256204778801521551, 14347467612885206813u),
};
template <typename IntType>
ABSL_CONST_INIT const IntType LookupTables<IntType>::kVmaxOverBase[] =
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
template <typename IntType>
ABSL_CONST_INIT const IntType LookupTables<IntType>::kVminOverBase[] =
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
#undef X_OVER_BASE_INITIALIZER
template <typename IntType>
inline bool safe_parse_positive_int(absl::string_view text, int base,
IntType* absl_nonnull value_p) {
IntType value = 0;
const IntType vmax = std::numeric_limits<IntType>::max();
assert(vmax > 0);
assert(base >= 0);
const IntType base_inttype = static_cast<IntType>(base);
assert(vmax >= base_inttype);
const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
assert(base < 2 ||
std::numeric_limits<IntType>::max() / base_inttype == vmax_over_base);
const char* start = text.data();
const char* end = start + text.size();
// loop over digits
for (; start < end; ++start) {
unsigned char c = static_cast<unsigned char>(start[0]);
IntType digit = static_cast<IntType>(kAsciiToInt[c]);
if (digit >= base_inttype) {
*value_p = value;
return false;
}
if (value > vmax_over_base) {
*value_p = vmax;
return false;
}
value *= base_inttype;
if (value > vmax - digit) {
*value_p = vmax;
return false;
}
value += digit;
}
*value_p = value;
return true;
}
template <typename IntType>
inline bool safe_parse_negative_int(absl::string_view text, int base,
IntType* absl_nonnull value_p) {
IntType value = 0;
const IntType vmin = std::numeric_limits<IntType>::min();
assert(vmin < 0);
assert(vmin <= 0 - base);
IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
assert(base < 2 ||
std::numeric_limits<IntType>::min() / base == vmin_over_base);
// 2003 c++ standard [expr.mul]
// "... the sign of the remainder is implementation-defined."
// Although (vmin/base)*base + vmin%base is always vmin.
// 2011 c++ standard tightens the spec but we cannot rely on it.
// TODO(junyer): Handle this in the lookup table generation.
if (vmin % base > 0) {
vmin_over_base += 1;
}
const char* start = text.data();
const char* end = start + text.size();
// loop over digits
for (; start < end; ++start) {
unsigned char c = static_cast<unsigned char>(start[0]);
int digit = kAsciiToInt[c];
if (digit >= base) {
*value_p = value;
return false;
}
if (value < vmin_over_base) {
*value_p = vmin;
return false;
}
value *= base;
if (value < vmin + digit) {
*value_p = vmin;
return false;
}
value -= digit;
}
*value_p = value;
return true;
}
// Input format based on POSIX.1-2008 strtol
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
template <typename IntType>
inline bool safe_int_internal(absl::string_view text,
IntType* absl_nonnull value_p, int base) {
*value_p = 0;
bool negative;
if (!safe_parse_sign_and_base(&text, &base, &negative)) {
return false;
}
if (!negative) {
return safe_parse_positive_int(text, base, value_p);
} else {
return safe_parse_negative_int(text, base, value_p);
}
}
template <typename IntType>
inline bool safe_uint_internal(absl::string_view text,
IntType* absl_nonnull value_p, int base) {
*value_p = 0;
bool negative;
if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {
return false;
}
return safe_parse_positive_int(text, base, value_p);
}
} // anonymous namespace
namespace numbers_internal {
// Digit conversion.
ABSL_CONST_INIT ABSL_DLL const char kHexChar[] =
"0123456789abcdef";
ABSL_CONST_INIT ABSL_DLL const char kHexTable[513] =
"000102030405060708090a0b0c0d0e0f"
"101112131415161718191a1b1c1d1e1f"
"202122232425262728292a2b2c2d2e2f"
"303132333435363738393a3b3c3d3e3f"
"404142434445464748494a4b4c4d4e4f"
"505152535455565758595a5b5c5d5e5f"
"606162636465666768696a6b6c6d6e6f"
"707172737475767778797a7b7c7d7e7f"
"808182838485868788898a8b8c8d8e8f"
"909192939495969798999a9b9c9d9e9f"
"a0a1a2a3a4a5a6a7a8a9aaabacadaeaf"
"b0b1b2b3b4b5b6b7b8b9babbbcbdbebf"
"c0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
"d0d1d2d3d4d5d6d7d8d9dadbdcdddedf"
"e0e1e2e3e4e5e6e7e8e9eaebecedeeef"
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
bool safe_strto8_base(absl::string_view text, int8_t* absl_nonnull value,
int base) {
return safe_int_internal<int8_t>(text, value, base);
}
bool safe_strto16_base(absl::string_view text, int16_t* absl_nonnull value,
int base) {
return safe_int_internal<int16_t>(text, value, base);
}
bool safe_strto32_base(absl::string_view text, int32_t* absl_nonnull value,
int base) {
return safe_int_internal<int32_t>(text, value, base);
}
bool safe_strto64_base(absl::string_view text, int64_t* absl_nonnull value,
int base) {
return safe_int_internal<int64_t>(text, value, base);
}
bool safe_strto128_base(absl::string_view text, int128* absl_nonnull value,
int base) {
return safe_int_internal<absl::int128>(text, value, base);
}
bool safe_strtou8_base(absl::string_view text, uint8_t* absl_nonnull value,
int base) {
return safe_uint_internal<uint8_t>(text, value, base);
}
bool safe_strtou16_base(absl::string_view text, uint16_t* absl_nonnull value,
int base) {
return safe_uint_internal<uint16_t>(text, value, base);
}
bool safe_strtou32_base(absl::string_view text, uint32_t* absl_nonnull value,
int base) {
return safe_uint_internal<uint32_t>(text, value, base);
}
bool safe_strtou64_base(absl::string_view text, uint64_t* absl_nonnull value,
int base) {
return safe_uint_internal<uint64_t>(text, value, base);
}
bool safe_strtou128_base(absl::string_view text, uint128* absl_nonnull value,
int base) {
return safe_uint_internal<absl::uint128>(text, value, base);
}
} // namespace numbers_internal
ABSL_NAMESPACE_END
} // namespace absl
|