1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/public/common/messaging/message_port_descriptor.h"
#include <utility>
namespace blink {
namespace {
MessagePortDescriptor::InstrumentationDelegate* g_instrumentation_delegate =
nullptr;
} // namespace
// static
const size_t MessagePortDescriptor::kInvalidSequenceNumber;
// static
const size_t MessagePortDescriptor::kFirstValidSequenceNumber;
// static
void MessagePortDescriptor::SetInstrumentationDelegate(
InstrumentationDelegate* delegate) {
// There should only ever be one delegate, and this only should toggle from
// being set to not being set and vice-versa. The toggling only ever occurs
// during tests; in production a single instrumentation delegate is installed
// early during Blink startup and left in place forever afterwards.
DCHECK(!delegate ^ !g_instrumentation_delegate);
g_instrumentation_delegate = delegate;
}
MessagePortDescriptor::MessagePortDescriptor() = default;
MessagePortDescriptor::MessagePortDescriptor(
MessagePortDescriptor&& message_port)
: handle_(std::move(message_port.handle_)),
id_(std::exchange(message_port.id_, base::UnguessableToken::Null())),
sequence_number_(std::exchange(message_port.sequence_number_,
kInvalidSequenceNumber)) {}
MessagePortDescriptor& MessagePortDescriptor::operator=(
MessagePortDescriptor&& message_port) {
Reset();
handle_ = std::move(message_port.handle_);
id_ = std::exchange(message_port.id_, base::UnguessableToken::Null());
sequence_number_ =
std::exchange(message_port.sequence_number_, kInvalidSequenceNumber);
return *this;
}
MessagePortDescriptor::~MessagePortDescriptor() {
Reset();
}
MojoHandle MessagePortDescriptor::GetMojoHandleForTesting() const {
if (!handle_.get())
return MOJO_HANDLE_INVALID;
return handle_.get().value();
}
bool MessagePortDescriptor::IsValid() const {
// |handle_| can be valid or invalid, depending on if we're entangled or
// not. But everything else should be consistent.
EnsureValidSerializationState();
DCHECK_EQ(id_.is_empty(), sequence_number_ == kInvalidSequenceNumber);
return !id_.is_empty() && sequence_number_ != kInvalidSequenceNumber;
}
bool MessagePortDescriptor::IsEntangled() const {
EnsureNotSerialized();
// This descriptor is entangled if it's valid, but its handle has been loaned
// out.
return IsValid() && !handle_.is_valid();
}
bool MessagePortDescriptor::IsDefault() const {
EnsureValidSerializationState();
if (IsValid())
return false;
// This is almost the converse of IsValid, except that we additionally expect
// the |handle_| to be empty as well (which IsValid doesn't verify).
DCHECK(!handle_.is_valid());
return true;
}
void MessagePortDescriptor::Reset() {
#if DCHECK_IS_ON()
EnsureValidSerializationState();
serialization_state_ = {};
#endif
if (IsValid()) {
// Call NotifyDestroyed before clearing members, as the notification needs
// to access them.
NotifyDestroyed();
// Ensure that MessagePipeDescriptor-wrapped handles are fully accounted for
// over their entire lifetime.
DCHECK(handle_.is_valid());
handle_.reset();
id_ = base::UnguessableToken::Null();
sequence_number_ = kInvalidSequenceNumber;
}
}
void MessagePortDescriptor::InitializeFromSerializedValues(
mojo::ScopedMessagePipeHandle handle,
const base::UnguessableToken& id,
uint64_t sequence_number) {
#if DCHECK_IS_ON()
EnsureValidSerializationState();
serialization_state_ = {};
// This is only called by deserialization code and thus should only be called
// on a default initialized descriptor.
DCHECK(IsDefault());
#endif
handle_ = std::move(handle);
id_ = id;
sequence_number_ = sequence_number;
// Init should only create a valid not-entangled descriptor, or a default
// descriptor.
DCHECK((IsValid() && !IsEntangled()) || IsDefault());
}
mojo::ScopedMessagePipeHandle
MessagePortDescriptor::TakeHandleForSerialization() {
#if DCHECK_IS_ON()
DCHECK(handle_.is_valid()); // Ensures not entangled.
DCHECK(!serialization_state_.took_handle_for_serialization_);
serialization_state_.took_handle_for_serialization_ = true;
#endif
return std::move(handle_);
}
base::UnguessableToken MessagePortDescriptor::TakeIdForSerialization() {
#if DCHECK_IS_ON()
DCHECK(!id_.is_empty());
DCHECK(serialization_state_.took_handle_for_serialization_ ||
handle_.is_valid()); // Ensures not entangled.
DCHECK(!serialization_state_.took_id_for_serialization_);
serialization_state_.took_id_for_serialization_ = true;
#endif
return std::exchange(id_, base::UnguessableToken::Null());
}
uint64_t MessagePortDescriptor::TakeSequenceNumberForSerialization() {
#if DCHECK_IS_ON()
DCHECK_NE(kInvalidSequenceNumber, sequence_number_);
DCHECK(serialization_state_.took_handle_for_serialization_ ||
handle_.is_valid()); // Ensures not entangled.
DCHECK(!serialization_state_.took_sequence_number_for_serialization_);
serialization_state_.took_sequence_number_for_serialization_ = true;
#endif
return std::exchange(sequence_number_, kInvalidSequenceNumber);
}
mojo::ScopedMessagePipeHandle MessagePortDescriptor::TakeHandleToEntangle(
ExecutionContext* execution_context) {
EnsureNotSerialized();
DCHECK(handle_.is_valid());
NotifyAttached(execution_context);
return std::move(handle_);
}
mojo::ScopedMessagePipeHandle
MessagePortDescriptor::TakeHandleToEntangleWithEmbedder() {
EnsureNotSerialized();
DCHECK(handle_.is_valid());
NotifyAttachedToEmbedder();
return std::move(handle_);
}
void MessagePortDescriptor::GiveDisentangledHandle(
mojo::ScopedMessagePipeHandle handle) {
EnsureNotSerialized();
// Ideally, we should only ever be given back the same handle that was taken
// from us.
// NOTE: It is possible that this can happen if the handle is bound to a
// Connector, and the Connector subsequently encounters an error, force closes
// the pipe, and the transparently binds another dangling pipe. This can be
// caught by having the descriptor own the connector and observer connection
// errors, but this can only occur once descriptors are being used everywhere.
handle_ = std::move(handle);
// If we've been given back a null handle, then the handle we vended out was
// closed due to error (this can happen in Java code). For now, simply create
// a dangling handle to replace it. This allows the IsEntangled() and
// IsValid() logic to work as is.
// TODO(chrisha): Clean this up once we make this own a connector, and endow
// it with knowledge of the connector error state. There's no need for us to
// hold on to a dangling pipe endpoint, and we can send a NotifyClosed()
// earlier.
if (!handle_.is_valid()) {
mojo::MessagePipe pipe;
handle_ = std::move(pipe.handle0);
}
NotifyDetached();
}
MessagePortDescriptor::MessagePortDescriptor(
mojo::ScopedMessagePipeHandle handle)
: handle_(std::move(handle)),
id_(base::UnguessableToken::Create()),
sequence_number_(kFirstValidSequenceNumber) {
}
void MessagePortDescriptor::NotifyAttached(
ExecutionContext* execution_context) {
EnsureNotSerialized();
DCHECK(!id_.is_empty());
if (g_instrumentation_delegate) {
g_instrumentation_delegate->NotifyMessagePortAttached(
id_, sequence_number_++, execution_context);
}
}
void MessagePortDescriptor::NotifyAttachedToEmbedder() {
EnsureNotSerialized();
DCHECK(!id_.is_empty());
if (g_instrumentation_delegate) {
g_instrumentation_delegate->NotifyMessagePortAttachedToEmbedder(
id_, sequence_number_++);
}
}
void MessagePortDescriptor::NotifyDetached() {
EnsureNotSerialized();
DCHECK(!id_.is_empty());
if (g_instrumentation_delegate) {
g_instrumentation_delegate->NotifyMessagePortDetached(id_,
sequence_number_++);
}
}
void MessagePortDescriptor::NotifyDestroyed() {
EnsureNotSerialized();
DCHECK(!id_.is_empty());
if (g_instrumentation_delegate) {
g_instrumentation_delegate->NotifyMessagePortDestroyed(id_,
sequence_number_++);
}
}
void MessagePortDescriptor::EnsureNotSerialized() const {
#if DCHECK_IS_ON()
DCHECK(!serialization_state_.took_handle_for_serialization_ &&
!serialization_state_.took_id_for_serialization_ &&
!serialization_state_.took_sequence_number_for_serialization_);
#endif
}
void MessagePortDescriptor::EnsureValidSerializationState() const {
#if DCHECK_IS_ON()
// Either everything was serialized, or nothing was.
DCHECK((serialization_state_.took_handle_for_serialization_ ==
serialization_state_.took_id_for_serialization_) &&
(serialization_state_.took_handle_for_serialization_ ==
serialization_state_.took_sequence_number_for_serialization_));
#endif
}
MessagePortDescriptorPair::MessagePortDescriptorPair() {
mojo::MessagePipe pipe;
port0_ = MessagePortDescriptor(std::move(pipe.handle0));
port1_ = MessagePortDescriptor(std::move(pipe.handle1));
// Notify the instrumentation that these ports are newly created and peers of
// each other.
if (g_instrumentation_delegate) {
g_instrumentation_delegate->NotifyMessagePortPairCreated(port0_.id(),
port1_.id());
}
}
MessagePortDescriptorPair::~MessagePortDescriptorPair() = default;
} // namespace blink
|