File: element_traversal.h

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (635 lines) | stat: -rw-r--r-- 22,598 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*
 * Copyright (C) 1999 Lars Knoll (knoll@kde.org)
 *           (C) 1999 Antti Koivisto (koivisto@kde.org)
 *           (C) 2001 Dirk Mueller (mueller@kde.org)
 * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
 * Apple Inc. All rights reserved.
 * Copyright (C) 2008, 2009 Torch Mobile Inc. All rights reserved.
 * (http://www.torchmobile.com/)
 * Copyright (C) 2014 Samsung Electronics. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

#ifndef THIRD_PARTY_BLINK_RENDERER_CORE_DOM_ELEMENT_TRAVERSAL_H_
#define THIRD_PARTY_BLINK_RENDERER_CORE_DOM_ELEMENT_TRAVERSAL_H_

#include "third_party/blink/renderer/core/dom/element.h"
#include "third_party/blink/renderer/core/dom/node_traversal.h"
#include "third_party/blink/renderer/core/dom/traversal_range.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"

namespace blink {

class HasTagName {
  STACK_ALLOCATED();

 public:
  explicit HasTagName(const QualifiedName& tag_name) : tag_name_(tag_name) {}
  bool operator()(const Element& element) const {
    return element.HasTagName(tag_name_);
  }

 private:
  const QualifiedName tag_name_;
};

// This class is used to traverse the DOM tree. It isn't meant to be
// constructed; instead, callers invoke the static methods, after templating it
// so that ElementType is the type of element they are interested in traversing.
// Traversals can also be predicated on a matcher, which will be used to
// filter the returned elements. A matcher is a callable - an object of a class
// that defines operator(). HasTagName above is an example of a matcher.
//
// For example, a caller could do this:
//   Traversal<Element>::firstChild(some_node,
//                                  HasTagName(html_names::kTitleTag));
//
// This invocation would return the first child of |some_node| (which has to be
// a ContainerNode) for which HasTagName(html_names::kTitleTag) returned true,
// so it would return the first child of |someNode| which is a <title> element.
// If the caller needs to traverse a Node this way, it's necessary to first
// check Node::IsContainerNode() and then use To<ContainerNode>(). Another way
// to achieve same behaviour is to use DynamicTo<ContainerNode>() which
// checks Node::IsContainerNode() and then returns container
// node. If the conditional check fails then it returns nullptr.
// DynamicTo<ContainerNode>() wraps IsContainerNode() so there is no need of
// an explicit conditional check.
//
// When looking for a specific element type, it is more efficient to do this:
//   Traversal<HTMLTitleElement>::firstChild(someNode);
//
// Traversal can also be used to find ancestors and descendants; see the
// documentation in the class body below.
//
// Note that these functions do not traverse into child shadow trees of any
// shadow hosts they encounter. If you need to traverse the shadow DOM, you can
// manually traverse the shadow trees using a second Traversal, or use
// FlatTreeTraversal.
//
// ElementTraversal is a specialized version of Traversal<Element>.
template <class ElementType>
class Traversal {
  STATIC_ONLY(Traversal);

 public:
  using TraversalNodeType = ElementType;
  // First or last ElementType child of the node.
  static ElementType* FirstChild(const ContainerNode& current) {
    return FirstChildTemplate(current);
  }
  static ElementType* FirstChild(const Node& current) {
    return FirstChildTemplate(current);
  }
  template <class MatchFunc>
  static ElementType* FirstChild(const ContainerNode&, MatchFunc);
  static ElementType* LastChild(const ContainerNode& current) {
    return LastChildTemplate(current);
  }
  static ElementType* LastChild(const Node& current) {
    return LastChildTemplate(current);
  }
  template <class MatchFunc>
  static ElementType* LastChild(const ContainerNode&, MatchFunc);

  // First ElementType ancestor of the node.
  static ElementType* FirstAncestor(const Node& current);
  static ElementType* FirstAncestorOrSelf(Node& current) {
    return FirstAncestorOrSelfTemplate(current);
  }
  static ElementType* FirstAncestorOrSelf(Element& current) {
    return FirstAncestorOrSelfTemplate(current);
  }
  static const ElementType* FirstAncestorOrSelf(const Node& current) {
    return FirstAncestorOrSelfTemplate(const_cast<Node&>(current));
  }
  static const ElementType* FirstAncestorOrSelf(const Element& current) {
    return FirstAncestorOrSelfTemplate(const_cast<Element&>(current));
  }

  // First or last ElementType descendant of the node.
  // For pure Elements firstWithin() is always the same as firstChild().
  static ElementType* FirstWithin(const ContainerNode& current) {
    return FirstWithinTemplate(current);
  }
  static ElementType* FirstWithin(const Node& current) {
    return FirstWithinTemplate(current);
  }
  template <typename MatchFunc>
  static ElementType* FirstWithin(const ContainerNode&, MatchFunc);

  static ElementType* InclusiveFirstWithin(Node& current) {
    auto* first = DynamicTo<ElementType>(current);
    return first ? first : FirstWithin(current);
  }

  static ElementType* LastWithin(const ContainerNode& current) {
    return LastWithinTemplate(current);
  }
  static ElementType* LastWithin(const Node& current) {
    return LastWithinTemplate(current);
  }
  template <class MatchFunc>
  static ElementType* LastWithin(const ContainerNode&, MatchFunc);
  static const ElementType* LastWithinOrSelf(const ElementType&);

  // Pre-order traversal skipping non-element nodes.
  static ElementType* Next(const ContainerNode& current) {
    return NextTemplate(current);
  }
  static ElementType* Next(const Node& current) {
    return NextTemplate(current);
  }
  static ElementType* Next(const ContainerNode& current,
                           const Node* stay_within) {
    return NextTemplate(current, stay_within);
  }
  static ElementType* Next(const Node& current, const Node* stay_within) {
    return NextTemplate(current, stay_within);
  }
  template <class MatchFunc>
  static ElementType* Next(const ContainerNode& current,
                           const Node* stay_within,
                           MatchFunc);
  static ElementType* Previous(const Node&);
  static ElementType* Previous(const Node&, const Node* stay_within);
  template <class MatchFunc>
  static ElementType* Previous(const ContainerNode& current,
                               const Node* stay_within,
                               MatchFunc);

  // Returns the previous direct sibling of the node, if there is one. If not,
  // it will traverse up the ancestor chain until it finds an ancestor
  // that has a previous sibling, returning that sibling. Or nullptr if none.
  // See comment for |FlatTreeTraversal::PreviousAbsoluteSibling| for details.
  static ElementType* PreviousAbsoluteSibling(const Node&,
                                              const Node* stay_within);

  // Like next, but skips children.  If you're looking for the "Previous"
  // version of this method, see PreviousAbsoluteSibling().
  static ElementType* NextSkippingChildren(const Node&);
  static ElementType* NextSkippingChildren(const Node&,
                                           const Node* stay_within);

  // Pre-order traversal including the pseudo-elements.
  static ElementType* PreviousIncludingPseudo(
      const Node&,
      const Node* stay_within = nullptr);
  static ElementType* NextIncludingPseudo(const Node&,
                                          const Node* stay_within = nullptr);
  static ElementType* NextIncludingPseudoSkippingChildren(
      const Node&,
      const Node* stay_within = nullptr);

  // Utility function to traverse only the element and pseudo-element siblings
  // of a node.
  static ElementType* PseudoAwarePreviousSibling(const Node&);

  // Previous / Next sibling.
  static ElementType* PreviousSibling(const Node&);
  template <class MatchFunc>
  static ElementType* PreviousSibling(const Node&, MatchFunc);
  static ElementType* NextSibling(const Node&);
  template <class MatchFunc>
  static ElementType* NextSibling(const Node&, MatchFunc);

  static TraversalSiblingRange<Traversal<ElementType>> ChildrenOf(const Node&);
  static TraversalDescendantRange<Traversal<ElementType>> DescendantsOf(
      const Node&);
  static TraversalInclusiveDescendantRange<Traversal<ElementType>>
  InclusiveDescendantsOf(const ElementType&);
  static TraversalNextRange<Traversal<ElementType>> StartsAt(
      const ElementType&);
  static TraversalNextRange<Traversal<ElementType>> StartsAfter(const Node&);

 private:
  template <class NodeType>
  static ElementType* FirstChildTemplate(NodeType&);
  template <class NodeType>
  static ElementType* LastChildTemplate(NodeType&);
  template <class NodeType>
  static ElementType* FirstAncestorOrSelfTemplate(NodeType&);
  template <class NodeType>
  static ElementType* FirstWithinTemplate(NodeType&);
  template <class NodeType>
  static ElementType* LastWithinTemplate(NodeType&);
  template <class NodeType>
  static ElementType* NextTemplate(NodeType&);
  template <class NodeType>
  static ElementType* NextTemplate(NodeType&, const Node* stay_within);
};

typedef Traversal<Element> ElementTraversal;

template <class ElementType>
inline TraversalSiblingRange<Traversal<ElementType>>
Traversal<ElementType>::ChildrenOf(const Node& start) {
  return TraversalSiblingRange<Traversal<ElementType>>(
      Traversal<ElementType>::FirstChild(start));
}

template <class ElementType>
inline TraversalDescendantRange<Traversal<ElementType>>
Traversal<ElementType>::DescendantsOf(const Node& root) {
  return TraversalDescendantRange<Traversal<ElementType>>(&root);
}

template <class ElementType>
inline TraversalInclusiveDescendantRange<Traversal<ElementType>>
Traversal<ElementType>::InclusiveDescendantsOf(const ElementType& root) {
  return TraversalInclusiveDescendantRange<Traversal<ElementType>>(&root);
}

template <class ElementType>
inline TraversalNextRange<Traversal<ElementType>>
Traversal<ElementType>::StartsAt(const ElementType& start) {
  return TraversalNextRange<Traversal<ElementType>>(&start);
}

template <class ElementType>
inline TraversalNextRange<Traversal<ElementType>>
Traversal<ElementType>::StartsAfter(const Node& start) {
  return TraversalNextRange<Traversal<ElementType>>(
      Traversal<ElementType>::Next(start));
}

// Specialized for pure Element to exploit the fact that Elements parent is
// always either another Element or the root.
template <>
template <class NodeType>
inline Element* Traversal<Element>::FirstWithinTemplate(NodeType& current) {
  return FirstChildTemplate(current);
}

template <>
template <class NodeType>
inline Element* Traversal<Element>::NextTemplate(NodeType& current) {
  Node* node = NodeTraversal::Next(current);
  while (node && !node->IsElementNode())
    node = NodeTraversal::NextSkippingChildren(*node);
  return To<Element>(node);
}

template <>
template <class NodeType>
inline Element* Traversal<Element>::NextTemplate(NodeType& current,
                                                 const Node* stay_within) {
  Node* node = NodeTraversal::Next(current, stay_within);
  while (node && !node->IsElementNode())
    node = NodeTraversal::NextSkippingChildren(*node, stay_within);
  return To<Element>(node);
}

// Generic versions.
template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::FirstChildTemplate(
    NodeType& current) {
  for (Node* node = current.firstChild(); node; node = node->nextSibling()) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::FirstChild(
    const ContainerNode& current,
    MatchFunc is_match) {
  ElementType* element = Traversal<ElementType>::FirstChild(current);
  while (element && !is_match(*element))
    element = Traversal<ElementType>::NextSibling(*element);
  return element;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::FirstAncestor(const Node& current) {
  for (ContainerNode* ancestor = current.parentNode(); ancestor;
       ancestor = ancestor->parentNode()) {
    if (auto* element = DynamicTo<ElementType>(*ancestor)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::FirstAncestorOrSelfTemplate(
    NodeType& current) {
  if (auto* element = DynamicTo<ElementType>(current)) {
    return element;
  }
  return FirstAncestor(current);
}

template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::LastChildTemplate(
    NodeType& current) {
  for (Node* node = current.lastChild(); node; node = node->previousSibling()) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::LastChild(
    const ContainerNode& current,
    MatchFunc is_match) {
  ElementType* element = Traversal<ElementType>::LastChild(current);
  while (element && !is_match(*element))
    element = Traversal<ElementType>::PreviousSibling(*element);
  return element;
}

template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::FirstWithinTemplate(
    NodeType& current) {
  for (Node* node = current.firstChild(); node;
       node = NodeTraversal::Next(*node, &current)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <typename MatchFunc>
inline ElementType* Traversal<ElementType>::FirstWithin(
    const ContainerNode& current,
    MatchFunc is_match) {
  ElementType* element = Traversal<ElementType>::FirstWithin(current);
  while (element && !is_match(*element))
    element = Traversal<ElementType>::Next(*element, &current, is_match);
  return element;
}

template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::LastWithinTemplate(
    NodeType& current) {
  for (Node* node = NodeTraversal::LastWithin(current); node;
       node = NodeTraversal::Previous(*node, &current)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::LastWithin(
    const ContainerNode& current,
    MatchFunc is_match) {
  ElementType* element = Traversal<ElementType>::LastWithin(current);
  while (element && !is_match(*element))
    element = Traversal<ElementType>::Previous(*element, &current, is_match);
  return element;
}

template <class ElementType>
inline const ElementType* Traversal<ElementType>::LastWithinOrSelf(
    const ElementType& current) {
  if (auto* last_descendant = LastWithin(current)) {
    return last_descendant;
  }
  return &current;
}

template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::NextTemplate(NodeType& current) {
  for (Node* node = NodeTraversal::Next(current); node;
       node = NodeTraversal::Next(*node)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class NodeType>
inline ElementType* Traversal<ElementType>::NextTemplate(
    NodeType& current,
    const Node* stay_within) {
  for (Node* node = NodeTraversal::Next(current, stay_within); node;
       node = NodeTraversal::Next(*node, stay_within)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::Next(const ContainerNode& current,
                                                 const Node* stay_within,
                                                 MatchFunc is_match) {
  ElementType* element = Traversal<ElementType>::Next(current, stay_within);
  while (element && !is_match(*element))
    element = Traversal<ElementType>::Next(*element, stay_within);
  return element;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::Previous(const Node& current) {
  for (Node* node = NodeTraversal::Previous(current); node;
       node = NodeTraversal::Previous(*node)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::Previous(const Node& current,
                                                     const Node* stay_within) {
  for (Node* node = NodeTraversal::Previous(current, stay_within); node;
       node = NodeTraversal::Previous(*node, stay_within)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::Previous(
    const ContainerNode& current,
    const Node* stay_within,
    MatchFunc is_match) {
  ElementType* element = Traversal<ElementType>::Previous(current, stay_within);
  while (element && !is_match(*element))
    element = Traversal<ElementType>::Previous(*element, stay_within);
  return element;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::PreviousAbsoluteSibling(
    const Node& current,
    const Node* stay_within) {
  for (Node* node =
           NodeTraversal::PreviousAbsoluteSibling(current, stay_within);
       node;
       node = NodeTraversal::PreviousAbsoluteSibling(*node, stay_within)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }

  return nullptr;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::NextSkippingChildren(
    const Node& current) {
  for (Node* node = NodeTraversal::NextSkippingChildren(current); node;
       node = NodeTraversal::NextSkippingChildren(*node)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::NextSkippingChildren(
    const Node& current,
    const Node* stay_within) {
  for (Node* node = NodeTraversal::NextSkippingChildren(current, stay_within);
       node; node = NodeTraversal::NextSkippingChildren(*node, stay_within)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::PreviousIncludingPseudo(
    const Node& current,
    const Node* stay_within) {
  for (Node* node =
           NodeTraversal::PreviousIncludingPseudo(current, stay_within);
       node;
       node = NodeTraversal::PreviousIncludingPseudo(*node, stay_within)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::NextIncludingPseudo(
    const Node& current,
    const Node* stay_within) {
  for (Node* node = NodeTraversal::NextIncludingPseudo(current, stay_within);
       node; node = NodeTraversal::NextIncludingPseudo(*node, stay_within)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::NextIncludingPseudoSkippingChildren(
    const Node& current,
    const Node* stay_within) {
  for (Node* node = NodeTraversal::NextIncludingPseudoSkippingChildren(
           current, stay_within);
       node; node = NodeTraversal::NextIncludingPseudoSkippingChildren(
                 *node, stay_within)) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::PseudoAwarePreviousSibling(
    const Node& current) {
  for (Node* node = current.PseudoAwarePreviousSibling(); node;
       node = node->PseudoAwarePreviousSibling()) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::PreviousSibling(
    const Node& current) {
  for (Node* node = current.previousSibling(); node;
       node = node->previousSibling()) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::PreviousSibling(
    const Node& current,
    MatchFunc is_match) {
  ElementType* element = Traversal<ElementType>::PreviousSibling(current);
  while (element && !is_match(*element))
    element = Traversal<ElementType>::PreviousSibling(*element);
  return element;
}

template <class ElementType>
inline ElementType* Traversal<ElementType>::NextSibling(const Node& current) {
  for (Node* node = current.nextSibling(); node; node = node->nextSibling()) {
    if (auto* element = DynamicTo<ElementType>(*node)) {
      return element;
    }
  }
  return nullptr;
}

template <class ElementType>
template <class MatchFunc>
inline ElementType* Traversal<ElementType>::NextSibling(const Node& current,
                                                        MatchFunc is_match) {
  ElementType* element = Traversal<ElementType>::NextSibling(current);
  while (element && !is_match(*element))
    element = Traversal<ElementType>::NextSibling(*element);
  return element;
}

}  // namespace blink

#endif  // THIRD_PARTY_BLINK_RENDERER_CORE_DOM_ELEMENT_TRAVERSAL_H_