1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller (mueller@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc.
* All rights reserved.
* Copyright (C) 2008, 2009 Torch Mobile Inc. All rights reserved.
* (http://www.torchmobile.com/)
* Copyright (C) 2014 Samsung Electronics. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_CORE_DOM_NODE_TRAVERSAL_H_
#define THIRD_PARTY_BLINK_RENDERER_CORE_DOM_NODE_TRAVERSAL_H_
#include "third_party/blink/renderer/core/core_export.h"
#include "third_party/blink/renderer/core/dom/container_node.h"
#include "third_party/blink/renderer/core/dom/node.h"
#include "third_party/blink/renderer/core/dom/traversal_range.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
namespace blink {
class CORE_EXPORT NodeTraversal {
STATIC_ONLY(NodeTraversal);
public:
using TraversalNodeType = Node;
// Does a pre-order traversal of the tree to find the next node after this
// one. This uses the same order that tags appear in the source file. If the
// stayWithin argument is non-null, the traversal will stop once the specified
// node is reached. This can be used to restrict traversal to a particular
// sub-tree.
static Node* Next(const Node& current) {
return TraverseNextTemplate(current);
}
static Node* Next(const ContainerNode& current) {
return TraverseNextTemplate(current);
}
static Node* Next(const Node& current, const Node* stay_within) {
return TraverseNextTemplate(current, stay_within);
}
static Node* Next(const ContainerNode& current, const Node* stay_within) {
return TraverseNextTemplate(current, stay_within);
}
// Like next, but skips children and starts with the next sibling. If you're
// looking for the "Previous" version of this method, see
// PreviousAbsoluteSibling().
static Node* NextSkippingChildren(const Node&);
static Node* NextSkippingChildren(const Node&, const Node* stay_within);
static Node* FirstWithin(const Node& current) { return current.firstChild(); }
static Node* LastWithin(const ContainerNode&);
static Node& LastWithinOrSelf(Node&);
// Does a reverse pre-order traversal to find the node that comes before the
// current one in document order
static Node* Previous(const Node&, const Node* stay_within = nullptr);
// Returns the previous direct sibling of the node, if there is one. If not,
// it will traverse up the ancestor chain until it finds an ancestor
// that has a previous sibling, returning that sibling. Or nullptr if none.
// See comment for |FlatTreeTraversal::PreviousAbsoluteSibling| for details.
static Node* PreviousAbsoluteSibling(const Node&,
const Node* stay_within = nullptr);
// Like next, but visits parents after their children.
static Node* NextPostOrder(const Node&, const Node* stay_within = nullptr);
// Like previous, but visits parents before their children.
static Node* PreviousPostOrder(const Node&,
const Node* stay_within = nullptr);
// Pre-order traversal including the pseudo-elements.
static Node* PreviousIncludingPseudo(const Node&,
const Node* stay_within = nullptr);
static Node* NextIncludingPseudo(const Node&,
const Node* stay_within = nullptr);
// See comment for |FlatTreeTraversal::PreviousAbsoluteSibling| for details.
static Node* PreviousAbsoluteSiblingIncludingPseudo(
const Node&,
const Node* stay_within = nullptr);
static Node* NextIncludingPseudoSkippingChildren(
const Node&,
const Node* stay_within = nullptr);
static Node* NextAncestorSibling(const Node&);
static Node* NextAncestorSibling(const Node&, const Node* stay_within);
static Node& HighestAncestorOrSelf(const Node&);
// Children traversal.
static Node* ChildAt(const Node& parent, unsigned index) {
return ChildAtTemplate(parent, index);
}
static Node* ChildAt(const ContainerNode& parent, unsigned index) {
return ChildAtTemplate(parent, index);
}
// These functions are provided for matching with |FlatTreeTraversal|.
static bool HasChildren(const Node& parent) { return FirstChild(parent); }
static bool IsDescendantOf(const Node& node, const Node& other) {
return node.IsDescendantOf(&other);
}
static Node* FirstChild(const Node& parent) { return parent.firstChild(); }
static Node* LastChild(const Node& parent) { return parent.lastChild(); }
static Node* NextSibling(const Node& node) { return node.nextSibling(); }
static Node* PreviousSibling(const Node& node) {
return node.previousSibling();
}
static Node* PreviousAncestorSibling(const Node&, const Node* stay_within);
static ContainerNode* Parent(const Node& node) { return node.parentNode(); }
static Node* CommonAncestor(const Node& node_a, const Node& node_b);
static unsigned Index(const Node& node) { return node.NodeIndex(); }
static unsigned CountChildren(const Node& parent) {
return parent.CountChildren();
}
static ContainerNode* ParentOrShadowHostNode(const Node& node) {
return node.ParentOrShadowHostNode();
}
static TraversalAncestorRange<NodeTraversal> AncestorsOf(const Node&);
static TraversalAncestorRange<NodeTraversal> InclusiveAncestorsOf(
const Node&);
static TraversalSiblingRange<NodeTraversal> ChildrenOf(const Node&);
static TraversalDescendantRange<NodeTraversal> DescendantsOf(const Node&);
static TraversalInclusiveDescendantRange<NodeTraversal>
InclusiveDescendantsOf(const Node&);
static TraversalNextRange<NodeTraversal> StartsAt(const Node&);
static TraversalNextRange<NodeTraversal> StartsAfter(const Node&);
private:
template <class NodeType>
static Node* TraverseNextTemplate(NodeType&);
template <class NodeType>
static Node* TraverseNextTemplate(NodeType&, const Node* stay_within);
template <class NodeType>
static Node* ChildAtTemplate(NodeType&, unsigned);
static Node* PreviousAncestorSiblingPostOrder(const Node& current,
const Node* stay_within);
};
inline TraversalAncestorRange<NodeTraversal> NodeTraversal::AncestorsOf(
const Node& node) {
return TraversalAncestorRange<NodeTraversal>(NodeTraversal::Parent(node));
}
inline TraversalAncestorRange<NodeTraversal>
NodeTraversal::InclusiveAncestorsOf(const Node& node) {
return TraversalAncestorRange<NodeTraversal>(&node);
}
inline TraversalSiblingRange<NodeTraversal> NodeTraversal::ChildrenOf(
const Node& parent) {
return TraversalSiblingRange<NodeTraversal>(
NodeTraversal::FirstChild(parent));
}
inline TraversalDescendantRange<NodeTraversal> NodeTraversal::DescendantsOf(
const Node& root) {
return TraversalDescendantRange<NodeTraversal>(&root);
}
inline TraversalInclusiveDescendantRange<NodeTraversal>
NodeTraversal::InclusiveDescendantsOf(const Node& root) {
return TraversalInclusiveDescendantRange<NodeTraversal>(&root);
}
inline TraversalNextRange<NodeTraversal> NodeTraversal::StartsAt(
const Node& start) {
return TraversalNextRange<NodeTraversal>(&start);
}
inline TraversalNextRange<NodeTraversal> NodeTraversal::StartsAfter(
const Node& start) {
return TraversalNextRange<NodeTraversal>(NodeTraversal::Next(start));
}
template <class NodeType>
inline Node* NodeTraversal::TraverseNextTemplate(NodeType& current) {
if (current.hasChildren())
return current.firstChild();
if (current.HasNextSibling()) {
return current.nextSibling();
}
return NextAncestorSibling(current);
}
template <class NodeType>
inline Node* NodeTraversal::TraverseNextTemplate(NodeType& current,
const Node* stay_within) {
if (current.hasChildren())
return current.firstChild();
if (current == stay_within)
return nullptr;
if (current.HasNextSibling()) {
return current.nextSibling();
}
return NextAncestorSibling(current, stay_within);
}
inline Node* NodeTraversal::NextSkippingChildren(const Node& current) {
if (current.HasNextSibling()) {
return current.nextSibling();
}
return NextAncestorSibling(current);
}
inline Node* NodeTraversal::NextSkippingChildren(const Node& current,
const Node* stay_within) {
if (current == stay_within)
return nullptr;
if (current.HasNextSibling()) {
return current.nextSibling();
}
return NextAncestorSibling(current, stay_within);
}
// Note that `HighestAncestorOrSelf` is used most commonly in `RemovedFrom` and
// `InsertedInfo`, during which `current.isConnected()` hasn't yet been
// updated to its new state. Which means `HighestAncestorOrSelf` cannot use
// `current.TreeRoot()` because it might return the root of the old tree,
// rather than the highest ancestor of the newly-removed/inserted node.
inline Node& NodeTraversal::HighestAncestorOrSelf(const Node& current) {
Node* highest = const_cast<Node*>(¤t);
while (highest->parentNode()) {
highest = highest->parentNode();
}
return *highest;
}
template <class NodeType>
inline Node* NodeTraversal::ChildAtTemplate(NodeType& parent, unsigned index) {
Node* child = parent.firstChild();
while (child && index--)
child = child->nextSibling();
return child;
}
} // namespace blink
#endif // THIRD_PARTY_BLINK_RENDERER_CORE_DOM_NODE_TRAVERSAL_H_
|