File: absolute_utils.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (895 lines) | stat: -rw-r--r-- 36,702 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/core/layout/absolute_utils.h"

#include <algorithm>

#include "third_party/blink/renderer/core/layout/block_node.h"
#include "third_party/blink/renderer/core/layout/box_fragment_builder.h"
#include "third_party/blink/renderer/core/layout/constraint_space.h"
#include "third_party/blink/renderer/core/layout/constraint_space_builder.h"
#include "third_party/blink/renderer/core/layout/fragmentation_utils.h"
#include "third_party/blink/renderer/core/layout/geometry/static_position.h"
#include "third_party/blink/renderer/core/layout/length_utils.h"
#include "third_party/blink/renderer/core/style/computed_style.h"
#include "third_party/blink/renderer/platform/geometry/length_functions.h"

namespace blink {

namespace {

using InsetBias = InsetModifiedContainingBlock::InsetBias;

inline InsetBias GetStaticPositionInsetBias(
    LogicalStaticPosition::InlineEdge inline_edge) {
  switch (inline_edge) {
    case LogicalStaticPosition::InlineEdge::kInlineStart:
      return InsetBias::kStart;
    case LogicalStaticPosition::InlineEdge::kInlineCenter:
      return InsetBias::kEqual;
    case LogicalStaticPosition::InlineEdge::kInlineEnd:
      return InsetBias::kEnd;
  }
}

inline InsetBias GetStaticPositionInsetBias(
    LogicalStaticPosition::BlockEdge block_edge) {
  switch (block_edge) {
    case LogicalStaticPosition::BlockEdge::kBlockStart:
      return InsetBias::kStart;
    case LogicalStaticPosition::BlockEdge::kBlockCenter:
      return InsetBias::kEqual;
    case LogicalStaticPosition::BlockEdge::kBlockEnd:
      return InsetBias::kEnd;
  }
}

InsetBias GetAlignmentInsetBias(
    const StyleSelfAlignmentData& alignment,
    WritingDirectionMode container_writing_direction,
    WritingDirectionMode self_writing_direction,
    bool is_justify_axis,
    std::optional<InsetBias>* out_safe_inset_bias,
    std::optional<InsetBias>* out_default_inset_bias) {
  // `alignment` is in the writing-direction of the containing-block, vs. the
  // inset-bias which is relative to the writing-direction of the candidate.
  const LogicalToLogical bias(
      self_writing_direction, container_writing_direction, InsetBias::kStart,
      InsetBias::kEnd, InsetBias::kStart, InsetBias::kEnd);

  if (alignment.Overflow() == OverflowAlignment::kSafe) {
    *out_safe_inset_bias =
        is_justify_axis ? bias.InlineStart() : bias.BlockStart();
  }
  if (alignment.Overflow() == OverflowAlignment::kDefault &&
      alignment.GetPosition() != ItemPosition::kNormal) {
    *out_default_inset_bias =
        is_justify_axis ? bias.InlineStart() : bias.BlockStart();
  }

  switch (alignment.GetPosition()) {
    case ItemPosition::kStart:
    case ItemPosition::kFlexStart:
    case ItemPosition::kBaseline:
    case ItemPosition::kStretch:
    case ItemPosition::kNormal:
      return is_justify_axis ? bias.InlineStart() : bias.BlockStart();
    case ItemPosition::kAnchorCenter:
    case ItemPosition::kCenter:
      return InsetBias::kEqual;
    case ItemPosition::kEnd:
    case ItemPosition::kFlexEnd:
    case ItemPosition::kLastBaseline:
      return is_justify_axis ? bias.InlineEnd() : bias.BlockEnd();
    case ItemPosition::kSelfStart:
      return InsetBias::kStart;
    case ItemPosition::kSelfEnd:
      return InsetBias::kEnd;
    case ItemPosition::kLeft:
      DCHECK(is_justify_axis);
      return container_writing_direction.IsLtr() ? bias.InlineStart()
                                                 : bias.InlineEnd();
    case ItemPosition::kRight:
      DCHECK(is_justify_axis);
      return container_writing_direction.IsRtl() ? bias.InlineStart()
                                                 : bias.InlineEnd();
    case ItemPosition::kLegacy:
    case ItemPosition::kAuto:
      NOTREACHED();
  }
}

void ResizeIMCBInOneAxis(const InsetBias inset_bias,
                         const LayoutUnit amount,
                         LayoutUnit* inset_start,
                         LayoutUnit* inset_end) {
  switch (inset_bias) {
    case InsetBias::kStart:
      *inset_end += amount;
      break;
    case InsetBias::kEnd:
      *inset_start += amount;
      break;
    case InsetBias::kEqual:
      *inset_start += amount / 2;
      *inset_end += amount / 2;
      break;
  }
}

// Computes the inset modified containing block in one axis, accounting for
// insets and the static-position.
void ComputeUnclampedIMCBInOneAxis(
    const LayoutUnit available_size,
    const std::optional<LayoutUnit>& inset_start,
    const std::optional<LayoutUnit>& inset_end,
    bool is_static_alignment_parallel,
    const LayoutUnit static_position_offset,
    InsetBias static_position_inset_bias,
    InsetBias alignment_inset_bias,
    const std::optional<InsetBias>& safe_inset_bias,
    const std::optional<InsetBias>& alt_safe_inset_bias,
    const std::optional<InsetBias>& default_inset_bias,
    LayoutUnit* imcb_start_out,
    LayoutUnit* imcb_end_out,
    InsetBias* imcb_inset_bias_out,
    std::optional<InsetBias>* safe_inset_bias_out,
    std::optional<InsetBias>* default_inset_bias_out) {
  DCHECK_NE(available_size, kIndefiniteSize);
  if (!inset_start && !inset_end) {
    // If both our insets are auto, the available-space is defined by the
    // static-position.
    switch (static_position_inset_bias) {
      case InsetBias::kStart:
        // The available-space for the start static-position "grows" towards the
        // end edge.
        // |      *----------->|
        *imcb_start_out = static_position_offset;
        *imcb_end_out = LayoutUnit();
        break;
      case InsetBias::kEqual: {
        // The available-space for the center static-position "grows" towards
        // both edges (equally), and stops when it hits the first one.
        // |<-----*----->      |
        const LayoutUnit half_size = std::min(
            static_position_offset, available_size - static_position_offset);
        *imcb_start_out = static_position_offset - half_size;
        *imcb_end_out = available_size - static_position_offset - half_size;
        break;
      }
      case InsetBias::kEnd:
        // The available-space for the end static-position "grows" towards the
        // start edge.
        // |<-----*            |
        *imcb_end_out = available_size - static_position_offset;
        *imcb_start_out = LayoutUnit();
        break;
    }
    *imcb_inset_bias_out = static_position_inset_bias;
    *safe_inset_bias_out =
        is_static_alignment_parallel ? safe_inset_bias : alt_safe_inset_bias;
  } else {
    // Otherwise we just resolve auto to 0.
    *imcb_start_out = inset_start.value_or(LayoutUnit());
    *imcb_end_out = inset_end.value_or(LayoutUnit());

    if (!inset_start.has_value() || !inset_end.has_value()) {
      // In the case that only one inset is auto, that is the weaker inset;
      *imcb_inset_bias_out =
          inset_start.has_value() ? InsetBias::kStart : InsetBias::kEnd;
    } else {
      // Both insets were set - use the alignment bias (defaults to the "start"
      // edge of the containing block if we have normal alignment).
      *imcb_inset_bias_out = alignment_inset_bias;
      *safe_inset_bias_out = safe_inset_bias;
      *default_inset_bias_out = default_inset_bias;
    }
  }
}

InsetModifiedContainingBlock ComputeUnclampedIMCB(
    const LogicalSize& available_size,
    const LogicalAlignment& alignment,
    const LogicalOofInsets& insets,
    const LogicalStaticPosition& static_position,
    const ComputedStyle& style,
    WritingDirectionMode container_writing_direction,
    WritingDirectionMode self_writing_direction) {
  InsetModifiedContainingBlock imcb;
  imcb.available_size = available_size;
  imcb.has_auto_inline_inset = !insets.inline_start || !insets.inline_end;
  imcb.has_auto_block_inset = !insets.block_start || !insets.block_end;

  const bool is_parallel =
      IsParallelWritingMode(container_writing_direction.GetWritingMode(),
                            self_writing_direction.GetWritingMode());

  std::optional<InsetBias> inline_safe_inset_bias;
  std::optional<InsetBias> inline_default_inset_bias;
  const auto inline_alignment_inset_bias = GetAlignmentInsetBias(
      alignment.inline_alignment, container_writing_direction,
      self_writing_direction,
      /* is_justify_axis */ is_parallel, &inline_safe_inset_bias,
      &inline_default_inset_bias);
  std::optional<InsetBias> block_safe_inset_bias;
  std::optional<InsetBias> block_default_inset_bias;
  const auto block_alignment_inset_bias =
      GetAlignmentInsetBias(alignment.block_alignment,
                            container_writing_direction, self_writing_direction,
                            /* is_justify_axis */ !is_parallel,
                            &block_safe_inset_bias, &block_default_inset_bias);

  const bool is_static_alignment_parallel =
      static_position.align_self_direction ==
      LogicalStaticPosition::LogicalAlignmentDirection::kBlock;

  ComputeUnclampedIMCBInOneAxis(
      available_size.inline_size, insets.inline_start, insets.inline_end,
      is_static_alignment_parallel, static_position.offset.inline_offset,
      GetStaticPositionInsetBias(static_position.inline_edge),
      inline_alignment_inset_bias, inline_safe_inset_bias,
      block_safe_inset_bias, inline_default_inset_bias, &imcb.inline_start,
      &imcb.inline_end, &imcb.inline_inset_bias, &imcb.inline_safe_inset_bias,
      &imcb.inline_default_inset_bias);
  ComputeUnclampedIMCBInOneAxis(
      available_size.block_size, insets.block_start, insets.block_end,
      is_static_alignment_parallel, static_position.offset.block_offset,
      GetStaticPositionInsetBias(static_position.block_edge),
      block_alignment_inset_bias, block_safe_inset_bias, inline_safe_inset_bias,
      block_default_inset_bias, &imcb.block_start, &imcb.block_end,
      &imcb.block_inset_bias, &imcb.block_safe_inset_bias,
      &imcb.block_default_inset_bias);
  return imcb;
}

// Absolutize margin values to pixels and resolve any auto margins.
// https://drafts.csswg.org/css-position-3/#abspos-margins
bool ComputeMargins(LogicalSize margin_percentage_resolution_size,
                    const LayoutUnit imcb_size,
                    const Length& margin_start_length,
                    const Length& margin_end_length,
                    const LayoutUnit size,
                    bool has_auto_inset,
                    bool is_start_dominant,
                    bool is_block_direction,
                    LayoutUnit* margin_start_out,
                    LayoutUnit* margin_end_out) {
  std::optional<LayoutUnit> margin_start;
  if (!margin_start_length.IsAuto()) {
    margin_start = MinimumValueForLength(
        margin_start_length, margin_percentage_resolution_size.inline_size);
  }
  std::optional<LayoutUnit> margin_end;
  if (!margin_end_length.IsAuto()) {
    margin_end = MinimumValueForLength(
        margin_end_length, margin_percentage_resolution_size.inline_size);
  }

  const bool apply_auto_margins =
      !has_auto_inset && (!margin_start || !margin_end);

  // Solving the equation:
  // |margin_start| + |size| + |margin_end| = |imcb_size|
  if (apply_auto_margins) {
    // "If left, right, and width are not auto:"
    // Compute margins.
    const LayoutUnit free_space = imcb_size - size -
                                  margin_start.value_or(LayoutUnit()) -
                                  margin_end.value_or(LayoutUnit());

    if (!margin_start && !margin_end) {
      // When both margins are auto.
      if (free_space > LayoutUnit() || is_block_direction) {
        margin_start = free_space / 2;
        margin_end = free_space - *margin_start;
      } else {
        // Margins are negative.
        if (is_start_dominant) {
          margin_start = LayoutUnit();
          margin_end = free_space;
        } else {
          margin_start = free_space;
          margin_end = LayoutUnit();
        }
      }
    } else if (!margin_start) {
      margin_start = free_space;
    } else if (!margin_end) {
      margin_end = free_space;
    }
  }

  // Set any unknown margins, auto margins with any auto inset resolve to zero.
  *margin_start_out = margin_start.value_or(LayoutUnit());
  *margin_end_out = margin_end.value_or(LayoutUnit());

  return apply_auto_margins;
}

// Align the margin box within the inset-modified containing block as defined by
// its self-alignment properties.
// https://drafts.csswg.org/css-position-3/#abspos-layout
void ComputeInsets(const LayoutUnit available_size,
                   const LayoutUnit container_start,
                   const LayoutUnit container_end,
                   const LayoutUnit original_imcb_start,
                   const LayoutUnit original_imcb_end,
                   const InsetBias imcb_inset_bias,
                   const std::optional<InsetBias>& safe_inset_bias,
                   const std::optional<InsetBias>& default_inset_bias,
                   const LayoutUnit margin_start,
                   const LayoutUnit margin_end,
                   const LayoutUnit size,
                   const std::optional<LayoutUnit>& anchor_center_offset,
                   LayoutUnit* inset_start_out,
                   LayoutUnit* inset_end_out) {
  DCHECK_NE(available_size, kIndefiniteSize);

  LayoutUnit imcb_start = original_imcb_start;
  LayoutUnit imcb_end = original_imcb_end;

  // First if we have a valid anchor-center position, adjust the offsets so
  // that it is centered on that point.
  //
  // At this stage it doesn't matter what the resulting free-space is, just
  // that if we have safe alignment, we bias towards the safe inset.
  if (anchor_center_offset) {
    const LayoutUnit half_size =
        (safe_inset_bias.value_or(InsetBias::kStart) == InsetBias::kStart)
            ? *anchor_center_offset - imcb_start
            : available_size - *anchor_center_offset - imcb_end;
    imcb_start = *anchor_center_offset - half_size;
    imcb_end = available_size - *anchor_center_offset - half_size;
  }

  // Determine the free-space. If we have safe alignment specified, e.g.
  // "justify-self: safe start", clamp the free-space to zero and bias towards
  // the safe edge (may be end if RTL for example).
  LayoutUnit free_space =
      available_size - imcb_start - imcb_end - margin_start - size - margin_end;
  InsetBias bias = imcb_inset_bias;
  bool apply_safe_bias = safe_inset_bias && free_space < LayoutUnit();
  if (apply_safe_bias) {
    free_space = LayoutUnit();
    bias = *safe_inset_bias;
  }

  // Move the weaker inset edge to consume all the free space, so that:
  // `imcb_start` + `margin_start` + `size` + `margin_end` + `imcb_end` =
  // `available_size`
  ResizeIMCBInOneAxis(bias, free_space, &imcb_start, &imcb_end);

  // Finally consider the default alignment overflow behavior if applicable.
  // This only applies when both insets are specified, and we have non-normal
  // alignment.
  //
  // This will take the element, and shift it to be within the bounds of the
  // containing-block. It will prioritize the edge specified by
  // `default_inset_bias`.
  if (default_inset_bias && !apply_safe_bias) {
    // If the insets shifted the IMCB outside the containing-block, we consider
    // that to be the safe edge.
    auto adjust_start = [&]() {
      const LayoutUnit safe_start =
          std::min(original_imcb_start, -container_start);
      if (imcb_start < safe_start) {
        imcb_end += (imcb_start - safe_start);
        imcb_start = safe_start;
      }
    };
    auto adjust_end = [&]() {
      const LayoutUnit safe_end = std::min(original_imcb_end, -container_end);
      if (imcb_end < safe_end) {
        imcb_start += (imcb_end - safe_end);
        imcb_end = safe_end;
      }
    };
    if (*default_inset_bias == InsetBias::kStart) {
      adjust_end();
      adjust_start();
    } else {
      adjust_start();
      adjust_end();
    }
  }

  *inset_start_out = imcb_start + margin_start;
  *inset_end_out = imcb_end + margin_end;
}

bool CanComputeBlockSizeWithoutLayout(
    const BlockNode& node,
    WritingDirectionMode container_writing_direction,
    ItemPosition block_alignment_position,
    bool has_auto_block_inset,
    bool has_inline_size) {
  // Tables (even with an explicit size) apply a min-content constraint.
  if (node.IsTable()) {
    return false;
  }
  // Replaced elements always have their size computed ahead of time.
  if (node.IsReplaced()) {
    return true;
  }
  const auto& style = node.Style();
  if (style.LogicalHeight().HasContentOrIntrinsic() ||
      style.LogicalMinHeight().HasContentOrIntrinsic() ||
      style.LogicalMaxHeight().HasContentOrIntrinsic()) {
    return false;
  }
  if (style.LogicalHeight().HasAuto()) {
    // Any 'auto' inset will trigger fit-content.
    if (has_auto_block_inset) {
      return false;
    }
    // Check for an explicit stretch.
    if (block_alignment_position == ItemPosition::kStretch) {
      return true;
    }
    // Non-normal alignment will trigger fit-content.
    if (block_alignment_position != ItemPosition::kNormal) {
      return false;
    }
    // An aspect-ratio (with a definite inline-size) will trigger fit-content.
    if (!style.AspectRatio().IsAuto() && has_inline_size) {
      return false;
    }
  }
  return true;
}

}  // namespace

LogicalOofInsets ComputeOutOfFlowInsets(
    const ComputedStyle& style,
    const LogicalSize& available_logical_size,
    const LogicalAlignment& alignment,
    WritingDirectionMode self_writing_direction) {
  bool force_x_insets_to_zero = false;
  bool force_y_insets_to_zero = false;
  std::optional<PositionAreaOffsets> offsets = style.PositionAreaOffsets();
  if (offsets.has_value()) {
    force_x_insets_to_zero = force_y_insets_to_zero = true;
  }
  if (alignment.inline_alignment.GetPosition() == ItemPosition::kAnchorCenter) {
    if (self_writing_direction.IsHorizontal()) {
      force_x_insets_to_zero = true;
    } else {
      force_y_insets_to_zero = true;
    }
  }
  if (alignment.block_alignment.GetPosition() == ItemPosition::kAnchorCenter) {
    if (self_writing_direction.IsHorizontal()) {
      force_y_insets_to_zero = true;
    } else {
      force_x_insets_to_zero = true;
    }
  }

  // Compute in physical, because anchors may be in different `writing-mode` or
  // `direction`.
  const PhysicalSize available_size = ToPhysicalSize(
      available_logical_size, self_writing_direction.GetWritingMode());
  std::optional<LayoutUnit> left;
  if (const Length& left_length = style.Left(); !left_length.IsAuto()) {
    left = MinimumValueForLength(left_length, available_size.width);
  } else if (force_x_insets_to_zero) {
    left = LayoutUnit();
  }
  std::optional<LayoutUnit> right;
  if (const Length& right_length = style.Right(); !right_length.IsAuto()) {
    right = MinimumValueForLength(right_length, available_size.width);
  } else if (force_x_insets_to_zero) {
    right = LayoutUnit();
  }

  std::optional<LayoutUnit> top;
  if (const Length& top_length = style.Top(); !top_length.IsAuto()) {
    top = MinimumValueForLength(top_length, available_size.height);
  } else if (force_y_insets_to_zero) {
    top = LayoutUnit();
  }
  std::optional<LayoutUnit> bottom;
  if (const Length& bottom_length = style.Bottom(); !bottom_length.IsAuto()) {
    bottom = MinimumValueForLength(bottom_length, available_size.height);
  } else if (force_y_insets_to_zero) {
    bottom = LayoutUnit();
  }

  // Convert the physical insets to logical.
  PhysicalToLogical<std::optional<LayoutUnit>&> insets(
      self_writing_direction, top, right, bottom, left);
  return {insets.InlineStart(), insets.InlineEnd(), insets.BlockStart(),
          insets.BlockEnd()};
}

LogicalAlignment ComputeAlignment(
    const ComputedStyle& style,
    bool is_containing_block_scrollable,
    WritingDirectionMode container_writing_direction,
    WritingDirectionMode self_writing_direction) {
  StyleSelfAlignmentData align_normal_behavior(ItemPosition::kNormal,
                                               OverflowAlignment::kDefault);
  StyleSelfAlignmentData justify_normal_behavior(ItemPosition::kNormal,
                                                 OverflowAlignment::kDefault);
  const PositionArea position_area = style.GetPositionArea().ToPhysical(
      container_writing_direction, self_writing_direction);
  if (!position_area.IsNone()) {
    std::tie(align_normal_behavior, justify_normal_behavior) =
        position_area.AlignJustifySelfFromPhysical(
            container_writing_direction, is_containing_block_scrollable);
  }
  const bool is_parallel =
      IsParallelWritingMode(container_writing_direction.GetWritingMode(),
                            self_writing_direction.GetWritingMode());
  return is_parallel
             ? LogicalAlignment{style.ResolvedJustifySelf(
                                    justify_normal_behavior),
                                style.ResolvedAlignSelf(align_normal_behavior)}
             : LogicalAlignment{
                   style.ResolvedAlignSelf(align_normal_behavior),
                   style.ResolvedJustifySelf(justify_normal_behavior)};
}

LogicalAnchorCenterPosition ComputeAnchorCenterPosition(
    const ComputedStyle& style,
    const LogicalAlignment& alignment,
    WritingDirectionMode writing_direction,
    LogicalSize available_logical_size) {
  // Compute in physical, because anchors may be in different writing-mode.
  const ItemPosition inline_position = alignment.inline_alignment.GetPosition();
  const ItemPosition block_position = alignment.block_alignment.GetPosition();

  const bool has_anchor_center_in_x =
      writing_direction.IsHorizontal()
          ? inline_position == ItemPosition::kAnchorCenter
          : block_position == ItemPosition::kAnchorCenter;
  const bool has_anchor_center_in_y =
      writing_direction.IsHorizontal()
          ? block_position == ItemPosition::kAnchorCenter
          : inline_position == ItemPosition::kAnchorCenter;

  const PhysicalSize available_size = ToPhysicalSize(
      available_logical_size, writing_direction.GetWritingMode());
  std::optional<LayoutUnit> left;
  std::optional<LayoutUnit> top;
  std::optional<LayoutUnit> right;
  std::optional<LayoutUnit> bottom;
  if (style.AnchorCenterOffset().has_value()) {
    if (has_anchor_center_in_x) {
      left = style.AnchorCenterOffset()->left;
      if (left) {
        right = available_size.width - *left;
      }
    }
    if (has_anchor_center_in_y) {
      top = style.AnchorCenterOffset()->top;
      if (top) {
        bottom = available_size.height - *top;
      }
    }
  }

  // Convert result back to logical against `writing_direction`.
  PhysicalToLogical converter(writing_direction, top, right, bottom, left);
  return LogicalAnchorCenterPosition{converter.InlineStart(),
                                     converter.BlockStart()};
}

InsetModifiedContainingBlock ComputeInsetModifiedContainingBlock(
    const BlockNode& node,
    const LogicalSize& available_size,
    const LogicalAlignment& alignment,
    const LogicalOofInsets& insets,
    const LogicalStaticPosition& static_position,
    WritingDirectionMode container_writing_direction,
    WritingDirectionMode self_writing_direction) {
  InsetModifiedContainingBlock imcb = ComputeUnclampedIMCB(
      available_size, alignment, insets, static_position, node.Style(),
      container_writing_direction, self_writing_direction);
  // Clamp any negative size to 0.
  if (imcb.InlineSize() < LayoutUnit()) {
    ResizeIMCBInOneAxis(imcb.inline_inset_bias, imcb.InlineSize(),
                        &imcb.inline_start, &imcb.inline_end);
  }
  if (imcb.BlockSize() < LayoutUnit()) {
    ResizeIMCBInOneAxis(imcb.block_inset_bias, imcb.BlockSize(),
                        &imcb.block_start, &imcb.block_end);
  }
  if (node.IsTable()) {
    // Tables should not be larger than the container.
    if (imcb.InlineSize() > available_size.inline_size) {
      ResizeIMCBInOneAxis(imcb.inline_inset_bias,
                          imcb.InlineSize() - available_size.inline_size,
                          &imcb.inline_start, &imcb.inline_end);
    }
    if (imcb.BlockSize() > available_size.block_size) {
      ResizeIMCBInOneAxis(imcb.block_inset_bias,
                          imcb.BlockSize() - available_size.block_size,
                          &imcb.block_start, &imcb.block_end);
    }
  }
  return imcb;
}

InsetModifiedContainingBlock ComputeIMCBForPositionFallback(
    const LogicalSize& available_size,
    const LogicalAlignment& alignment,
    const LogicalOofInsets& insets,
    const LogicalStaticPosition& static_position,
    const ComputedStyle& style,
    WritingDirectionMode container_writing_direction,
    WritingDirectionMode self_writing_direction) {
  return ComputeUnclampedIMCB(
      available_size, alignment, insets, static_position, style,
      container_writing_direction, self_writing_direction);
}

bool ComputeOofInlineDimensions(
    const BlockNode& node,
    const ComputedStyle& style,
    const ConstraintSpace& space,
    const InsetModifiedContainingBlock& imcb,
    const LogicalAnchorCenterPosition& anchor_center_position,
    const LogicalAlignment& alignment,
    const BoxStrut& border_padding,
    const std::optional<LogicalSize>& replaced_size,
    const BoxStrut& container_insets,
    WritingDirectionMode container_writing_direction,
    LogicalOofDimensions* dimensions) {
  DCHECK(dimensions);
  DCHECK_GE(imcb.InlineSize(), LayoutUnit());

  const auto alignment_position = alignment.inline_alignment.GetPosition();
  const auto block_alignment_position = alignment.block_alignment.GetPosition();

  bool depends_on_min_max_sizes = false;
  const bool can_compute_block_size_without_layout =
      CanComputeBlockSizeWithoutLayout(node, container_writing_direction,
                                       block_alignment_position,
                                       imcb.has_auto_block_inset,
                                       /* has_inline_size */ false);

  auto MinMaxSizesFunc = [&](SizeType type) -> MinMaxSizesResult {
    DCHECK(!node.IsReplaced());

    // Mark the inline calculations as being dependent on min/max sizes.
    depends_on_min_max_sizes = true;

    // If we can't compute our block-size without layout, we can use the
    // provided space to determine our min/max sizes.
    if (!can_compute_block_size_without_layout)
      return node.ComputeMinMaxSizes(style.GetWritingMode(), type, space);

    // Compute our block-size if we haven't already.
    if (dimensions->size.block_size == kIndefiniteSize) {
      ComputeOofBlockDimensions(
          node, style, space, imcb, anchor_center_position, alignment,
          border_padding,
          /* replaced_size */ std::nullopt, container_insets,
          container_writing_direction, dimensions);
    }

    // Create a new space, setting the fixed block-size.
    ConstraintSpaceBuilder builder(style.GetWritingMode(),
                                   style.GetWritingDirection(),
                                   /* is_new_fc */ true);
    builder.SetAvailableSize(
        {space.AvailableSize().inline_size, dimensions->size.block_size});
    builder.SetIsFixedBlockSize(true);
    builder.SetPercentageResolutionSize(space.PercentageResolutionSize());
    return node.ComputeMinMaxSizes(style.GetWritingMode(), type,
                                   builder.ToConstraintSpace());
  };

  LayoutUnit inline_size;
  if (replaced_size) {
    DCHECK(node.IsReplaced());
    inline_size = replaced_size->inline_size;
  } else {
    const Length& main_inline_length = style.LogicalWidth();

    const bool is_implicit_stretch =
        !imcb.has_auto_inline_inset &&
        alignment_position == ItemPosition::kNormal;
    const bool is_explicit_stretch =
        !imcb.has_auto_inline_inset &&
        alignment_position == ItemPosition::kStretch;
    const bool is_stretch = is_implicit_stretch || is_explicit_stretch;

    // If our block constraint is strong/explicit.
    const bool is_block_explicit =
        !style.LogicalHeight().HasAuto() ||
        (!imcb.has_auto_block_inset &&
         block_alignment_position == ItemPosition::kStretch);

    // Determine how "auto" should resolve.
    bool apply_automatic_min_size = false;
    const Length& auto_length = ([&]() {
      // Tables always shrink-to-fit unless explicitly asked to stretch.
      if (node.IsTable()) {
        return is_explicit_stretch ? Length::FillAvailable()
                                   : Length::FitContent();
      }
      // We'd like to apply the aspect-ratio.
      // The aspect-ratio applies from the block-axis if we can compute our
      // block-size without invoking layout, and either:
      //  - We aren't stretching our auto inline-size.
      //  - We are stretching our auto inline-size, but the block-size has a
      //    stronger (explicit) constraint, e.g:
      //    "height:10px" or "align-self:stretch".
      if (!style.AspectRatio().IsAuto() &&
          can_compute_block_size_without_layout &&
          (!is_stretch || (is_implicit_stretch && is_block_explicit))) {
        // See if we should apply the automatic minimum size.
        if (style.OverflowInlineDirection() == EOverflow::kVisible) {
          apply_automatic_min_size = true;
        }
        return Length::FitContent();
      }
      return is_stretch ? Length::FillAvailable() : Length::FitContent();
    })();

    const LayoutUnit main_inline_size = ResolveMainInlineLength(
        space, style, border_padding, MinMaxSizesFunc, main_inline_length,
        &auto_length, imcb.InlineSize());
    const MinMaxSizes min_max_inline_sizes = ComputeMinMaxInlineSizes(
        space, node, border_padding,
        apply_automatic_min_size ? &Length::MinIntrinsic() : nullptr,
        MinMaxSizesFunc, TransferredSizesMode::kNormal, FitContentMode::kNormal,
        imcb.InlineSize());

    inline_size = min_max_inline_sizes.ClampSizeToMinAndMax(main_inline_size);
  }

  dimensions->size.inline_size = inline_size;

  // Determines if the "start" sides of margins match.
  const bool is_margin_start_dominant =
      LogicalToLogical(container_writing_direction, style.GetWritingDirection(),
                       /* inline_start */ true, /* inline_end */ false,
                       /* block_start */ true, /* block_end */ false)
          .InlineStart();

  // Determines if this is the block axis in the containing block.
  const bool is_block_direction = !IsParallelWritingMode(
      container_writing_direction.GetWritingMode(), style.GetWritingMode());

  const bool applied_auto_margins = ComputeMargins(
      space.MarginPaddingPercentageResolutionSize(), imcb.InlineSize(),
      style.MarginInlineStart(), style.MarginInlineEnd(), inline_size,
      imcb.has_auto_inline_inset, is_margin_start_dominant, is_block_direction,
      &dimensions->margins.inline_start, &dimensions->margins.inline_end);

  if (applied_auto_margins) {
    dimensions->inset.inline_start =
        imcb.inline_start + dimensions->margins.inline_start;
    dimensions->inset.inline_end =
        imcb.inline_end + dimensions->margins.inline_end;
  } else {
    ComputeInsets(
        space.AvailableSize().inline_size, container_insets.inline_start,
        container_insets.inline_end, imcb.inline_start, imcb.inline_end,
        imcb.inline_inset_bias, imcb.inline_safe_inset_bias,
        imcb.inline_default_inset_bias, dimensions->margins.inline_start,
        dimensions->margins.inline_end, inline_size,
        anchor_center_position.inline_offset, &dimensions->inset.inline_start,
        &dimensions->inset.inline_end);
  }

  return depends_on_min_max_sizes;
}

const LayoutResult* ComputeOofBlockDimensions(
    const BlockNode& node,
    const ComputedStyle& style,
    const ConstraintSpace& space,
    const InsetModifiedContainingBlock& imcb,
    const LogicalAnchorCenterPosition& anchor_center_position,
    const LogicalAlignment& alignment,
    const BoxStrut& border_padding,
    const std::optional<LogicalSize>& replaced_size,
    const BoxStrut& container_insets,
    WritingDirectionMode container_writing_direction,
    LogicalOofDimensions* dimensions) {
  DCHECK(dimensions);
  DCHECK_GE(imcb.BlockSize(), LayoutUnit());

  const auto alignment_position = alignment.block_alignment.GetPosition();

  const LayoutResult* result = nullptr;
  LayoutUnit block_size;
  if (replaced_size) {
    DCHECK(node.IsReplaced());
    block_size = replaced_size->block_size;
  } else if (CanComputeBlockSizeWithoutLayout(
                 node, container_writing_direction, alignment_position,
                 imcb.has_auto_block_inset,
                 /* has_inline_size */ dimensions->size.inline_size !=
                     kIndefiniteSize)) {
    DCHECK(!node.IsTable());

    // Nothing depends on our intrinsic-size, so we can safely use the initial
    // variant of these functions.
    const LayoutUnit main_block_size = ResolveMainBlockLength(
        space, style, border_padding, style.LogicalHeight(),
        &Length::FillAvailable(), kIndefiniteSize, imcb.BlockSize());
    const MinMaxSizes min_max_block_sizes = ComputeInitialMinMaxBlockSizes(
        space, node, border_padding, imcb.BlockSize());
    block_size = min_max_block_sizes.ClampSizeToMinAndMax(main_block_size);
  } else {
    DCHECK_NE(dimensions->size.inline_size, kIndefiniteSize);

    // Create a new space, setting the fixed inline-size.
    ConstraintSpaceBuilder builder(style.GetWritingMode(),
                                   style.GetWritingDirection(),
                                   /* is_new_fc */ true);
    builder.SetAvailableSize({dimensions->size.inline_size, imcb.BlockSize()});
    builder.SetIsFixedInlineSize(true);
    builder.SetPercentageResolutionSize(space.PercentageResolutionSize());
    if (space.IsHiddenForPaint()) {
      builder.SetIsHiddenForPaint(true);
    }

    // Tables need to know about the explicit stretch constraint to produce
    // the correct result.
    if (!imcb.has_auto_block_inset &&
        alignment_position == ItemPosition::kStretch) {
      builder.SetBlockAutoBehavior(AutoSizeBehavior::kStretchExplicit);
    }

    if (space.IsInitialColumnBalancingPass()) {
      // The |fragmentainer_offset_delta| will not make a difference in the
      // initial column balancing pass.
      SetupSpaceBuilderForFragmentation(
          space, node, /*fragmentainer_offset_delta=*/LayoutUnit(),
          space.FragmentainerBlockSize(),
          /*requires_content_before_breaking=*/false, &builder);
    }

    result = node.Layout(builder.ToConstraintSpace());
    block_size = LogicalFragment(style.GetWritingDirection(),
                                 result->GetPhysicalFragment())
                     .BlockSize();
  }

  dimensions->size.block_size = block_size;

  // Determines if the "start" sides of margins match.
  const bool is_margin_start_dominant =
      LogicalToLogical(container_writing_direction, style.GetWritingDirection(),
                       /* inline_start */ true, /* inline_end */ false,
                       /* block_start */ true, /* block_end */ false)
          .BlockStart();

  // Determines if this is the block axis in the containing block.
  const bool is_block_direction = IsParallelWritingMode(
      container_writing_direction.GetWritingMode(), style.GetWritingMode());

  const bool applied_auto_margins = ComputeMargins(
      space.MarginPaddingPercentageResolutionSize(), imcb.BlockSize(),
      style.MarginBlockStart(), style.MarginBlockEnd(), block_size,
      imcb.has_auto_block_inset, is_margin_start_dominant, is_block_direction,
      &dimensions->margins.block_start, &dimensions->margins.block_end);

  if (applied_auto_margins) {
    dimensions->inset.block_start =
        imcb.block_start + dimensions->margins.block_start;
    dimensions->inset.block_end =
        imcb.block_end + dimensions->margins.block_end;
  } else {
    ComputeInsets(space.AvailableSize().block_size,
                  container_insets.block_start, container_insets.block_end,
                  imcb.block_start, imcb.block_end, imcb.block_inset_bias,
                  imcb.block_safe_inset_bias, imcb.block_default_inset_bias,
                  dimensions->margins.block_start,
                  dimensions->margins.block_end, block_size,
                  anchor_center_position.block_offset,
                  &dimensions->inset.block_start, &dimensions->inset.block_end);
  }
  return result;
}

}  // namespace blink