File: block_node.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (1880 lines) | stat: -rw-r--r-- 79,670 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/core/layout/block_node.h"

#include <memory>

#include "third_party/blink/renderer/core/css/style_engine.h"
#include "third_party/blink/renderer/core/dom/column_pseudo_element.h"
#include "third_party/blink/renderer/core/dom/scroll_button_pseudo_element.h"
#include "third_party/blink/renderer/core/dom/scroll_marker_group_pseudo_element.h"
#include "third_party/blink/renderer/core/dom/shadow_root.h"
#include "third_party/blink/renderer/core/frame/local_frame_view.h"
#include "third_party/blink/renderer/core/frame/web_feature.h"
#include "third_party/blink/renderer/core/html/forms/html_input_element.h"
#include "third_party/blink/renderer/core/html/forms/html_select_element.h"
#include "third_party/blink/renderer/core/html/html_marquee_element.h"
#include "third_party/blink/renderer/core/input_type_names.h"
#include "third_party/blink/renderer/core/layout/block_break_token.h"
#include "third_party/blink/renderer/core/layout/block_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/box_fragment_builder.h"
#include "third_party/blink/renderer/core/layout/column_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/constraint_space.h"
#include "third_party/blink/renderer/core/layout/constraint_space_builder.h"
#include "third_party/blink/renderer/core/layout/custom/custom_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/custom/layout_custom.h"
#include "third_party/blink/renderer/core/layout/disable_layout_side_effects_scope.h"
#include "third_party/blink/renderer/core/layout/flex/flex_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/forms/fieldset_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/forms/layout_fieldset.h"
#include "third_party/blink/renderer/core/layout/fragment_repeater.h"
#include "third_party/blink/renderer/core/layout/fragmentation_utils.h"
#include "third_party/blink/renderer/core/layout/frame_set_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/geometry/fragment_geometry.h"
#include "third_party/blink/renderer/core/layout/geometry/writing_mode_converter.h"
#include "third_party/blink/renderer/core/layout/grid/grid_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/inline/inline_cursor.h"
#include "third_party/blink/renderer/core/layout/inline/inline_node.h"
#include "third_party/blink/renderer/core/layout/layout_block_flow.h"
#include "third_party/blink/renderer/core/layout/layout_box_utils.h"
#include "third_party/blink/renderer/core/layout/layout_inline.h"
#include "third_party/blink/renderer/core/layout/layout_input_node.h"
#include "third_party/blink/renderer/core/layout/layout_multi_column_flow_thread.h"
#include "third_party/blink/renderer/core/layout/layout_multi_column_set.h"
#include "third_party/blink/renderer/core/layout/layout_multi_column_spanner_placeholder.h"
#include "third_party/blink/renderer/core/layout/layout_result.h"
#include "third_party/blink/renderer/core/layout/layout_utils.h"
#include "third_party/blink/renderer/core/layout/layout_video.h"
#include "third_party/blink/renderer/core/layout/layout_view.h"
#include "third_party/blink/renderer/core/layout/legacy_layout_tree_walking.h"
#include "third_party/blink/renderer/core/layout/length_utils.h"
#include "third_party/blink/renderer/core/layout/list/layout_list_item.h"
#include "third_party/blink/renderer/core/layout/logical_box_fragment.h"
#include "third_party/blink/renderer/core/layout/masonry/masonry_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_fraction_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_layout_utils.h"
#include "third_party/blink/renderer/core/layout/mathml/math_operator_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_padded_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_radical_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_row_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_scripts_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_space_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_token_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/mathml/math_under_over_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/min_max_sizes.h"
#include "third_party/blink/renderer/core/layout/natural_sizing_info.h"
#include "third_party/blink/renderer/core/layout/paginated_root_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/replaced_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/shapes/shape_outside_info.h"
#include "third_party/blink/renderer/core/layout/simplified_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/space_utils.h"
#include "third_party/blink/renderer/core/layout/svg/layout_svg_root.h"
#include "third_party/blink/renderer/core/layout/table/layout_table_cell.h"
#include "third_party/blink/renderer/core/layout/table/table_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/table/table_row_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/table/table_section_layout_algorithm.h"
#include "third_party/blink/renderer/core/layout/text_autosizer.h"
#include "third_party/blink/renderer/core/mathml/mathml_element.h"
#include "third_party/blink/renderer/core/mathml/mathml_fraction_element.h"
#include "third_party/blink/renderer/core/mathml/mathml_padded_element.h"
#include "third_party/blink/renderer/core/mathml/mathml_radical_element.h"
#include "third_party/blink/renderer/core/mathml/mathml_scripts_element.h"
#include "third_party/blink/renderer/core/mathml/mathml_space_element.h"
#include "third_party/blink/renderer/core/mathml/mathml_token_element.h"
#include "third_party/blink/renderer/core/mathml/mathml_under_over_element.h"
#include "third_party/blink/renderer/core/paint/paint_layer.h"
#include "third_party/blink/renderer/core/paint/paint_layer_scrollable_area.h"
#include "third_party/blink/renderer/core/paint/transform_utils.h"
#include "third_party/blink/renderer/platform/runtime_enabled_features.h"
#include "third_party/blink/renderer/platform/text/writing_mode.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#include "third_party/blink/renderer/platform/wtf/text/strcat.h"
#include "ui/gfx/geometry/size_f.h"

namespace blink {

using mojom::blink::FormControlType;

namespace {

inline bool HasInlineChildren(LayoutBlockFlow* block_flow) {
  auto* child = GetLayoutObjectForFirstChildNode(block_flow);
  return child && AreNGBlockFlowChildrenInline(block_flow);
}

inline LayoutMultiColumnFlowThread* GetFlowThread(
    const LayoutBlockFlow* block_flow) {
  if (!block_flow)
    return nullptr;
  return block_flow->MultiColumnFlowThread();
}

// The entire purpose of this function is to avoid allocating space on the stack
// for all layout algorithms for each node we lay out. Therefore it must not be
// inline.
template <typename Algorithm, typename Callback>
NOINLINE void CreateAlgorithmAndRun(const LayoutAlgorithmParams& params,
                                    const Callback& callback) {
  Algorithm algorithm(params);
  callback(&algorithm);
}

template <typename Callback>
NOINLINE void DetermineMathMLAlgorithmAndRun(
    const LayoutBox& box,
    const LayoutAlgorithmParams& params,
    const Callback& callback) {
  DCHECK(box.IsMathML());
  // Currently math layout algorithms can only apply to MathML elements.
  auto* element = box.GetNode();
  if (element) {
    if (IsA<MathMLSpaceElement>(element)) {
      CreateAlgorithmAndRun<MathSpaceLayoutAlgorithm>(params, callback);
      return;
    } else if (IsA<MathMLFractionElement>(element) &&
               IsValidMathMLFraction(params.node)) {
      CreateAlgorithmAndRun<MathFractionLayoutAlgorithm>(params, callback);
      return;
    } else if (IsA<MathMLRadicalElement>(element) &&
               IsValidMathMLRadical(params.node)) {
      CreateAlgorithmAndRun<MathRadicalLayoutAlgorithm>(params, callback);
      return;
    } else if (IsA<MathMLPaddedElement>(element)) {
      CreateAlgorithmAndRun<MathPaddedLayoutAlgorithm>(params, callback);
      return;
    } else if (IsA<MathMLTokenElement>(element)) {
      if (IsOperatorWithSpecialShaping(params.node))
        CreateAlgorithmAndRun<MathOperatorLayoutAlgorithm>(params, callback);
      else if (IsTextOnlyToken(params.node))
        CreateAlgorithmAndRun<MathTokenLayoutAlgorithm>(params, callback);
      else
        CreateAlgorithmAndRun<BlockLayoutAlgorithm>(params, callback);
      return;
    } else if (IsA<MathMLScriptsElement>(element) &&
               IsValidMathMLScript(params.node)) {
      if (IsA<MathMLUnderOverElement>(element) &&
          !IsUnderOverLaidOutAsSubSup(params.node)) {
        CreateAlgorithmAndRun<MathUnderOverLayoutAlgorithm>(params, callback);
      } else {
        CreateAlgorithmAndRun<MathScriptsLayoutAlgorithm>(params, callback);
      }
      return;
    }
  }
  CreateAlgorithmAndRun<MathRowLayoutAlgorithm>(params, callback);
}

template <typename Callback>
NOINLINE void DetermineAlgorithmAndRun(const LayoutAlgorithmParams& params,
                                       const Callback& callback) {
  const LayoutBox& box = *params.node.GetLayoutBox();
  if (box.IsFlexibleBox()) {
    CreateAlgorithmAndRun<FlexLayoutAlgorithm>(params, callback);
  } else if (box.IsTable()) {
    CreateAlgorithmAndRun<TableLayoutAlgorithm>(params, callback);
  } else if (box.IsTableRow()) {
    CreateAlgorithmAndRun<TableRowLayoutAlgorithm>(params, callback);
  } else if (box.IsTableSection()) {
    CreateAlgorithmAndRun<TableSectionLayoutAlgorithm>(params, callback);
  } else if (box.IsLayoutCustom()) {
    CreateAlgorithmAndRun<CustomLayoutAlgorithm>(params, callback);
  } else if (box.IsMathML()) {
    DetermineMathMLAlgorithmAndRun(box, params, callback);
  } else if (box.IsLayoutGrid()) {
    CreateAlgorithmAndRun<GridLayoutAlgorithm>(params, callback);
  } else if (box.IsLayoutMasonry()) {
    CreateAlgorithmAndRun<MasonryLayoutAlgorithm>(params, callback);
  } else if (box.IsLayoutReplaced()) {
    CreateAlgorithmAndRun<ReplacedLayoutAlgorithm>(params, callback);
  } else if (box.IsFieldset()) {
    CreateAlgorithmAndRun<FieldsetLayoutAlgorithm>(params, callback);
  } else if (box.IsFrameSet()) {
    CreateAlgorithmAndRun<FrameSetLayoutAlgorithm>(params, callback);
  } else if (box.IsMulticolContainer()) {
    CreateAlgorithmAndRun<ColumnLayoutAlgorithm>(params, callback);
  } else if (!box.Parent() && params.node.IsPaginatedRoot()) [[unlikely]] {
    CreateAlgorithmAndRun<PaginatedRootLayoutAlgorithm>(params, callback);
  } else {
    CreateAlgorithmAndRun<BlockLayoutAlgorithm>(params, callback);
  }
}

inline const LayoutResult* LayoutWithAlgorithm(
    const LayoutAlgorithmParams& params) {
  const LayoutResult* result = nullptr;
  DetermineAlgorithmAndRun(params,
                           [&result]<typename Algorithm>(Algorithm* algorithm) {
                             result = algorithm->Layout();
                           });
  return result;
}

inline MinMaxSizesResult ComputeMinMaxSizesWithAlgorithm(
    const LayoutAlgorithmParams& params,
    const MinMaxSizesFloatInput& float_input) {
  MinMaxSizesResult result;
  DetermineAlgorithmAndRun(params, [&result, &float_input]<typename Algorithm>(
                                       Algorithm* algorithm) {
    result = algorithm->ComputeMinMaxSizes(float_input);
  });
  return result;
}

bool CanUseCachedIntrinsicInlineSizes(const ConstraintSpace& constraint_space,
                                      const MinMaxSizesFloatInput& float_input,
                                      const BlockNode& node) {
  // Obviously can't use the cache if our intrinsic logical widths are dirty.
  if (node.GetLayoutBox()->IntrinsicLogicalWidthsDirty())
    return false;

  // We don't store the float inline sizes for comparison, always skip the
  // cache in this case.
  if (float_input.float_left_inline_size || float_input.float_right_inline_size)
    return false;

  // Check if we have any percentage padding.
  const auto& style = node.Style();
  if (style.MayHavePadding() &&
      (style.PaddingTop().HasPercent() || style.PaddingRight().HasPercent() ||
       style.PaddingBottom().HasPercent() ||
       style.PaddingLeft().HasPercent())) {
    return false;
  }

  if (node.IsTableCell() && To<LayoutTableCell>(node.GetLayoutBox())
                                    ->IntrinsicLogicalWidthsBorderSizes() !=
                                constraint_space.TableCellBorders()) {
    return false;
  }

  // We may have something like:
  // "grid-template-columns: repeat(auto-fill, 50px); min-width: 50%;"
  // In this specific case our min/max sizes are now dependent on what
  // "min-width" resolves to - which is unique to grid.
  if (node.IsGrid()) {
    if (style.LogicalMinWidth().HasPercentOrStretch() ||
        style.LogicalMaxWidth().HasPercentOrStretch()) {
      return false;
    }
    // Also consider transferred min/max sizes.
    if (!style.AspectRatio().IsAuto() &&
        (style.LogicalMinHeight().HasPercentOrStretch() ||
         style.LogicalMaxHeight().HasPercentOrStretch())) {
      return false;
    }
  }

  return true;
}

std::optional<LayoutUnit> ContentMinimumInlineSize(
    const BlockNode& block_node,
    const BoxStrut& border_padding) {
  // Table layout is never allowed to go below the min-intrinsic size.
  if (block_node.IsTable())
    return std::nullopt;

  const auto* node = block_node.GetDOMNode();
  const auto* marquee_element = DynamicTo<HTMLMarqueeElement>(node);
  if (marquee_element && marquee_element->IsHorizontal())
    return border_padding.InlineSum();

  const auto& style = block_node.Style();
  const auto& main_inline_size = style.LogicalWidth();

  if (!main_inline_size.HasPercent()) {
    return std::nullopt;
  }

  // Manually resolve the main-length against zero. calc() expressions may
  // resolve to something greater than "zero".
  LayoutUnit inline_size =
      MinimumValueForLength(main_inline_size, LayoutUnit());
  if (style.BoxSizing() == EBoxSizing::kBorderBox)
    inline_size = std::max(border_padding.InlineSum(), inline_size);
  else
    inline_size += border_padding.InlineSum();

  const bool apply_form_sizing = style.ApplyControlFixedSize(node);
  if (block_node.IsTextControl() && apply_form_sizing) {
    return inline_size;
  }
  if (IsA<HTMLSelectElement>(node) && apply_form_sizing) {
    return inline_size;
  }
  if (const auto* input_element = DynamicTo<HTMLInputElement>(node)) {
    FormControlType type = input_element->FormControlType();
    if (type == FormControlType::kInputFile && apply_form_sizing) {
      return inline_size;
    }
    if (type == FormControlType::kInputRange) {
      return inline_size;
    }
  }
  return std::nullopt;
}

// Look for scroll markers inside `parent`, and attach them.
void AttachScrollMarkers(LayoutObject& parent,
                         Node::AttachContext& context,
                         bool has_absolute_containment = false,
                         bool has_fixed_containment = false,
                         bool has_ancestor_marker = false) {
  auto display_lock_blocks_markers = [](const LayoutObject& object) -> bool {
    if (DisplayLockContext* display_lock_context =
            object.GetDisplayLockContext()) {
      // We don't attach scroll markers for an object that is locked and
      // non-auto. Also, don't prevent scroll markers if we're not styling auto
      // locks either, which is a separate decision.
      return display_lock_context->IsLocked() &&
             (!display_lock_context->IsAuto() ||
              !display_lock_context->ShouldStyleChildren());
    }
    return false;
  };

  // Avoid recursing into non-auto content-visibility locked subtrees.
  if (display_lock_blocks_markers(parent)) {
    return;
  }

  if (parent.CanContainAbsolutePositionObjects()) {
    has_absolute_containment = true;
    if (parent.CanContainFixedPositionObjects()) {
      has_fixed_containment = true;
    }
  }

  for (LayoutObject* child = parent.SlowFirstChild(); child;
       child = child->NextSibling()) {
    if ((child->IsFixedPositioned() && !has_fixed_containment) ||
        (child->IsAbsolutePositioned() && !has_absolute_containment)) {
      continue;
    }

    if (display_lock_blocks_markers(*child)) {
      continue;
    }

    bool did_attach_marker = false;
    if (auto* element = DynamicTo<Element>(child->GetNode())) {
      if (PseudoElement* marker =
              element->GetPseudoElement(kPseudoIdScrollMarker)) {
        marker->AttachLayoutTree(context);
        did_attach_marker = true;
        if (has_ancestor_marker) {
          element->GetDocument().CountUse(WebFeature::kNestedScrollMarkers);
        }
      }
    }
    // Descend into the subtree of the child unless it is a scroll marker group,
    // or establishes one.
    //
    // TODO(layout-dev): Need to enter nested scrollable containers if an outer
    // scrollable container has "stronger" containment than the inner one. E.g.
    // if the outer one is position:relative, and the inner one has a scroll
    // marker in an absolutely positioned subtree, the marker belongs in the
    // outermost scroll marker group.
    if (!child->IsScrollMarkerGroup()) {
      auto* child_box = DynamicTo<LayoutBox>(child);
      if (!child_box || !child_box->GetScrollMarkerGroup()) {
        AttachScrollMarkers(*child, context, has_absolute_containment,
                            has_fixed_containment,
                            has_ancestor_marker || did_attach_marker);
      }
    }
  }

  const LayoutBox* parent_box = DynamicTo<LayoutBox>(&parent);
  // If this is a multicol container, look for ::column::scroll-marker pseudo
  // elements, and attach them.
  if (parent_box && parent_box->IsFragmentationContextRoot()) {
    if (const ColumnPseudoElementsVector* column_pseudos =
            To<Element>(parent.EnclosingNode())->GetColumnPseudoElements()) {
      for (const auto& column_pseudo : *column_pseudos) {
        if (PseudoElement* scroll_marker =
                column_pseudo->GetPseudoElement(kPseudoIdScrollMarker)) {
          scroll_marker->AttachLayoutTree(context);
        }
      }
    }
  }
}

}  // namespace

const LayoutResult* BlockNode::Layout(
    const ConstraintSpace& constraint_space,
    const BlockBreakToken* break_token,
    const EarlyBreak* early_break,
    const ColumnSpannerPath* column_spanner_path) const {
  // The exclusion space internally is a pointer to a shared vector, and
  // equality of exclusion spaces is performed using pointer comparison on this
  // internal shared vector.
  // In order for the caching logic to work correctly we need to set the
  // pointer to the value previous shared vector.
  if (const LayoutResult* previous_result =
          box_->GetCachedLayoutResult(break_token)) {
    constraint_space.GetExclusionSpace().PreInitialize(
        previous_result->GetConstraintSpaceForCaching().GetExclusionSpace());
  }

  LayoutCacheStatus cache_status;

  // We may be able to hit the cache without calculating fragment geometry
  // (calculating that isn't necessarily very cheap). So, start off without it.
  std::optional<FragmentGeometry> fragment_geometry;

  // CachedLayoutResult() might clear flags, so remember the need for layout
  // before attempting to hit the cache.
  bool needed_layout = box_->NeedsLayout();
  if (needed_layout)
    box_->GetFrameView()->IncBlockLayoutCount();

  const LayoutResult* layout_result = box_->CachedLayoutResult(
      constraint_space, break_token, early_break, column_spanner_path,
      &fragment_geometry, &cache_status);

  if ((cache_status == LayoutCacheStatus::kHit ||
       cache_status == LayoutCacheStatus::kNeedsSimplifiedLayout) &&
      needed_layout &&
      constraint_space.CacheSlot() == LayoutResultCacheSlot::kLayout &&
      box_->HasBrokenSpine() && !ChildLayoutBlockedByDisplayLock()) {
    // If we're not guaranteed to discard the old fragment (which we're only
    // guaranteed to do if we have decided to perform full layout), we need to
    // clone the result to pick the most recent fragments from the LayoutBox
    // children, because we stopped rebuilding the fragment spine right here
    // after performing subtree layout.
    layout_result = LayoutResult::CloneWithPostLayoutFragments(*layout_result);
    const auto& new_fragment =
        To<PhysicalBoxFragment>(layout_result->GetPhysicalFragment());
    // If we have fragment items, and we're not done (more fragments to follow),
    // be sure to miss the cache for any subsequent fragments, lest finalization
    // be missed (which could cause trouble for InlineCursor when walking the
    // items).
    bool clear_trailing_results =
        new_fragment.GetBreakToken() && new_fragment.HasItems();
    StoreResultInLayoutBox(layout_result, break_token, clear_trailing_results);
    box_->ClearHasBrokenSpine();
  }

  if (cache_status == LayoutCacheStatus::kHit) {
    DCHECK(layout_result);

    // We may have to update the margins on box_; we reuse the layout result
    // even if a percentage margin may have changed.
    UpdateMarginPaddingInfoIfNeeded(constraint_space,
                                    layout_result->GetPhysicalFragment());

    UpdateShapeOutsideInfoIfNeeded(*layout_result, constraint_space);

    // Return the cached result unless we're marked for layout. We may have
    // added or removed scrollbars during overflow recalculation, which may have
    // marked us for layout. In that case the cached result is unusable, and we
    // need to re-lay out now.
    if (!box_->NeedsLayout())
      return layout_result;
  }

  if (!fragment_geometry) {
    fragment_geometry =
        CalculateInitialFragmentGeometry(constraint_space, *this, break_token);
  }

  // Only consider the size of the first container fragment.
  if (!IsBreakInside(break_token) && CanMatchSizeContainerQueries()) {
    if (auto* element = DynamicTo<Element>(GetDOMNode())) {
      // Consider scrollbars if they are stable (reset any auto scrollbars).
      BoxStrut scrollbar = fragment_geometry->scrollbar;
      {
        const auto& style = Style();
        if (style.IsScrollbarGutterAuto() &&
            style.OverflowBlockDirection() == EOverflow::kAuto) {
          scrollbar.inline_start = LayoutUnit();
          scrollbar.inline_end = LayoutUnit();
        }
        if (style.OverflowInlineDirection() == EOverflow::kAuto) {
          scrollbar.block_start = LayoutUnit();
          scrollbar.block_end = LayoutUnit();
        }
      }

      const LogicalSize available_size = CalculateChildAvailableSize(
          constraint_space, *this, fragment_geometry->border_box_size,
          fragment_geometry->border + scrollbar + fragment_geometry->padding);
      GetDocument().GetStyleEngine().UpdateStyleAndLayoutTreeForSizeContainer(
          *element, available_size, ContainedAxes());

      // Try the cache again. Container query matching may have affected
      // elements in the subtree, so that we need full layout instead of
      // simplified layout, for instance.
      layout_result = box_->CachedLayoutResult(
          constraint_space, break_token, early_break, column_spanner_path,
          &fragment_geometry, &cache_status);
    }
  }

  TextAutosizer::NGLayoutScope text_autosizer_layout_scope(
      box_, fragment_geometry->border_box_size.inline_size);

  PrepareForLayout();

  LayoutAlgorithmParams params(*this, *fragment_geometry, constraint_space,
                               break_token, early_break);
  params.column_spanner_path = column_spanner_path;

  auto* block_flow = DynamicTo<LayoutBlockFlow>(box_.Get());

  // Try to perform "simplified" layout, unless it's a fragmentation context
  // root (the simplified layout algorithm doesn't support fragmentainers).
  if (cache_status == LayoutCacheStatus::kNeedsSimplifiedLayout &&
      (!block_flow || !block_flow->IsFragmentationContextRoot())) {
    DCHECK(layout_result);
#if DCHECK_IS_ON()
    const LayoutResult* previous_result = layout_result;
#endif

    // A child may have changed size while performing "simplified" layout (it
    // may have gained or removed scrollbars, changing its size). In these
    // cases "simplified" layout will return a null layout-result, indicating
    // we need to perform a full layout.
    layout_result = RunSimplifiedLayout(params, *layout_result);

#if DCHECK_IS_ON()
    if (layout_result) {
      layout_result->CheckSameForSimplifiedLayout(
          *previous_result, /* check_same_block_size */ !block_flow);
    }
#endif
  } else if (cache_status == LayoutCacheStatus::kCanReuseLines) {
    params.previous_result = layout_result;
    layout_result = nullptr;
  } else {
    layout_result = nullptr;
  }

  // All these variables may change after layout due to scrollbars changing.
  BoxStrut scrollbars_before = ComputeScrollbars(constraint_space, *this);
  const LayoutUnit inline_size_before =
      fragment_geometry->border_box_size.inline_size;
  const bool intrinsic_logical_widths_dirty_before =
      box_->IntrinsicLogicalWidthsDirty();

  if (!layout_result)
    layout_result = LayoutWithAlgorithm(params);

  // PaintLayerScrollableArea::UpdateAfterLayout() may remove the vertical
  // scrollbar. In vertical-rl or RTL, the vertical scrollbar is on the
  // block-start edge or the inline-start edge, it produces a negative
  // MaximumScrollOffset(), and can cause a wrong clamping. So we delay
  // clamping the offset.
  PaintLayerScrollableArea::DelayScrollOffsetClampScope delay_clamp_scope;

  std::optional<PhysicalSize> optional_old_box_size;
  if (layout_result->Status() == LayoutResult::kSuccess &&
      !layout_result->GetPhysicalFragment().GetBreakToken()) {
    optional_old_box_size = box_->Size();
  }

  FinishLayout(block_flow, constraint_space, break_token, layout_result,
               optional_old_box_size);

  // We may be intrinsicly sized (shrink-to-fit), if our intrinsic logical
  // widths are now dirty, re-calculate our inline-size for comparison.
  if (!intrinsic_logical_widths_dirty_before &&
      box_->IntrinsicLogicalWidthsDirty()) {
    fragment_geometry =
        CalculateInitialFragmentGeometry(constraint_space, *this, break_token);
  }

  // We may need to relayout if:
  // - Our scrollbars have changed causing our size to change (shrink-to-fit)
  //   or the available space to our children changing.
  // - A child changed scrollbars causing our size to change (shrink-to-fit).
  //
  // Skip this part if side-effects aren't allowed, though. Also skip it if we
  // are resuming layout after a fragmentainer break. Changing the intrinsic
  // inline-size halfway through layout of a node doesn't make sense.
  BoxStrut scrollbars_after = ComputeScrollbars(constraint_space, *this);
  if ((scrollbars_before != scrollbars_after ||
       inline_size_before != fragment_geometry->border_box_size.inline_size) &&
      !DisableLayoutSideEffectsScope::IsDisabled() &&
      !IsBreakInside(break_token)) {
    bool freeze_horizontal = false, freeze_vertical = false;
    // If we're in a measure pass, freeze both scrollbars right away, to avoid
    // quadratic time complexity for deeply nested flexboxes.
    if (constraint_space.CacheSlot() == LayoutResultCacheSlot::kMeasure) {
      freeze_horizontal = freeze_vertical = true;
    }
    do {
      // Freeze any scrollbars that appeared, and relayout. Repeat until both
      // have appeared, or until the scrollbar situation doesn't change,
      // whichever comes first.
      AddScrollbarFreeze(scrollbars_before, scrollbars_after,
                         constraint_space.GetWritingDirection(),
                         &freeze_horizontal, &freeze_vertical);
      scrollbars_before = scrollbars_after;
      PaintLayerScrollableArea::FreezeScrollbarsRootScope freezer(
          *box_, freeze_horizontal, freeze_vertical);

      // We need to clear any previous results when scrollbars change. For
      // example - we may have stored a "measure" layout result which will be
      // incorrect if we try and reuse it.
      PhysicalSize old_box_size = box_->Size();
      params.previous_result = nullptr;
      box_->SetShouldSkipLayoutCache(true);

#if DCHECK_IS_ON()
      // Ensure turning on/off scrollbars only once at most, when we call
      // |LayoutWithAlgorithm| recursively.
      DEFINE_STATIC_LOCAL(
          Persistent<GCedHeapHashSet<WeakMember<LayoutBox>>>, scrollbar_changed,
          (MakeGarbageCollected<GCedHeapHashSet<WeakMember<LayoutBox>>>()));
      DCHECK(scrollbar_changed->insert(box_.Get()).is_new_entry);
#endif

      // Scrollbar changes are hard to detect. Make sure everyone gets the
      // message.
      box_->SetNeedsLayout(layout_invalidation_reason::kScrollbarChanged,
                           kMarkOnlyThis);

      fragment_geometry = CalculateInitialFragmentGeometry(constraint_space,
                                                           *this, break_token);
      layout_result = LayoutWithAlgorithm(params);
      FinishLayout(block_flow, constraint_space, break_token, layout_result,
                   old_box_size);

#if DCHECK_IS_ON()
      scrollbar_changed->erase(box_);
#endif

      scrollbars_after = ComputeScrollbars(constraint_space, *this);
      DCHECK(!freeze_horizontal || !freeze_vertical ||
             scrollbars_after == scrollbars_before);
    } while (scrollbars_after != scrollbars_before);
  }

  // We always need to update the ShapeOutsideInfo even if the layout is
  // intermediate (e.g. called during a min/max pass).
  //
  // If a shape-outside float is present in an orthogonal flow, when
  // calculating the min/max-size (by performing an intermediate layout), we
  // might calculate this incorrectly, as the layout won't take into account the
  // shape-outside area.
  //
  // TODO(ikilpatrick): This should be fixed by moving the shape-outside data
  // to the LayoutResult, removing this "side" data-structure.
  UpdateShapeOutsideInfoIfNeeded(*layout_result, constraint_space);

  return layout_result;
}

const LayoutResult* BlockNode::SimplifiedLayout(
    const PhysicalFragment& previous_fragment) const {
  const LayoutResult* previous_result = box_->GetSingleCachedLayoutResult();
  DCHECK(previous_result);

  // We might be trying to perform simplified layout on a fragment in the
  // "measure" cache slot, abort if this is the case.
  if (&previous_result->GetPhysicalFragment() != &previous_fragment) {
    return nullptr;
  }

  if (!box_->NeedsLayout())
    return previous_result;

  DCHECK(box_->NeedsSimplifiedLayoutOnly() ||
         box_->ChildLayoutBlockedByDisplayLock());

  // Perform layout on ourselves using the previous constraint space.
  const ConstraintSpace& space =
      previous_result->GetConstraintSpaceForCaching();
  const LayoutResult* result = Layout(space, /* break_token */ nullptr);

  if (result->Status() != LayoutResult::kSuccess) {
    // TODO(crbug.com/1297864): The optimistic BFC block-offsets aren't being
    // set correctly for block-in-inline causing these layouts to fail.
    return nullptr;
  }

  const auto& old_fragment =
      To<PhysicalBoxFragment>(previous_result->GetPhysicalFragment());
  const auto& new_fragment =
      To<PhysicalBoxFragment>(result->GetPhysicalFragment());

  // Simplified layout has the ability to add/remove scrollbars, this can cause
  // a couple (rare) edge-cases which will make the fragment different enough
  // that the parent should perform a full layout.
  //  - The size has changed.
  //  - The alignment baseline has shifted.
  // We return a nullptr in these cases indicating to our parent that it needs
  // to perform a full layout.
  if (old_fragment.Size() != new_fragment.Size())
    return nullptr;
  if (old_fragment.FirstBaseline() != new_fragment.FirstBaseline())
    return nullptr;
  if (old_fragment.LastBaseline() != new_fragment.LastBaseline())
    return nullptr;

#if DCHECK_IS_ON()
  result->CheckSameForSimplifiedLayout(*previous_result);
#endif

  return result;
}

const LayoutResult* BlockNode::LayoutRepeatableRoot(
    const ConstraintSpace& constraint_space,
    const BlockBreakToken* break_token) const {
  // We read and write the physical fragments vector in LayoutBox here, which
  // isn't allowed if side-effects are disabled. Call-sites must make sure that
  // we don't attempt to repeat content if side-effects are disabled.
  DCHECK(!DisableLayoutSideEffectsScope::IsDisabled());

  // When laying out repeatable content, we cannot at the same time allow it to
  // break inside.
  DCHECK(!constraint_space.HasBlockFragmentation());

  // We can't both resume and repeat!
  DCHECK(!IsBreakInside(break_token));

  bool is_first = !break_token || !break_token->IsRepeated();
  const LayoutResult* result;
  if (is_first) {
    // We're generating the first fragment for repeated content. Perform regular
    // layout.
    result = Layout(constraint_space, break_token);
    DCHECK(!result->GetPhysicalFragment().GetBreakToken());
  } else {
    // We're repeating. Create a shallow clone of the first result. Once we're
    // at the last fragment, we'll actually create a deep clone.
    result = LayoutResult::Clone(*box_->GetLayoutResult(0));
  }

  wtf_size_t index = FragmentIndex(break_token);
  const auto& fragment = To<PhysicalBoxFragment>(result->GetPhysicalFragment());
  // We need to create a special "repeat" break token, which will be the
  // incoming break token when generating the next fragment. This is needed in
  // order to get the sequence numbers right, which is important when adding the
  // result to the LayoutBox, and it's also needed by pre-paint / paint.
  const BlockBreakToken* outgoing_break_token =
      BlockBreakToken::CreateRepeated(*this, index);
  auto mutator = fragment.GetMutableForCloning();
  mutator.SetBreakToken(outgoing_break_token);
  if (!is_first) {
    mutator.ClearIsFirstForNode();

    // Any OOFs whose containing block is an ancestor of the repeated section is
    // not to be repeated.
    mutator.ClearPropagatedOOFs();

    box_->SetLayoutResult(result, index);
  }

  if (!constraint_space.ShouldRepeat()) {
    FinishRepeatableRoot();
  }

  return result;
}

void BlockNode::FinishRepeatableRoot() const {
  DCHECK(!DisableLayoutSideEffectsScope::IsDisabled());

  // This is the last fragment. It won't be repeated again. We have already
  // created fragments for the repeated nodes, but the cloning was shallow.
  // We're now ready to deep-clone the entire subtree for each repeated
  // fragment, and update the layout result vector in the LayoutBox, including
  // setting correct break tokens with sequence numbers.

  // First remove the outgoing break token from the last fragment, that was set
  // in LayoutRepeatableRoot().
  const PhysicalBoxFragment& last_fragment = box_->PhysicalFragments().back();
  auto mutator = last_fragment.GetMutableForCloning();
  mutator.SetBreakToken(nullptr);

  box_->FinalizeLayoutResults();

  box_->ClearNeedsLayout();

  FragmentRepeater::DeepCloneRepeatableRoot(*box_);
}

void BlockNode::PrepareForLayout() const {
  auto* block = DynamicTo<LayoutBlock>(box_.Get());
  if (block && block->IsScrollContainer()) {
    DCHECK(block->GetScrollableArea());
    if (block->GetScrollableArea()->ShouldPerformScrollAnchoring())
      block->GetScrollableArea()->GetScrollAnchor()->NotifyBeforeLayout();
  }

  // Scroll markers are found and attached when the scrollable container has
  // finished layout. However, it's still possible for a scroll marker group to
  // be re-attached without re-laying out the scrollable container (e.g. if the
  // display type of the scroll marker group changes). If the scroll marker
  // group object has never had layout, we may need to populate it now. In case
  // of an after-scroll-marker-group, though, the scrollable container will
  // populate it before we get to its first layout. So also check that it's
  // childless, as an attempt to avoid populating it twice.
  if (box_->IsScrollMarkerGroup() && !box_->EverHadLayout() &&
      !box_->SlowFirstChild()) {
    LayoutBlock* scroller_box = box_->ScrollerFromScrollMarkerGroup();
    if (scroller_box) {
      PopulateScrollMarkerGroup(BlockNode(scroller_box));
    }
  }

  // TODO(layoutng) Can UpdateMarkerTextIfNeeded call be moved
  // somewhere else? List items need up-to-date markers before layout.
  if (IsListItem())
    To<LayoutListItem>(box_.Get())->UpdateMarkerTextIfNeeded();
}

void BlockNode::FinishLayout(
    LayoutBlockFlow* block_flow,
    const ConstraintSpace& constraint_space,
    const BlockBreakToken* break_token,
    const LayoutResult* layout_result,
    const std::optional<PhysicalSize>& old_box_size) const {
  // Computing MinMax after layout. Do not modify the |LayoutObject| tree, paint
  // properties, and other global states.
  if (DisableLayoutSideEffectsScope::IsDisabled()) {
    box_->AddMeasureLayoutResult(layout_result);
    return;
  }

  if (layout_result->Status() != LayoutResult::kSuccess) {
    // Layout aborted, but there may be results from a previous layout lying
    // around. They are fine to keep, but since we aborted, it means that we
    // want to attempt layout again. Be sure to miss the cache.
    box_->SetShouldSkipLayoutCache(true);
    return;
  }

  const auto& physical_fragment =
      To<PhysicalBoxFragment>(layout_result->GetPhysicalFragment());

  if (auto* svg_root = DynamicTo<LayoutSVGRoot>(GetLayoutBox())) {
    // Calculate the new content rect for SVG roots.
    PhysicalRect content_rect = physical_fragment.LocalRect();
    content_rect.Contract(physical_fragment.Borders() +
                          physical_fragment.Padding());

    if (!svg_root->NeedsLayout()) {
      svg_root->SetNeedsLayout(layout_invalidation_reason::kSizeChanged,
                               kMarkOnlyThis);
    }
    svg_root->LayoutRoot(content_rect);
  }

  // If we miss the cache for one result (fragment), we need to clear the
  // remaining ones, to make sure that we don't hit the cache for subsequent
  // fragments. If we re-lay out (which is what we just did), there's no way to
  // tell what happened in this subtree. Some fragment vector in the subtree may
  // have been tampered with, which would cause trouble if we start hitting the
  // cache again later on.
  bool clear_trailing_results =
      break_token || box_->PhysicalFragmentCount() > 1;

  StoreResultInLayoutBox(layout_result, break_token, clear_trailing_results);

  if (block_flow) {
    const FragmentItems* items = physical_fragment.Items();
    bool has_inline_children = items || HasInlineChildren(block_flow);

    // Don't consider display-locked objects as having any children.
    if (has_inline_children && box_->ChildLayoutBlockedByDisplayLock()) {
      has_inline_children = false;
      // It could be the case that our children are already clean at the time
      // the lock was acquired. This means that |box_| self dirty bits might be
      // set, and child dirty bits might not be. We clear the self bits since we
      // want to treat the |box_| as layout clean, even when locked. However,
      // here we also skip appending paint fragments for inline children. This
      // means that we potentially can end up in a situation where |box_| is
      // completely layout clean, but its inline children didn't append the
      // paint fragments to it, which causes problems. In order to solve this,
      // we set a child dirty bit on |box_| ensuring that when the lock
      // is removed, or update is forced, we will visit this box again and
      // properly create the paint fragments. See https://crbug.com/962614.
      box_->SetChildNeedsLayout(kMarkOnlyThis);
    }

    if (has_inline_children) {
      if (items && !RuntimeEnabledFeatures::LayoutBoxVisualLocationEnabled()) {
        CopyFragmentItemsToLayoutBox(physical_fragment, *items, break_token);
      }
    } else {
      // We still need to clear |InlineNodeData| in case it had inline
      // children.
      block_flow->ClearInlineNodeData();
    }
  } else {
    DCHECK(!physical_fragment.HasItems());
  }

  if (!layout_result->GetPhysicalFragment().GetBreakToken()) {
    DCHECK(old_box_size);
    if (box_->Size() != *old_box_size) {
      box_->SizeChanged();
    }
  }
  CopyFragmentDataToLayoutBox(constraint_space, *layout_result, break_token);
}

void BlockNode::StoreResultInLayoutBox(const LayoutResult* result,
                                       const BlockBreakToken* break_token,
                                       bool clear_trailing_results) const {
  const auto& fragment = To<PhysicalBoxFragment>(result->GetPhysicalFragment());
  wtf_size_t fragment_idx = 0;

  if (fragment.IsOnlyForNode()) {
    box_->SetCachedLayoutResult(std::move(result), 0);
  } else {
    // Add all layout results (and fragments) generated from a node to a list in
    // the layout object. Some extra care is required to correctly overwrite
    // intermediate layout results: The sequence number of an incoming break
    // token corresponds with the fragment index in the layout object (off by 1,
    // though). When writing back a layout result, we remove any fragments in
    // the layout box at higher indices than that of the one we're writing back.
    fragment_idx = FragmentIndex(break_token);
    box_->SetLayoutResult(std::move(result), fragment_idx);
  }

  if (clear_trailing_results)
    box_->ShrinkLayoutResults(fragment_idx + 1);
}

MinMaxSizesResult BlockNode::ComputeMinMaxSizes(
    WritingMode container_writing_mode,
    const SizeType type,
    const ConstraintSpace& constraint_space,
    const MinMaxSizesFloatInput float_input) const {
  // TODO(layoutng) Can UpdateMarkerTextIfNeeded call be moved
  // somewhere else? List items need up-to-date markers before layout.
  if (IsListItem())
    To<LayoutListItem>(box_.Get())->UpdateMarkerTextIfNeeded();

  // There is a path below for which we don't need to compute the (relatively)
  // expensive geometry.
  std::optional<FragmentGeometry> cached_fragment_geometry;
  auto IntrinsicFragmentGeometry = [&]() -> FragmentGeometry& {
    if (!cached_fragment_geometry) {
      cached_fragment_geometry =
          CalculateInitialFragmentGeometry(constraint_space, *this,
                                           /* break_token */ nullptr,
                                           /* is_intrinsic */ true);
    }
    return *cached_fragment_geometry;
  };

  const bool is_in_perform_layout = box_->GetFrameView()->IsInPerformLayout();
  // In some scenarios, GridNG and FlexNG will run layout on their items during
  // MinMaxSizes computation. Instead of running (and possible caching incorrect
  // results), when we're not performing layout, just use border + padding.
  if (!is_in_perform_layout &&
      (IsGrid() ||
       (IsFlexibleBox() && Style().ResolvedIsColumnFlexDirection()))) {
    const FragmentGeometry& fragment_geometry = IntrinsicFragmentGeometry();
    const BoxStrut border_padding =
        fragment_geometry.border + fragment_geometry.padding;
    MinMaxSizes sizes;
    sizes.min_size = border_padding.InlineSum();
    sizes.max_size = sizes.min_size;
    return MinMaxSizesResult(sizes, /* depends_on_block_constraints */ false);
  }

  bool is_orthogonal_flow_root =
      !IsParallelWritingMode(container_writing_mode, Style().GetWritingMode());

  // If we're orthogonal, run layout to compute the sizes.
  if (is_orthogonal_flow_root) {
    // If we have an aspect ratio, we may be able to avoid laying out the
    // child as an optimization, if performance testing shows this to be
    // important.

    MinMaxSizes sizes;
    CHECK(is_in_perform_layout);

    // If we're computing MinMax after layout, we need to disable side effects
    // so that |Layout| does not update the |LayoutObject| tree and other global
    // states.
    std::optional<DisableLayoutSideEffectsScope> disable_side_effects;
    if (!GetLayoutBox()->NeedsLayout())
      disable_side_effects.emplace();

    const LayoutResult* layout_result = Layout(constraint_space);
    DCHECK_EQ(layout_result->Status(), LayoutResult::kSuccess);
    sizes = LogicalFragment({container_writing_mode, TextDirection::kLtr},
                            layout_result->GetPhysicalFragment())
                .InlineSize();
    const bool depends_on_block_constraints =
        Style().LogicalWidth().HasAuto() ||
        Style().LogicalWidth().HasPercentOrStretch() ||
        Style().LogicalMinWidth().HasPercentOrStretch() ||
        Style().LogicalMaxWidth().HasPercentOrStretch();
    return MinMaxSizesResult(sizes, depends_on_block_constraints);
  }

  // Returns if we are (directly) dependent on any block constraints.
  auto DependsOnBlockConstraints = [&]() -> bool {
    return Style().LogicalHeight().HasPercentOrStretch() ||
           Style().LogicalMinHeight().HasPercentOrStretch() ||
           Style().LogicalMaxHeight().HasPercentOrStretch() ||
           (Style().LogicalHeight().HasAuto() &&
            constraint_space.IsBlockAutoBehaviorStretch());
  };

  // Directly handle replaced elements, caching doesn't have substantial gains
  // as most layouts are interested in the min/max content contribution which
  // calls `ComputeReplacedSize` directly. This is mainly used by flex.
  if (IsReplaced()) {
    MinMaxSizes sizes;
    sizes = IntrinsicFragmentGeometry().border_box_size.inline_size;
    return {sizes, DependsOnBlockConstraints()};
  }

  const bool has_aspect_ratio = !Style().AspectRatio().IsAuto();
  if (has_aspect_ratio && type == SizeType::kContent) {
    const FragmentGeometry& fragment_geometry = IntrinsicFragmentGeometry();
    const BoxStrut border_padding =
        fragment_geometry.border + fragment_geometry.padding;
    if (fragment_geometry.border_box_size.block_size != kIndefiniteSize) {
      const LayoutUnit inline_size_from_ar = InlineSizeFromAspectRatio(
          border_padding, Style().LogicalAspectRatio(),
          Style().BoxSizingForAspectRatio(),
          fragment_geometry.border_box_size.block_size);
      return MinMaxSizesResult({inline_size_from_ar, inline_size_from_ar},
                               DependsOnBlockConstraints(),
                               /* applied_aspect_ratio */ true);
    }
  }

  bool can_use_cached_intrinsic_inline_sizes =
      CanUseCachedIntrinsicInlineSizes(constraint_space, float_input, *this);

  // Ensure the cache is invalid if we know we can't use our cached sizes.
  if (!can_use_cached_intrinsic_inline_sizes) {
    box_->SetIntrinsicLogicalWidthsDirty(kMarkOnlyThis);
  }

  std::optional<MinMaxSizesResult> result;

  // Use our cached sizes if we don't have a descendant which depends on our
  // block constraints.
  if (can_use_cached_intrinsic_inline_sizes &&
      !box_->IntrinsicLogicalWidthsDependsOnBlockConstraints()) {
    result = box_->CachedIndefiniteIntrinsicLogicalWidths();
  }

  // We might still be able to use the cached values for a specific initial
  // block-size.
  if (!result && can_use_cached_intrinsic_inline_sizes &&
      !UseParentPercentageResolutionBlockSizeForChildren()) {
    result = box_->CachedIntrinsicLogicalWidths(
        IntrinsicFragmentGeometry().border_box_size.block_size);
  }

  if (!result) {
    const FragmentGeometry& fragment_geometry = IntrinsicFragmentGeometry();
    result = ComputeMinMaxSizesWithAlgorithm(
        LayoutAlgorithmParams(*this, fragment_geometry, constraint_space),
        float_input);

    const BoxStrut border_padding =
        fragment_geometry.border + fragment_geometry.padding;
    if (auto min_size = ContentMinimumInlineSize(*this, border_padding)) {
      result->sizes.min_size = *min_size;
    }

    // Update the cache with this intermediate value.
    box_->SetIntrinsicLogicalWidths(
        fragment_geometry.border_box_size.block_size, *result);
    if (IsTableCell()) {
      To<LayoutTableCell>(box_.Get())
          ->SetIntrinsicLogicalWidthsBorderSizes(
              constraint_space.TableCellBorders());
    }
  }

  if (has_aspect_ratio) {
    const FragmentGeometry& fragment_geometry = IntrinsicFragmentGeometry();
    if (fragment_geometry.border_box_size.block_size == kIndefiniteSize) {
      // If the block size will be computed from the aspect ratio, we need
      // to take the max-block-size into account.
      // https://drafts.csswg.org/css-sizing-4/#aspect-ratio
      const BoxStrut border_padding =
          fragment_geometry.border + fragment_geometry.padding;
      const MinMaxSizes min_max = ComputeMinMaxInlineSizesFromAspectRatio(
          constraint_space, *this, border_padding);
      result->sizes.min_size =
          min_max.ClampSizeToMinAndMax(result->sizes.min_size);
      result->sizes.max_size =
          min_max.ClampSizeToMinAndMax(result->sizes.max_size);
    }
  }

  // Determine if we are dependent on the block-constraints.
  // We report to our parent if we depend on the %-block-size if we used the
  // input %-block-size, or one of children said it depended on this.
  result->depends_on_block_constraints =
      (DependsOnBlockConstraints() ||
       UseParentPercentageResolutionBlockSizeForChildren()) &&
      (result->depends_on_block_constraints || has_aspect_ratio);
  return *result;
}

LayoutInputNode BlockNode::NextSibling() const {
  LayoutObject* next_sibling = box_->NextSibling();

  // We may have some LayoutInline(s) still within the tree (due to treating
  // inline-level floats and/or OOF-positioned nodes as block-level), we need
  // to skip them and clear layout.
  while (next_sibling && next_sibling->IsInline()) {
#if DCHECK_IS_ON()
    if (!next_sibling->IsText()) {
      next_sibling->ShowLayoutTreeForThis();
    }
    DCHECK(next_sibling->IsText());
#endif
    // TODO(layout-dev): Clearing needs-layout within this accessor is an
    // unexpected side-effect. There may be additional invalidations that need
    // to be performed.
    next_sibling->ClearNeedsLayout();
    next_sibling = next_sibling->NextSibling();
  }

  if (!next_sibling)
    return nullptr;

  return BlockNode(To<LayoutBox>(next_sibling));
}

LayoutInputNode BlockNode::FirstChild() const {
  // If this layout is blocked by a display-lock, then we pretend this node has
  // no children.
  if (ChildLayoutBlockedByDisplayLock()) {
    return nullptr;
  }
  auto* block = DynamicTo<LayoutBlock>(box_.Get());
  if (!block) [[unlikely]] {
    return BlockNode(box_->FirstChildBox());
  }
  auto* child = GetLayoutObjectForFirstChildNode(block);
  if (!child)
    return nullptr;
  if (!AreNGBlockFlowChildrenInline(block))
    return BlockNode(To<LayoutBox>(child));

  InlineNode inline_node(To<LayoutBlockFlow>(block));
  if (!inline_node.IsBlockLevel())
    return std::move(inline_node);

  // At this point we have a node which is empty or only has floats and
  // OOF-positioned nodes. We treat all children as block-level, even though
  // they are within a inline-level LayoutBlockFlow.

  // We may have some LayoutInline(s) still within the tree (due to treating
  // inline-level floats and/or OOF-positioned nodes as block-level), we need
  // to skip them and clear layout.
  while (child && child->IsInline()) {
    // TODO(layout-dev): Clearing needs-layout within this accessor is an
    // unexpected side-effect. There may be additional invalidations that need
    // to be performed.
    DCHECK(child->IsText());
    child->ClearNeedsLayout();
    child = child->NextSibling();
  }

  if (!child)
    return nullptr;

  DCHECK(child->IsFloatingOrOutOfFlowPositioned());
  return BlockNode(To<LayoutBox>(child));
}

BlockNode BlockNode::GetRenderedLegend() const {
  if (!IsFieldsetContainer())
    return nullptr;
  return BlockNode(
      LayoutFieldset::FindInFlowLegend(*To<LayoutBlock>(box_.Get())));
}

BlockNode BlockNode::GetFieldsetContent() const {
  if (!IsFieldsetContainer())
    return nullptr;
  return BlockNode(
      To<LayoutFieldset>(box_.Get())->FindAnonymousFieldsetContentBox());
}

LayoutUnit BlockNode::EmptyLineBlockSize(
    const BlockBreakToken* incoming_break_token) const {
  // Only return a line-height for the first fragment.
  if (IsBreakInside(incoming_break_token))
    return LayoutUnit();
  return box_->LogicalHeightForEmptyLine();
}

String BlockNode::ToString() const {
  return WTF::StrCat({"BlockNode: ", GetLayoutBox()->ToString()});
}

void BlockNode::CopyFragmentDataToLayoutBox(
    const ConstraintSpace& constraint_space,
    const LayoutResult& layout_result,
    const BlockBreakToken* previous_break_token) const {
  const auto& physical_fragment =
      To<PhysicalBoxFragment>(layout_result.GetPhysicalFragment());
  bool is_last_fragment = !physical_fragment.GetBreakToken();

  // TODO(mstensho): This should always be done by the parent algorithm, since
  // we may have auto margins, which only the parent is able to resolve. Remove
  // the following line when all layout modes do this properly.
  UpdateMarginPaddingInfoIfNeeded(constraint_space, physical_fragment);

  if (RuntimeEnabledFeatures::LayoutBoxVisualLocationEnabled()) {
    // If this node doesn't participate in block fragmentation (either because
    // there's no outer fragmentation context, or because we're in a monolithic
    // subtree), update the box offset right away. Otherwise, we need to wait
    // until layout of the outer fragmentation context is finished, in order to
    // tell where the fragments are placed relatively to each other.
    if (!InvolvedInBlockFragmentation(constraint_space, previous_break_token)) {
      UpdateChildLayoutBoxLocations(physical_fragment);
    }
    if (is_last_fragment) {
      box_->UpdateAfterLayout();
    }
    return;
  }

  auto* block_flow = DynamicTo<LayoutBlockFlow>(box_.Get());
  LayoutMultiColumnFlowThread* flow_thread = GetFlowThread(block_flow);

  // Position the children inside the box. We skip this if display-lock prevents
  // child layout.
  if (!ChildLayoutBlockedByDisplayLock()) {
    if (flow_thread) [[unlikely]] {
      // Hold off writing legacy data for the entire multicol container until
      // done with the last fragment (we may have multiple if nested within
      // another fragmentation context). This way we'll get everything in order.
      // We'd otherwise mess up in complex cases of nested column balancing. The
      // column layout algorithms may retry layout for a given fragment, which
      // would confuse the code that writes back to legacy objects, so that we
      // wouldn't always update column sets or establish fragmentainer groups
      // correctly.
      if (is_last_fragment) {
        const BlockBreakToken* incoming_break_token = nullptr;
        for (const PhysicalBoxFragment& multicol_fragment :
             box_->PhysicalFragments()) {
          PlaceChildrenInFlowThread(flow_thread, constraint_space,
                                    multicol_fragment, incoming_break_token);
          incoming_break_token = multicol_fragment.GetBreakToken();
        }
      }
    } else {
      PlaceChildrenInLayoutBox(physical_fragment, previous_break_token);
    }
  }

  if (!is_last_fragment) [[unlikely]] {
    return;
  }

  box_->UpdateAfterLayout();
}

void BlockNode::PlaceChildrenInLayoutBox(
    const PhysicalBoxFragment& physical_fragment,
    const BlockBreakToken* previous_break_token,
    bool needs_invalidation_check) const {
  DCHECK(!RuntimeEnabledFeatures::LayoutBoxVisualLocationEnabled());
  for (const auto& child_fragment : physical_fragment.Children()) {
    // Skip any line-boxes we have as children, this is handled within
    // InlineNode at the moment.
    if (!child_fragment->IsBox())
      continue;

    const auto& box_fragment = *To<PhysicalBoxFragment>(child_fragment.get());
    if (!box_fragment.IsFirstForNode())
      continue;

    // The offset for an OOF positioned node that is added as a child of a
    // fragmentainer box is handled by
    // OutOfFlowLayoutPart::AddOOFToFragmentainer().
    if (physical_fragment.IsFragmentainerBox() &&
        child_fragment->IsOutOfFlowPositioned()) [[unlikely]] {
      continue;
    }

    CopyChildFragmentPosition(box_fragment, child_fragment.offset,
                              physical_fragment, previous_break_token,
                              needs_invalidation_check);
  }
}

void BlockNode::PlaceChildrenInFlowThread(
    LayoutMultiColumnFlowThread* flow_thread,
    const ConstraintSpace& space,
    const PhysicalBoxFragment& physical_fragment,
    const BlockBreakToken* previous_container_break_token) const {
  DCHECK(!RuntimeEnabledFeatures::LayoutBoxVisualLocationEnabled());
  // Stitch the contents of the columns together in the legacy flow thread, and
  // update the position and size of column sets, spanners and spanner
  // placeholders. Create fragmentainer groups as needed. When in a nested
  // fragmentation context, we need one fragmentainer group for each outer
  // fragmentainer in which the column contents occur. All this ensures that the
  // legacy layout tree is sufficiently set up, so that DOM position/size
  // querying APIs (such as offsetTop and offsetLeft) work correctly. We still
  // rely on the legacy engine for this.
  //
  // This rather complex piece of machinery is described to some extent in the
  // design document for legacy multicol:
  // https://www.chromium.org/developers/design-documents/multi-column-layout

  WritingModeConverter converter(space.GetWritingDirection(),
                                 physical_fragment.Size());

  const BlockBreakToken* previous_column_break_token = nullptr;
  LayoutUnit flow_thread_offset;

  if (IsBreakInside(previous_container_break_token)) {
    // This multicol container is nested inside another fragmentation context,
    // and this isn't its first fragment. Locate the break token for the
    // previous inner column contents, so that we include the correct amount of
    // consumed block-size in the child offsets. If there's a break token for
    // column contents, we'll find it at the back.
    const auto& child_break_tokens =
        previous_container_break_token->ChildBreakTokens();
    if (!child_break_tokens.empty()) {
      const auto* token = To<BlockBreakToken>(child_break_tokens.back().Get());
      // We also create break tokens for spanners, so we need to check.
      if (token->InputNode() == *this) {
        previous_column_break_token = token;
      }
    }
  }

  for (const auto& child : physical_fragment.Children()) {
    const auto& child_fragment = To<PhysicalBoxFragment>(*child);
    const auto* child_box = To<LayoutBox>(child_fragment.GetLayoutObject());
    if (child_box && child_box != box_) {
      CopyChildFragmentPosition(child_fragment, child.offset,
                                physical_fragment);
      continue;
    }

    DCHECK(!child_box);

    // Each anonymous child of a multicol container constitutes one column.
    // Position each child fragment in the first column that they occur,
    // relatively to the block-start of the flow thread.
    //
    // We may fail to detect visual movement of flow thread children if the
    // child re-uses a cached result, since the LayoutBox's frame_rect_ is in
    // the flow thread coordinate space. If the column block-size or inline-size
    // has changed, we might miss paint invalidation, unless we request it to be
    // checked explicitly. We only need to do this for direct flow thread
    // children, since movement detection works fine for descendants. If it's
    // not detected during layout (due to cache hits), it will be detected
    // during pre-paint.
    //
    // TODO(mstensho): Get rid of this in the future if we become able to
    // compare visual offsets rather than flow thread offsets.
    PlaceChildrenInLayoutBox(child_fragment, previous_column_break_token,
                             /* needs_invalidation_check */ true);

    previous_column_break_token = child_fragment.GetBreakToken();
  }

  if (!physical_fragment.GetBreakToken()) {
    flow_thread->FinishLayoutFromNG(flow_thread_offset);
  }
}

// Copies data back to the legacy layout tree for a given child fragment.
void BlockNode::CopyChildFragmentPosition(
    const PhysicalBoxFragment& child_fragment,
    PhysicalOffset offset,
    const PhysicalBoxFragment& container_fragment,
    const BlockBreakToken* previous_container_break_token,
    bool needs_invalidation_check) const {
  DCHECK(!RuntimeEnabledFeatures::LayoutBoxVisualLocationEnabled());
  auto* layout_box = To<LayoutBox>(child_fragment.GetMutableLayoutObject());
  if (!layout_box)
    return;

  if (child_fragment.GetBoxType() == PhysicalFragment::kPageContainer ||
      child_fragment.GetBoxType() == PhysicalFragment::kPageBorderBox) {
    // These fragment types don't need to write anything back to their
    // LayoutBox. Furthermore, they have no parent, so the check below would
    // fail.
    return;
  }

  DCHECK(layout_box->Parent()) << "Should be called on children only.";

  DeprecatedLayoutPoint point =
      ComputeBoxLocation(child_fragment, offset, container_fragment,
                         previous_container_break_token);
  layout_box->SetLocation(point);

  if (needs_invalidation_check)
    layout_box->SetShouldCheckForPaintInvalidation();
}

void BlockNode::MakeRoomForExtraColumns(LayoutUnit block_size) const {
  if (RuntimeEnabledFeatures::FlowThreadLessEnabled()) {
    return;
  }
  auto* block_flow = DynamicTo<LayoutBlockFlow>(GetLayoutBox());
  DCHECK(block_flow && block_flow->MultiColumnFlowThread());
  MultiColumnFragmentainerGroup& last_group =
      block_flow->MultiColumnFlowThread()
          ->LastMultiColumnSet()
          ->LastFragmentainerGroup();
  last_group.ExtendLogicalBottomInFlowThread(block_size);
}

void BlockNode::FinishPageContainerLayout(const LayoutResult* result) const {
  DCHECK_EQ(result->Status(), LayoutResult::kSuccess);
  DCHECK(result->GetPhysicalFragment().GetBoxType() ==
             PhysicalFragment::kPageContainer ||
         result->GetPhysicalFragment().GetBoxType() ==
             PhysicalFragment::kPageBorderBox);
  DCHECK(
      To<PhysicalBoxFragment>(result->GetPhysicalFragment()).IsOnlyForNode());
  StoreResultInLayoutBox(result, /*BlockBreakToken=*/nullptr);
}

void BlockNode::CopyFragmentItemsToLayoutBox(
    const PhysicalBoxFragment& container,
    const FragmentItems& items,
    const BlockBreakToken* previous_break_token) const {
  DCHECK(!RuntimeEnabledFeatures::LayoutBoxVisualLocationEnabled());
  LayoutUnit previously_consumed_block_size;
  if (previous_break_token) {
    previously_consumed_block_size =
        previous_break_token->ConsumedBlockSizeForLegacy();
  }
  bool initial_container_is_flipped = Style().IsFlippedBlocksWritingMode();
  for (InlineCursor cursor(container, items); cursor; cursor.MoveToNext()) {
    if (const PhysicalBoxFragment* child = cursor.Current().BoxFragment()) {
      // Replaced elements and inline blocks need Location() set relative to
      // their block container. Similarly for block-in-inline anonymous wrapper
      // blocks, but those may actually fragment, so we need to make sure that
      // we only do this when at the first fragment.
      if (!child->IsFirstForNode())
        continue;

      LayoutObject* layout_object = child->GetMutableLayoutObject();
      if (!layout_object)
        continue;
      if (auto* layout_box = DynamicTo<LayoutBox>(layout_object)) {
        PhysicalOffset maybe_flipped_offset =
            cursor.Current().OffsetInContainerFragment();
        if (initial_container_is_flipped) {
          maybe_flipped_offset.left = container.Size().width -
                                      child->Size().width -
                                      maybe_flipped_offset.left;
        }
        if (container.Style().IsHorizontalWritingMode())
          maybe_flipped_offset.top += previously_consumed_block_size;
        else
          maybe_flipped_offset.left += previously_consumed_block_size;
        layout_box->SetLocation(
            maybe_flipped_offset.FaultyToDeprecatedLayoutPoint());
        if (layout_box->HasSelfPaintingLayer()) [[unlikely]] {
          layout_box->Layer()->SetNeedsVisualOverflowRecalc();
        }
#if DCHECK_IS_ON()
        layout_box->InvalidateVisualOverflowForDCheck();
#endif
        continue;
      }

      // Legacy compatibility. This flag is used in paint layer for
      // invalidation.
      if (auto* layout_inline = DynamicTo<LayoutInline>(layout_object)) {
        if (layout_inline->HasSelfPaintingLayer()) [[unlikely]] {
          layout_inline->Layer()->SetNeedsVisualOverflowRecalc();
        }
      }
    }
  }
}

bool BlockNode::UseParentPercentageResolutionBlockSizeForChildren() const {
  auto* block = DynamicTo<LayoutBlock>(box_.Get());
  if (!block) {
    return false;
  }

  const ComputedStyle& style = Style();
  const bool in_quirks_mode = GetDocument().InQuirksMode();
  // Anonymous blocks should not impede percentage resolution on a child.
  // Examples of such anonymous blocks are blocks wrapped around inlines that
  // have block siblings (from the CSS spec) and multicol flow threads (an
  // implementation detail). Another implementation detail, ruby columns, create
  // anonymous inline-blocks, so skip those too. All other types of anonymous
  // objects, such as table-cells, will be treated just as if they were
  // non-anonymous.
  if (block->IsAnonymous()) {
    if (!in_quirks_mode && block->Parent() && block->Parent()->IsFieldset()) {
      return false;
    }
    EDisplay display = style.Display();
    return display == EDisplay::kBlock || display == EDisplay::kInlineBlock ||
           display == EDisplay::kFlowRoot;
  }

  // For quirks mode, we skip most auto-height containing blocks when computing
  // percentages.
  if (!in_quirks_mode || !style.LogicalHeight().IsAuto()) {
    return false;
  }

  // A quirky <body> with "height:auto" will have a definite height.
  if (IsQuirkyAndFillsViewport()) {
    return false;
  }

  const Node* node = GetDOMNode();
  if (node->IsInUserAgentShadowRoot()) [[unlikely]] {
    const Element* host = node->OwnerShadowHost();
    if (const auto* input = DynamicTo<HTMLInputElement>(host)) {
      // In web_tests/fast/forms/range/range-thumb-height-percentage.html, a
      // percent height for the slider thumb element should refer to the height
      // of the INPUT box.
      if (input->FormControlType() == FormControlType::kInputRange) {
        return true;
      }
    }
  }

  return !block->IsLayoutReplaced() && !block->IsTableCell() &&
         !block->IsOutOfFlowPositioned() && !block->IsLayoutGrid() &&
         !block->IsFlexibleBox() && !block->IsLayoutCustom();
}

bool BlockNode::IsInlineFormattingContextRoot(
    InlineNode* first_child_out) const {
  if (const auto* block = DynamicTo<LayoutBlockFlow>(box_.Get())) {
    if (!AreNGBlockFlowChildrenInline(block))
      return false;
    LayoutInputNode first_child = FirstChild();
    if (first_child.IsInline()) {
      if (first_child_out)
        *first_child_out = To<InlineNode>(first_child);
      return true;
    }
  }
  return false;
}

bool BlockNode::IsInlineLevel() const {
  return GetLayoutBox()->IsInline();
}

bool BlockNode::IsAtomicInlineLevel() const {
  // LayoutObject::IsAtomicInlineLevel() returns true for e.g., <img
  // style="display: block">. Check IsInline() as well.
  return GetLayoutBox()->IsAtomicInlineLevel() && GetLayoutBox()->IsInline();
}

bool BlockNode::IsInTopOrViewTransitionLayer() const {
  return GetLayoutBox()->IsInTopOrViewTransitionLayer();
}

LogicalSize BlockNode::GetReplacedAspectRatio() const {
  DCHECK(IsReplaced());

  const EAspectRatioType ar_type = Style().AspectRatio().GetType();
  if (ar_type == EAspectRatioType::kRatio) {
    return Style().LogicalAspectRatio();
  }

  // Any size containment should drop the aspect-ratio, however update once the
  // following CSSWG issue is resolved.
  //
  // https://github.com/w3c/csswg-drafts/issues/7583
  if (!box_->ShouldApplyAnySizeContainment()) {
    const PhysicalNaturalSizingInfo legacy_sizing_info =
        To<LayoutReplaced>(*box_).ComputeNaturalSizingInfo();
    if (!legacy_sizing_info.aspect_ratio.IsEmpty()) {
      return ToLogicalSize(legacy_sizing_info.aspect_ratio,
                           Style().GetWritingMode());
    }
  }

  if (ar_type == EAspectRatioType::kAutoAndRatio) {
    return Style().LogicalAspectRatio();
  }
  return LogicalSize();
}

std::optional<gfx::Transform> BlockNode::GetTransformForChildFragment(
    const PhysicalBoxFragment& child_fragment,
    PhysicalSize size) const {
  const auto* child_layout_object = child_fragment.GetLayoutObject();
  DCHECK(child_layout_object);

  if (!child_layout_object->ShouldUseTransformFromContainer(box_))
    return std::nullopt;

  std::optional<gfx::Transform> fragment_transform;
  if (!child_fragment.IsOnlyForNode()) {
    // If we're fragmented, there's no correct transform stored for
    // us. Calculate it now.
    fragment_transform.emplace();
    fragment_transform->MakeIdentity();
    const PhysicalRect reference_box = ComputeReferenceBox(child_fragment);
    child_fragment.Style().ApplyTransform(
        *fragment_transform, box_, reference_box,
        ComputedStyle::kIncludeTransformOperations,
        ComputedStyle::kIncludeTransformOrigin,
        ComputedStyle::kIncludeMotionPath,
        ComputedStyle::kIncludeIndependentTransformProperties);
  }

  gfx::Transform transform;
  child_layout_object->GetTransformFromContainer(
      box_, PhysicalOffset(), transform, &size,
      base::OptionalToPtr(fragment_transform));

  return transform;
}

bool BlockNode::HasNonVisibleBlockOverflow() const {
  OverflowClipAxes clip_axes = GetOverflowClipAxes();
  if (Style().IsHorizontalWritingMode())
    return clip_axes & kOverflowClipY;
  return clip_axes & kOverflowClipX;
}

bool BlockNode::IsCustomLayoutLoaded() const {
  return To<LayoutCustom>(box_.Get())->IsLoaded();
}

void BlockNode::PopulateScrollMarkerGroup(const BlockNode& scroller) const {
  DCHECK(box_->IsScrollMarkerGroup());
  LayoutBox* scroller_box = scroller.GetLayoutBox();

  StyleEngine::AttachScrollMarkersScope scope(GetDocument().GetStyleEngine());

  // We're about to repopulate the layout tree inside a scroll marker group,
  // i.e. detach potentially old and attach current scroll markers.
  //
  // The scroll marker group may not be a true layout sibling of its scroller,
  // if one is out-of-flow positioned, and the other one is not. Make sure that
  // detaching and attaching don't mark outside the group subtree (and thus
  // parts of the document tree that we may already be done with).
  box_->SetNeedsLayout(layout_invalidation_reason::kScrollMarkersChanged,
                       kMarkOnlyThis);
  box_->SetChildNeedsLayout(kMarkOnlyThis);

  // Detach all markers.
  while (LayoutObject* child = GetLayoutBox()->SlowFirstChild()) {
    // Anonymous wrappers may have been inserted. Search for the marker.
    for (LayoutObject* walker = child; walker;
         walker = walker->NextInPreOrder(child)) {
      if (walker->GetNode() &&
          walker->GetNode()->IsScrollMarkerPseudoElement()) {
        walker->GetNode()->DetachLayoutTree(/*performing_reattach=*/true);
        break;
      }
    }
  }
  DCHECK(!GetLayoutBox()->SlowFirstChild());

  Node::AttachContext context;
  context.parent = GetLayoutBox();
  DCHECK(context.parent);

  auto* scroll_marker_group =
      To<ScrollMarkerGroupPseudoElement>(GetLayoutBox()->GetNode());
  scroll_marker_group->ClearFocusGroup();
  AttachScrollMarkers(*scroller_box, context);
}

void BlockNode::HandleScrollMarkerGroup() const {
  BlockNode group_node = GetScrollMarkerGroup();
  if (!group_node) {
    return;
  }

  group_node.PopulateScrollMarkerGroup(*this);

  const LayoutResult* result =
      group_node.GetLayoutBox()->GetCachedLayoutResult(nullptr);
  if (!result) {
    // This may happen e.g. if the ::scroll-marker-group is out-of-flow
    // positioned, and hasn't been laid out yet (which is great, because then we
    // won't have to do the innards-replacement).
    return;
  }

  // The ::scroll-marker-group has been populated with scroll markers. There's
  // no easy way of telling whether the group comes before or after the
  // scrollable container, layout-wise. The `before` / `after` value of the
  // `scroll-marker-group` property doesn't tell the full story, since the
  // scrollable container may be out-of-flow, and the marker group may not, for
  // instance. This means that we cannot tell if "regular" scroll marker group
  // layout is ahead of us, or if we're already past it. Therefore, lay out the
  // scroll marker group now, and replace the innards of the fragment from any
  // previous layout. This should be safe, as long as the box establishes
  // sufficient amounts of containment.
  const auto& fragment = To<PhysicalBoxFragment>(result->GetPhysicalFragment());

  // A ::scroll-marker-group should be monolithic.
  DCHECK(fragment.IsOnlyForNode());

  const ConstraintSpace& space = result->GetConstraintSpaceForCaching();
  const LayoutResult* new_result = group_node.Layout(space);
  // TODO(layout-dev): It's being genetically modified all right, but we're not
  // really "cloning".
  fragment.GetMutableForCloning().ReplaceChildren(
      To<PhysicalBoxFragment>(new_result->GetPhysicalFragment()));
  // The second layout would have replaced the original layout result with the
  // new one, but we want to keep the original result.
  group_node.StoreResultInLayoutBox(result, /*BlockBreakToken=*/nullptr);
}

MathScriptType BlockNode::ScriptType() const {
  DCHECK(IsA<MathMLScriptsElement>(GetDOMNode()));
  return To<MathMLScriptsElement>(GetDOMNode())->GetScriptType();
}

bool BlockNode::HasIndex() const {
  DCHECK(IsA<MathMLRadicalElement>(GetDOMNode()));
  return To<MathMLRadicalElement>(GetDOMNode())->HasIndex();
}

const LayoutResult* BlockNode::LayoutAtomicInline(
    const ConstraintSpace& parent_constraint_space,
    const ComputedStyle& parent_style,
    bool use_first_line_style,
    BaselineAlgorithmType baseline_algorithm_type) {
  ConstraintSpaceBuilder builder(parent_constraint_space,
                                 Style().GetWritingDirection(),
                                 /* is_new_fc */ true);
  SetOrthogonalFallbackInlineSizeIfNeeded(parent_style, *this, &builder);

  builder.SetIsPaintedAtomically(true);
  builder.SetUseFirstLineStyle(use_first_line_style);
  builder.SetIsHiddenForPaint(parent_constraint_space.IsHiddenForPaint());

  builder.SetBaselineAlgorithmType(baseline_algorithm_type);

  builder.SetAvailableSize(parent_constraint_space.AvailableSize());
  builder.SetPercentageResolutionSize(
      IsReplaced()
          ? parent_constraint_space.ReplacedChildPercentageResolutionSize()
          : parent_constraint_space.PercentageResolutionSize());
  ConstraintSpace constraint_space = builder.ToConstraintSpace();
  const LayoutResult* result = Layout(constraint_space);
  if (!DisableLayoutSideEffectsScope::IsDisabled()) {
    // TODO(kojii): Investigate why ClearNeedsLayout() isn't called
    // automatically when it's being laid out.
    GetLayoutBox()->ClearNeedsLayout();
  }
  return result;
}

const LayoutResult* BlockNode::RunSimplifiedLayout(
    const LayoutAlgorithmParams& params,
    const LayoutResult& previous_result) const {
  SimplifiedLayoutAlgorithm algorithm(params, previous_result);
  if (const auto* previous_box_fragment = DynamicTo<PhysicalBoxFragment>(
          &previous_result.GetPhysicalFragment())) {
    if (previous_box_fragment->HasItems())
      return algorithm.LayoutWithItemsBuilder();
  }
  return algorithm.Layout();
}

void BlockNode::UpdateMarginPaddingInfoIfNeeded(
    const ConstraintSpace& space,
    const PhysicalFragment& fragment) const {
  // Table-cells don't have margins, and aren't grid-items.
  if (space.IsTableCell())
    return;

  if (Style().MayHaveMargin()) {
    // We set the initial margin data here because RebuildFragmentTreeSpine()
    // and atomic inline layout don't use BoxFragmentBuilder::AddResult().
    // TODO(crbug.com/1353190): Try to move margin computation to them.
    To<PhysicalBoxFragment>(fragment).GetMutableForContainerLayout().SetMargins(
        ComputePhysicalMargins(space, Style()));

    // This margin data may be overwritten by BoxFragmentBuilder::AddResult().
  }

  if (Style().MayHaveMargin() || Style().MayHavePadding()) {
    // Copy back the %-size so that |LayoutBoxModelObject::ComputedCSSPadding|
    // is able to return the correct value. This isn't ideal, but eventually
    // we'll answer these queries from the fragment.
    const auto* containing_block = box_->ContainingBlock();
    if (containing_block && containing_block->IsLayoutGrid()) [[unlikely]] {
      box_->SetOverrideContainingBlockContentLogicalWidth(
          space.MarginPaddingPercentageResolutionSize().inline_size);
    }
  }
}

// Floats can optionally have a shape area, specified by "shape-outside". The
// current shape machinery requires setting the size of the float after layout
// in the parents writing mode.
void BlockNode::UpdateShapeOutsideInfoIfNeeded(
    const LayoutResult& layout_result,
    const ConstraintSpace& constraint_space) const {
  if (!box_->IsFloating() || !box_->GetShapeOutsideInfo())
    return;

  if (layout_result.Status() != LayoutResult::kSuccess) {
    return;
  }

  // The box_ may not have a valid size yet (due to an intermediate layout),
  // use the fragment's size instead.
  PhysicalSize box_size = layout_result.GetPhysicalFragment().Size();

  // TODO(ikilpatrick): Ideally this should be moved to a LayoutResult
  // computing the shape area. There may be an issue with the new fragmentation
  // model and computing the correct sizes of shapes.
  ShapeOutsideInfo* shape_outside = box_->GetShapeOutsideInfo();
  WritingMode writing_mode = box_->ContainingBlock()->Style()->GetWritingMode();
  BoxStrut margins = ComputePhysicalMargins(constraint_space, Style())
                         .ConvertToLogical({writing_mode, TextDirection::kLtr});
  shape_outside->SetReferenceBoxLogicalSize(
      ToLogicalSize(box_size, writing_mode),
      LogicalSize(margins.InlineSum(), margins.BlockSum()));
  shape_outside->SetPercentageResolutionInlineSize(
      constraint_space.PercentageResolutionInlineSize());
}

void BlockNode::StoreColumnCount(int count) {
  if (RuntimeEnabledFeatures::FlowThreadLessEnabled()) {
    return;
  }
  LayoutMultiColumnFlowThread* flow_thread =
      To<LayoutBlockFlow>(box_.Get())->MultiColumnFlowThread();
  flow_thread->SetColumnCountFromNG(count);
}

static bool g_devtools_layout = false;
bool DevtoolsReadonlyLayoutScope::InDevtoolsLayout() {
  return g_devtools_layout;
}

DevtoolsReadonlyLayoutScope::DevtoolsReadonlyLayoutScope() {
  DCHECK(!g_devtools_layout);
  g_devtools_layout = true;
}

DevtoolsReadonlyLayoutScope::~DevtoolsReadonlyLayoutScope() {
  DCHECK(g_devtools_layout);
  g_devtools_layout = false;
}

}  // namespace blink