File: fragment_builder.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (1090 lines) | stat: -rw-r--r-- 47,246 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/core/layout/fragment_builder.h"

#include "base/containers/contains.h"
#include "third_party/blink/public/mojom/use_counter/metrics/web_feature.mojom-shared.h"
#include "third_party/blink/renderer/core/display_lock/display_lock_utilities.h"
#include "third_party/blink/renderer/core/dom/column_pseudo_element.h"
#include "third_party/blink/renderer/core/layout/block_layout_algorithm_utils.h"
#include "third_party/blink/renderer/core/layout/fragmentation_utils.h"
#include "third_party/blink/renderer/core/layout/physical_box_fragment.h"
#include "third_party/blink/renderer/core/layout/physical_fragment.h"
#include "third_party/blink/renderer/core/style/computed_style_base_constants.h"

namespace blink {

namespace {

bool IsInlineContainerForNode(const BlockNode& node,
                              const LayoutObject* inline_container) {
  return inline_container && inline_container->IsLayoutInline() &&
         inline_container->CanContainOutOfFlowPositionedElement(
             node.Style().GetPosition());
}

PhysicalAnchorQuery::SetOptions AnchorQuerySetOptions(
    const PhysicalFragment& fragment,
    const LayoutInputNode& container,
    bool maybe_out_of_order_if_oof) {
  // If the |fragment| is not absolutely positioned, it's an in-flow anchor.
  // https://drafts.csswg.org/css-anchor-1/#determining
  if (!fragment.IsOutOfFlowPositioned()) {
    return PhysicalAnchorQuery::SetOptions::kInFlow;
  }

  // If the OOF |fragment| is not in a block fragmentation context, it's a child
  // of its containing block. Make it out-of-flow.
  DCHECK(fragment.GetLayoutObject());
  if (!maybe_out_of_order_if_oof) {
    return PhysicalAnchorQuery::SetOptions::kOutOfFlow;
  }

  // |container| is null if it's an inline box.
  if (!container.GetLayoutBox()) {
    return PhysicalAnchorQuery::SetOptions::kOutOfFlow;
  }

  // If the OOF |fragment| is in a block fragmentation context, it's a child of
  // the fragmentation context root. If its containing block is the |container|,
  // make it out-of-flow.
  const LayoutObject* layout_object = fragment.GetLayoutObject();
  const LayoutObject* containing_block = layout_object->Container();
  DCHECK(containing_block);
  if (containing_block == container.GetLayoutBox()) {
    return PhysicalAnchorQuery::SetOptions::kOutOfFlow;
  }
  // Otherwise its containing block is a descendant of the block fragmentation
  // context, so it's in-flow.
  return PhysicalAnchorQuery::SetOptions::kInFlow;
}

}  // namespace

bool FragmentBuilder::IsRoot() const {
  return node_ && node_.IsView() && !space_.IsAnonymous();
}

bool FragmentBuilder::IsPaginatedRoot() const {
  return IsRoot() && node_.IsPaginatedRoot();
}

PhysicalFragment::BoxType FragmentBuilder::GetBoxType() const {
  if (box_type_ != PhysicalFragment::BoxType::kNormalBox) {
    return box_type_;
  }

  // When implicit, compute from LayoutObject.
  DCHECK(layout_object_);
  if (layout_object_->IsFloating()) {
    return PhysicalFragment::BoxType::kFloating;
  }
  if (layout_object_->IsOutOfFlowPositioned()) {
    return PhysicalFragment::BoxType::kOutOfFlowPositioned;
  }
  if (layout_object_->IsRenderedLegend()) {
    return PhysicalFragment::BoxType::kRenderedLegend;
  }
  if (layout_object_->StyleRef().IsPageMarginBox()) {
    return PhysicalFragment::BoxType::kPageMargin;
  }
  if (layout_object_->IsInline()) {
    // Check |IsAtomicInlineLevel()| after |IsInline()| because |LayoutReplaced|
    // sets |IsAtomicInlineLevel()| even when it's block-level. crbug.com/567964
    if (layout_object_->IsAtomicInlineLevel()) {
      return PhysicalFragment::BoxType::kAtomicInline;
    }
    return PhysicalFragment::BoxType::kInlineBox;
  }
  DCHECK(node_) << "Must call SetBoxType if there is no node";
  DCHECK_EQ(is_new_fc_, node_.CreatesNewFormattingContext())
      << "Forgot to call builder.SetIsNewFormattingContext";
  if (is_new_fc_) {
    return PhysicalFragment::BoxType::kBlockFlowRoot;
  }
  return PhysicalFragment::BoxType::kNormalBox;
}

void FragmentBuilder::ReplaceChild(wtf_size_t index,
                                   const PhysicalFragment& new_child,
                                   const LogicalOffset offset) {
  DCHECK_LT(index, children_.size());
  children_[index] = LogicalFragmentLink(new_child, offset);
}

GCedHeapVector<Member<LayoutBoxModelObject>>&
FragmentBuilder::EnsureStickyDescendants() {
  if (!sticky_descendants_) {
    sticky_descendants_ =
        MakeGarbageCollected<GCedHeapVector<Member<LayoutBoxModelObject>>>();
  }
  return *sticky_descendants_;
}

void FragmentBuilder::PropagateStickyDescendants(
    const PhysicalFragment& child) {
  if (child.HasStickyConstrainedPosition()) {
    EnsureStickyDescendants().push_front(
        To<LayoutBoxModelObject>(child.GetMutableLayoutObject()));
  }

  if (const auto* child_sticky_descendants =
          child.PropagatedStickyDescendants()) {
    EnsureStickyDescendants().AppendVector(*child_sticky_descendants);
  }
}

GCedHeapVector<Member<Element>>& FragmentBuilder::EnsureSnapAreas() {
  if (!snap_areas_) {
    snap_areas_ = MakeGarbageCollected<GCedHeapVector<Member<Element>>>();
  }
  return *snap_areas_;
}

void FragmentBuilder::PropagateSnapAreas(const PhysicalFragment& child) {
  auto get_insertion_pos = [&](Element* snap_area) {
    auto& snap_areas = EnsureSnapAreas();
    // TODO(crbug.com/365680822): ::column pseudo elements don't have layout
    // objects, and how snap areas established by them should be sorted,
    // relatively to real elements, is undefined.
    const LayoutBox* new_box = snap_area->GetLayoutBox();
    if (!new_box) {
      return snap_areas.size();
    }
    // Ensure that snap areas are added in DOM order.
    for (wtf_size_t i = snap_areas.size(); i >= 1; i--) {
      const LayoutBox* existing_box = snap_areas.at(i - 1)->GetLayoutBox();
      if (existing_box && existing_box->IsBeforeInPreOrder(*new_box)) {
        return i;
      }
    }
    return 0u;
  };
  if (child.IsSnapArea()) {
    // Insert a new snap area *once* per node, when at the last fragment
    // (i.e. when there's no outgoing break token).
    if (!To<PhysicalBoxFragment>(child).GetBreakToken()) {
      auto* snap_area = To<Element>(child.GetLayoutObject()->GetNode());
      EnsureSnapAreas().insert(get_insertion_pos(snap_area), snap_area);
    }
  }

  if (const auto* child_snap_areas = child.PropagatedSnapAreas()) {
    EnsureSnapAreas().InsertVector(get_insertion_pos(child_snap_areas->at(0)),
                                   *child_snap_areas);
  }

  if (child.IsSnapArea() && child.PropagatedSnapAreas()) {
    child.GetDocument().CountUse(WebFeature::kScrollSnapNestedSnapAreas);
  }
}

void FragmentBuilder::AddSnapAreaForColumn(ColumnPseudoElement* column_pseudo) {
  EnsureSnapAreas().push_back(column_pseudo);
}

PhysicalAnchorQuery& FragmentBuilder::EnsureAnchorQuery() {
  if (!anchor_query_)
    anchor_query_ = MakeGarbageCollected<PhysicalAnchorQuery>();
  return *anchor_query_;
}

void FragmentBuilder::PropagateChildAnchors(const PhysicalFragment& child,
                                            const LogicalOffset& child_offset) {
  std::optional<PhysicalAnchorQuery::SetOptions> options;
  Element* context = nullptr;
  if (auto* node = child.GetNode()) {
    if (auto* element = DynamicTo<Element>(node)) {
      if (auto* display_lock = element->GetDisplayLockContext()) {
        // An element can't anchor to the skipped contents of an element.
        // https://drafts.csswg.org/css-anchor-position-1/#target
        if (display_lock->IsLocked()) {
          return;
        }
        context = element;
      }
    }
  }
  if (child.IsAnchor()) {
    DCHECK(child.GetLayoutObject());
    // Set the child's `anchor-name` before propagating its descendants', so
    // that ancestors have precedence over their descendants.
    LogicalRect logical_rect(child_offset,
                             ToLogicalSize(child.Size(), GetWritingMode()));
    const WritingModeConverter converter(GetWritingDirection(), Size());
    PhysicalRect rect = converter.ToPhysical(logical_rect);
    options = AnchorQuerySetOptions(
        child, node_, IsBlockFragmentationContextRoot() || HasItems());
    if (child.IsExplicitAnchor()) {
      for (const ScopedCSSName* name : child.Style().AnchorName()->GetNames()) {
        AnchorScopedName* anchor_scoped_name =
            ToAnchorScopedName(*name, *child.GetLayoutObject());
        EnsureAnchorQuery().Set(anchor_scoped_name, *child.GetLayoutObject(),
                                rect, *options, context);
      }
    }
    if (child.IsImplicitAnchor()) {
      EnsureAnchorQuery().Set(To<Element>(child.GetNode()),
                              *child.GetLayoutObject(), rect, *options,
                              context);
    }
  }

  // Propagate any descendants' anchor references.
  if (const PhysicalAnchorQuery* anchor_query = child.AnchorQuery()) {
    if (!options) {
      options = AnchorQuerySetOptions(
          child, node_, IsBlockFragmentationContextRoot() || HasItems());
    }
    const WritingModeConverter converter(GetWritingDirection(), Size());
    PhysicalOffset additional_offset =
        converter.ToPhysical(child_offset, child.Size());
    EnsureAnchorQuery().SetFromChild(*anchor_query, additional_offset, *options,
                                     context);
  }
}

void FragmentBuilder::PropagateFromLayoutResultAndFragment(
    const LayoutResult& child_result,
    LogicalOffset child_offset,
    LogicalOffset relative_offset,
    const OofInlineContainer<LogicalOffset>* inline_container) {
  PropagateFromLayoutResult(child_result);
  PropagateFromFragment(child_result.GetPhysicalFragment(), child_offset,
                        relative_offset, inline_container);
}

void FragmentBuilder::PropagateFromLayoutResult(
    const LayoutResult& child_result) {
  has_orthogonal_fallback_size_descendant_ |=
      child_result.HasOrthogonalFallbackInlineSize() ||
      child_result.HasOrthogonalFallbackSizeDescendant();
}

void FragmentBuilder::UpdateScrollInitialTarget(
    const LayoutObject* new_target) {
  if (new_target != scroll_start_target_ &&
      (!scroll_start_target_ ||
       new_target->IsBeforeInPreOrder(*scroll_start_target_))) {
    scroll_start_target_ = new_target;
  }
}

void FragmentBuilder::PropagateScrollInitialTarget(
    const PhysicalFragment& child) {
  if (child.Style().ScrollInitialTarget() != EScrollInitialTarget::kNone) {
    if (auto* child_object = child.GetMutableLayoutObject()) {
      UpdateScrollInitialTarget(child_object);
    }
  }

  if (const Member<const LayoutObject> target =
          child.PropagatedScrollInitialTarget()) {
    UpdateScrollInitialTarget(target);
  }
}

// Propagate data in |child| to this fragment. The |child| will then be added as
// a child fragment or a child fragment item.
void FragmentBuilder::PropagateFromFragment(
    const PhysicalFragment& child,
    LogicalOffset child_offset,
    LogicalOffset relative_offset,
    const OofInlineContainer<LogicalOffset>* inline_container) {
  if (GetBoxType() == PhysicalFragment::kPageBorderBox) {
    // This is the boundary between page boxes and document contents. No
    // propagation should take place.
    DCHECK_EQ(child.GetBoxType(), PhysicalFragment::kPageArea);
    return;
  }

  if (child.HasAnchorQueryToPropagate()) {
    // This child either is an anchor, or has anchors inside (or both). They are
    // to be propagated as soon as the container size is known.
    LogicalOffset total_offset = child_offset + relative_offset;
    if (HasFinalSize()) {
      // When handling OOFs (after in-flow layout is finished) and an OOF wants
      // to propagate anchors, it needs to be done right away, since there may
      // be subsequent OOFs that have queries against those anchors.
      PropagateChildAnchors(child, total_offset);
    } else {
      children_with_size_dependent_propagation_.push_back(
          LogicalFragmentLink(child, total_offset));
    }
  }

  PropagateStickyDescendants(child);
  PropagateSnapAreas(child);
  PropagateScrollInitialTarget(child);

  // Propagate info about OOF descendants if necessary. This part must be
  // skipped when adding OOF children to fragmentainers, as propagation is
  // special and performed manually from the OOF code in such cases, and cannot
  // be done as part of adding child fragments. First of all, the parameters to
  // PropagateOOFPositionedInfo() will be different from what we can provide
  // here, and furthermore, OOFs in fragmentation are added by recreating
  // fragmentainers, by adding old children and then appending new OOF
  // children. This may take place in several passes (if there are nested OOFs
  // that are discovered as part of laying out an outer OOF), and repropagating
  // for OOFs that were laid out previously over and over again would be wrong.
  if (child.NeedsOOFPositionedInfoPropagation() &&
      (!IsFragmentainerBoxType() || !child.IsOutOfFlowPositioned())) {
    LayoutUnit adjustment_for_oof_propagation =
        BlockOffsetAdjustmentForFragmentainer();

    PropagateOOFPositionedInfo(child, child_offset, relative_offset,
                               /* offset_adjustment */ LogicalOffset(),
                               inline_container,
                               adjustment_for_oof_propagation);
  }

  // We only need to report if inflow or floating elements depend on the
  // percentage resolution block-size. OOF-positioned children resolve their
  // percentages against the "final" size of their parent.
  if (!has_descendant_that_depends_on_percentage_block_size_) {
    if (child.DependsOnPercentageBlockSize() && !child.IsOutOfFlowPositioned())
      has_descendant_that_depends_on_percentage_block_size_ = true;

    // We may have a child which has the following style:
    // <div style="position: relative; top: 50%;"></div>
    // We need to mark this as depending on our %-block-size for the its offset
    // to be correctly calculated. This is *slightly* too broad as it only
    // depends on the available block-size, rather than the %-block-size.
    const auto& child_style = child.Style();
    if (child.IsCSSBox() && child_style.GetPosition() == EPosition::kRelative) {
      if (Style().IsHorizontalWritingMode()) {
        if (child_style.Top().HasPercent() ||
            child_style.Bottom().HasPercent()) {
          has_descendant_that_depends_on_percentage_block_size_ = true;
        }
      } else {
        if (child_style.Left().HasPercent() ||
            child_style.Right().HasPercent()) {
          has_descendant_that_depends_on_percentage_block_size_ = true;
        }
      }
    }
  }

  // Compute |has_floating_descendants_for_paint_| to optimize tree traversal
  // in paint.
  if (!has_floating_descendants_for_paint_) {
    if (child.IsFloating() || (child.HasFloatingDescendantsForPaint() &&
                               !child.IsPaintedAtomically())) {
      has_floating_descendants_for_paint_ = true;
    }
  }

  // The |has_adjoining_object_descendants_| is used to determine if a fragment
  // can be re-used when preceding floats are present.
  // If a fragment doesn't have any adjoining object descendants, and is
  // self-collapsing, it can be "shifted" anywhere.
  if (!has_adjoining_object_descendants_) {
    if (!child.IsFormattingContextRoot() &&
        child.HasAdjoiningObjectDescendants())
      has_adjoining_object_descendants_ = true;
  }

  // Collect any (block) break tokens, but skip break tokens for fragmentainers,
  // as they should only escape a fragmentation context at the discretion of the
  // fragmentation context. Also skip this if there's a pre-set break token.
  if (has_block_fragmentation_ && !child.IsFragmentainerBox() &&
      !break_token_) {
    const BreakToken* child_break_token = child.GetBreakToken();
    switch (child.Type()) {
      case PhysicalFragment::kFragmentBox:
        if (child_break_token)
          child_break_tokens_.push_back(child_break_token);
        break;
      case PhysicalFragment::kFragmentLineBox:
        if (child.IsLineForParallelFlow()) {
          // This is a line that only contains a resumed float / block after a
          // fragmentation break. It should not affect orphans / widows
          // calculation.
          break;
        }

        const auto* inline_break_token =
            To<InlineBreakToken>(child_break_token);
        // TODO(mstensho): Orphans / widows calculation is wrong when regular
        // inline layout gets interrupted by a block-in-inline. We need to reset
        // line_count_ when this happens.
        //
        // We only care about the break token from the last line box added. This
        // is where we'll resume if we decide to block-fragment. Note that
        // child_break_token is nullptr if this is the last line to be generated
        // from the node.
        last_inline_break_token_ = inline_break_token;
        line_count_++;
        break;
    }
  }
}

void FragmentBuilder::AddChildInternal(const PhysicalFragment* child,
                                       const LogicalOffset& child_offset) {
  // In order to know where list-markers are within the children list (for the
  // |SimplifiedLayoutAlgorithm|) we always place them as the first child.
  if (child->IsListMarker()) {
    children_.push_front(LogicalFragmentLink(*child, child_offset));
    return;
  }

  if (child->IsTextControlPlaceholder()) {
    // ::placeholder should be followed by another block in order to paint
    // ::placeholder earlier.
    const wtf_size_t size = children_.size();
    if (size > 0) {
      children_.insert(size - 1, LogicalFragmentLink(*child, child_offset));
      return;
    }
  }

  children_.push_back(LogicalFragmentLink(*child, child_offset));
}

void FragmentBuilder::AddOutOfFlowChildCandidate(
    BlockNode child,
    const LogicalOffset& child_offset,
    LogicalStaticPosition::InlineEdge inline_edge,
    LogicalStaticPosition::BlockEdge block_edge,
    LogicalStaticPosition::LogicalAlignmentDirection align_self_direction,
    bool allow_top_layer_nodes) {
  DCHECK(child);
  // Top-layer elements are processed separately in the OutOfFlowLayoutPart.
  if (child.IsInTopOrViewTransitionLayer() && !allow_top_layer_nodes) {
    return;
  }

  oof_candidates_may_have_anchor_queries_ |= child.MayHaveAnchorQuery();
  oof_positioned_candidates_.emplace_back(
      child,
      LogicalStaticPosition{child_offset, inline_edge, block_edge,
                            align_self_direction},
      RequiresContentBeforeBreaking());
}

void FragmentBuilder::AddOutOfFlowInlineChildCandidate(
    BlockNode child,
    const LogicalOffset& child_offset,
    WritingDirectionMode inline_container_writing_direction,
    LayoutUnit line_box_block_size) {
  DCHECK(node_.IsInline() || layout_object_->IsLayoutInline());

  LogicalOffset static_offset = child_offset;

  // 'align-items' and 'justify-items' don't apply in inline layout, so don't
  // apply them to OOF items.
  auto inline_axis_edge = InlineStaticPositionEdge(
      child, /*justify_items_style=*/nullptr,
      inline_container_writing_direction,
      /*should_swap_inline_axis=*/
      !IsLtr(inline_container_writing_direction.Direction()));
  auto block_axis_edge = BlockStaticPositionEdge(
      child, /*align_items_style=*/nullptr, inline_container_writing_direction);

  // The alignment container for inline OOF elements is a zero-thickness line in
  // the block direction. As such, we need to adjust the block static position
  // offset for end/center alignment to ensure the OOF ends up aligned correctly
  // within its alignment container. The inline offset will not change.
  //
  // https://drafts.csswg.org/css-position-3/#staticpos-rect
  switch (block_axis_edge) {
    case LogicalStaticPosition::BlockEdge::kBlockCenter:
      static_offset.block_offset += line_box_block_size / 2;
      break;
    case LogicalStaticPosition::BlockEdge::kBlockEnd:
      static_offset.block_offset += line_box_block_size;
      break;
    case LogicalStaticPosition::BlockEdge::kBlockStart:
      // The static position is already correct in this case.
      break;
  }

  // As all inline-level fragments are built in the line-logical coordinate
  // system (Direction() is kLtr), we need to know the direction of the
  // parent element to correctly determine an OOF childs static position.
  AddOutOfFlowChildCandidate(child, static_offset, inline_axis_edge,
                             block_axis_edge);
}

void FragmentBuilder::AddOutOfFlowFragmentainerDescendant(
    const LogicalOofNodeForFragmentation& descendant) {
  oof_fragmentainer_descendants_may_have_anchor_queries_ |=
      descendant.box->MayHaveAnchorQuery();
  oof_positioned_fragmentainer_descendants_.push_back(descendant);
}

void FragmentBuilder::AddOutOfFlowFragmentainerDescendant(
    const LogicalOofPositionedNode& descendant) {
  DCHECK(!descendant.is_for_fragmentation);
  LogicalOofNodeForFragmentation fragmentainer_descendant(descendant);
  AddOutOfFlowFragmentainerDescendant(fragmentainer_descendant);
}

void FragmentBuilder::AddOutOfFlowDescendant(
    const LogicalOofPositionedNode& descendant) {
  oof_positioned_descendants_.push_back(descendant);
}

void FragmentBuilder::SwapOutOfFlowPositionedCandidates(
    HeapVector<LogicalOofPositionedNode>* candidates) {
  DCHECK(candidates->empty());
  if (oof_candidates_may_have_anchor_queries_) {
    std::sort(oof_positioned_candidates_.begin(),
              oof_positioned_candidates_.end(),
              [](const LogicalOofPositionedNode& a,
                 const LogicalOofPositionedNode& b) {
                return a.box->IsBeforeInPreOrder(*b.box);
              });
    oof_candidates_may_have_anchor_queries_ = false;
  }
  std::swap(oof_positioned_candidates_, *candidates);
}

void FragmentBuilder::ClearOutOfFlowPositionedCandidates() {
  oof_candidates_may_have_anchor_queries_ = false;
  oof_positioned_candidates_.clear();
}

void FragmentBuilder::AddMulticolWithPendingOOFs(
    const BlockNode& multicol,
    MulticolWithPendingOofs<LogicalOffset>* multicol_info) {
  DCHECK(multicol.GetLayoutBox()->IsMulticolContainer());
  auto it = multicols_with_pending_oofs_.find(multicol.GetLayoutBox());
  if (it != multicols_with_pending_oofs_.end())
    return;
  multicols_with_pending_oofs_.insert(multicol.GetLayoutBox(), multicol_info);
}

void FragmentBuilder::SwapMulticolsWithPendingOOFs(
    MulticolCollection* multicols_with_pending_oofs) {
  DCHECK(multicols_with_pending_oofs->empty());
  std::swap(multicols_with_pending_oofs_, *multicols_with_pending_oofs);
}

void FragmentBuilder::SwapOutOfFlowFragmentainerDescendants(
    HeapVector<LogicalOofNodeForFragmentation>* descendants) {
  DCHECK(descendants->empty());
  // If we have anchors *somewhere* in below the OOFs we need to ensure they
  // are in pre-order so we perform layout in the correct order.
  if (oof_fragmentainer_descendants_may_have_anchor_queries_) {
    std::sort(oof_positioned_fragmentainer_descendants_.begin(),
              oof_positioned_fragmentainer_descendants_.end(),
              [](const LogicalOofNodeForFragmentation& a,
                 const LogicalOofNodeForFragmentation& b) {
                return a.box->IsBeforeInPreOrder(*b.box);
              });
    oof_fragmentainer_descendants_may_have_anchor_queries_ = false;
  }
  std::swap(oof_positioned_fragmentainer_descendants_, *descendants);
}

void FragmentBuilder::TransferOutOfFlowCandidates(
    FragmentBuilder* destination_builder,
    LogicalOffset additional_offset,
    const MulticolWithPendingOofs<LogicalOffset>* multicol) {
  for (auto& candidate : oof_positioned_candidates_) {
    BlockNode node = candidate.Node();
    candidate.static_position.offset += additional_offset;
    if (multicol && multicol->fixedpos_containing_block.Fragment() &&
        node.Style().GetPosition() == EPosition::kFixed) {
      // A fixedpos containing block was found in |multicol|. Add the fixedpos
      // as a fragmentainer descendant instead.
      DCHECK(!candidate.inline_container.container);
      destination_builder->AddOutOfFlowFragmentainerDescendant(
          {node, candidate.static_position,
           !!candidate.requires_content_before_breaking,
           multicol->fixedpos_inline_container,
           multicol->fixedpos_containing_block,
           multicol->fixedpos_containing_block,
           multicol->fixedpos_inline_container});
      continue;
    }
    destination_builder->oof_positioned_candidates_.emplace_back(candidate);
  }
  destination_builder->oof_candidates_may_have_anchor_queries_ |=
      oof_candidates_may_have_anchor_queries_;

  ClearOutOfFlowPositionedCandidates();
}

void FragmentBuilder::MoveOutOfFlowDescendantCandidatesToDescendants() {
  DCHECK(oof_positioned_descendants_.empty());
  std::swap(oof_positioned_candidates_, oof_positioned_descendants_);

  if (!layout_object_->IsInline())
    return;

  for (auto& candidate : oof_positioned_descendants_) {
    // If we are inside the inline algorithm, (and creating a fragment for a
    // <span> or similar), we may add a child (e.g. an atomic-inline) which has
    // OOF descandants.
    //
    // This checks if the object creating this box will be the container for
    // the given descendant.
    if (!candidate.inline_container.container &&
        IsInlineContainerForNode(candidate.Node(), layout_object_)) {
      candidate.inline_container = OofInlineContainer<LogicalOffset>(
          To<LayoutInline>(layout_object_),
          /* relative_offset */ LogicalOffset());
    }
  }
}

LayoutUnit FragmentBuilder::BlockOffsetAdjustmentForFragmentainer(
    LayoutUnit fragmentainer_consumed_block_size) const {
  if (IsFragmentainerBoxType() && PreviousBreakToken()) {
    return To<BlockBreakToken>(PreviousBreakToken())->ConsumedBlockSize();
  }
  return fragmentainer_consumed_block_size;
}

void FragmentBuilder::PropagateOOFPositionedInfo(
    const PhysicalFragment& fragment,
    LogicalOffset offset,
    LogicalOffset relative_offset,
    LogicalOffset offset_adjustment,
    const OofInlineContainer<LogicalOffset>* inline_container,
    LayoutUnit containing_block_adjustment,
    const OofContainingBlock<LogicalOffset>* containing_block,
    const OofContainingBlock<LogicalOffset>* fixedpos_containing_block,
    const OofInlineContainer<LogicalOffset>* fixedpos_inline_container,
    LogicalOffset additional_fixedpos_offset) {
  // Calling this method without any work to do is expensive, even if it ends up
  // skipping all its parts (probably due to its size). Make sure that we have a
  // reason to be here.
  DCHECK(fragment.NeedsOOFPositionedInfoPropagation());

  LogicalOffset adjusted_offset = offset + offset_adjustment + relative_offset;

  // Collect the child's out of flow descendants.
  const WritingModeConverter converter(GetWritingDirection(), fragment.Size());
  for (const auto& descendant : fragment.OutOfFlowPositionedDescendants()) {
    BlockNode node = descendant.Node();
    LogicalStaticPosition static_position =
        descendant.StaticPosition().ConvertToLogical(converter);

    OofInlineContainer<LogicalOffset> new_inline_container;
    if (descendant.inline_container.container) {
      new_inline_container.container = descendant.inline_container.container;
      new_inline_container.relative_offset =
          converter.ToLogical(descendant.inline_container.relative_offset,
                              PhysicalSize()) +
          relative_offset;
    } else if (inline_container &&
               IsInlineContainerForNode(node, inline_container->container)) {
      new_inline_container = *inline_container;
    }

    // If an OOF element is inside a fragmentation context, it will be laid out
    // once it reaches the fragmentation context root. However, if such OOF
    // elements have fixedpos descendants, those descendants will not find their
    // containing block if the containing block lives inside the fragmentation
    // context root. In this case, the containing block will be passed in via
    // |fixedpos_containing_block|. If one exists, add the fixedpos as a
    // fragmentainer descendant with the correct containing block and static
    // position. In the case of nested fragmentation, the fixedpos containing
    // block may be in an outer fragmentation context root. In such cases,
    // the fixedpos will be added as a fragmentainer descendant at a later time.
    // However, an |additional_fixedpos_offset| should be applied if one is
    // provided.
    if ((fixedpos_containing_block ||
         additional_fixedpos_offset != LogicalOffset()) &&
        node.Style().GetPosition() == EPosition::kFixed) {
      static_position.offset += additional_fixedpos_offset;
      // Relative offsets should be applied after fragmentation. However, if
      // there is any relative offset that occurrend before the fixedpos reached
      // its containing block, that relative offset should be applied to the
      // static position (before fragmentation).
      static_position.offset +=
          relative_offset - fixedpos_containing_block->RelativeOffset();
      if (fixedpos_inline_container)
        static_position.offset -= fixedpos_inline_container->relative_offset;
      // The containing block for fixed-positioned elements should normally
      // already be laid out, and therefore have a fragment - with one
      // exception: If this is the pagination root, it obviously won't have a
      // fragment, since it hasn't finished layout yet. But we still need to
      // propagate the fixed-positioned descendant, so that it gets laid out
      // inside the fragmentation context (and repeated on every page), instead
      // of becoming a direct child of the LayoutView fragment (and thus a
      // sibling of the page fragments).
      if (fixedpos_containing_block &&
          (fixedpos_containing_block->Fragment() || node_.IsPaginatedRoot())) {
        OofInlineContainer<LogicalOffset> new_fixedpos_inline_container;
        if (fixedpos_inline_container)
          new_fixedpos_inline_container = *fixedpos_inline_container;
        AddOutOfFlowFragmentainerDescendant(
            {node, static_position,
             !!descendant.requires_content_before_breaking,
             new_fixedpos_inline_container, *fixedpos_containing_block,
             *fixedpos_containing_block, new_fixedpos_inline_container});
        continue;
      }
    }
    static_position.offset += adjusted_offset;

    // |oof_positioned_candidates_| should not have duplicated entries.
    DCHECK(!base::Contains(oof_positioned_candidates_, node,
                           &LogicalOofPositionedNode::Node));
    oof_candidates_may_have_anchor_queries_ |= node.MayHaveAnchorQuery();
    oof_positioned_candidates_.emplace_back(
        node, static_position, descendant.requires_content_before_breaking,
        new_inline_container);
  }

  const auto* oof_data = fragment.GetFragmentedOofData();
  if (!oof_data)
    return;
  DCHECK(!oof_data->multicols_with_pending_oofs.empty() ||
         !oof_data->oof_positioned_fragmentainer_descendants.empty());
  const auto* box_fragment = DynamicTo<PhysicalBoxFragment>(&fragment);
  bool is_column_spanner = box_fragment && box_fragment->IsColumnSpanAll();

  if (!oof_data->multicols_with_pending_oofs.empty()) {
    const auto& multicols_with_pending_oofs =
        oof_data->multicols_with_pending_oofs;
    for (auto& multicol : multicols_with_pending_oofs) {
      auto& multicol_info = multicol.value;
      LogicalOffset multicol_offset =
          converter.ToLogical(multicol_info->multicol_offset, PhysicalSize());

      LogicalOffset fixedpos_inline_relative_offset = converter.ToLogical(
          multicol_info->fixedpos_inline_container.relative_offset,
          PhysicalSize());
      OofInlineContainer<LogicalOffset> new_fixedpos_inline_container(
          multicol_info->fixedpos_inline_container.container,
          fixedpos_inline_relative_offset);
      const PhysicalFragment* fixedpos_containing_block_fragment =
          multicol_info->fixedpos_containing_block.Fragment();

      AdjustFixedposContainerInfo(box_fragment, relative_offset,
                                  &new_fixedpos_inline_container,
                                  &fixedpos_containing_block_fragment);

      // If a fixedpos containing block was found, the |multicol_offset|
      // should remain relative to the fixedpos containing block. Otherwise,
      // continue to adjust the |multicol_offset| to be relative to the current
      // |fragment|.
      LogicalOffset fixedpos_containing_block_offset;
      LogicalOffset fixedpos_containing_block_rel_offset;
      bool is_inside_column_spanner =
          multicol_info->fixedpos_containing_block.IsInsideColumnSpanner();
      if (fixedpos_containing_block_fragment) {
        fixedpos_containing_block_offset = converter.ToLogical(
            multicol_info->fixedpos_containing_block.Offset(),
            fixedpos_containing_block_fragment->Size());
        fixedpos_containing_block_rel_offset = RelativeInsetToLogical(
            multicol_info->fixedpos_containing_block.RelativeOffset(),
            GetWritingDirection());
        fixedpos_containing_block_rel_offset += relative_offset;
        // We want the fixedpos containing block offset to be the offset from
        // the containing block to the top of the fragmentation context root,
        // such that it includes the block offset contributions of previous
        // fragmentainers. The block contribution from previous fragmentainers
        // has already been applied. As such, avoid unnecessarily adding an
        // additional inline/block offset of any fragmentainers.
        if (!fragment.IsFragmentainerBox())
          fixedpos_containing_block_offset += offset;
        fixedpos_containing_block_offset.block_offset +=
            containing_block_adjustment;

        if (is_column_spanner)
          is_inside_column_spanner = true;
      } else {
        multicol_offset += adjusted_offset;
      }

      // TODO(layout-dev): Adjust any clipped container block-offset. For now,
      // just reset it, rather than passing an incorrect value.
      std::optional<LayoutUnit> fixedpos_clipped_container_block_offset;

      AddMulticolWithPendingOOFs(
          BlockNode(multicol.key),
          MakeGarbageCollected<MulticolWithPendingOofs<LogicalOffset>>(
              multicol_offset,
              OofContainingBlock<LogicalOffset>(
                  fixedpos_containing_block_offset,
                  fixedpos_containing_block_rel_offset,
                  fixedpos_containing_block_fragment,
                  fixedpos_clipped_container_block_offset,
                  is_inside_column_spanner),
              new_fixedpos_inline_container));
    }
  }

  PropagateOOFFragmentainerDescendants(
      fragment, offset, relative_offset, containing_block_adjustment,
      containing_block, fixedpos_containing_block);
}

void FragmentBuilder::PropagateOOFFragmentainerDescendants(
    const PhysicalFragment& fragment,
    LogicalOffset offset,
    LogicalOffset relative_offset,
    LayoutUnit containing_block_adjustment,
    const OofContainingBlock<LogicalOffset>* containing_block,
    const OofContainingBlock<LogicalOffset>* fixedpos_containing_block,
    HeapVector<LogicalOofNodeForFragmentation>* out_list) {
  const auto* oof_data = fragment.GetFragmentedOofData();
  if (!oof_data || oof_data->oof_positioned_fragmentainer_descendants.empty())
    return;

  const WritingModeConverter converter(GetWritingDirection(), fragment.Size());
  const auto* box_fragment = DynamicTo<PhysicalBoxFragment>(&fragment);
  bool is_column_spanner = box_fragment && box_fragment->IsColumnSpanAll();

  for (const PhysicalOofNodeForFragmentation& descendant :
       oof_data->oof_positioned_fragmentainer_descendants) {
    const PhysicalFragment* containing_block_fragment =
        descendant.containing_block.Fragment();
    bool container_inside_column_spanner =
        descendant.containing_block.IsInsideColumnSpanner();
    bool fixedpos_container_inside_column_spanner =
        descendant.fixedpos_containing_block.IsInsideColumnSpanner();

    if (!containing_block_fragment) {
      DCHECK(box_fragment);
      containing_block_fragment = box_fragment;
    } else if (box_fragment && box_fragment->IsFragmentationContextRoot()) {
      // If we find a multicol with OOF positioned fragmentainer descendants,
      // then that multicol is an inner multicol with pending OOFs. Those OOFs
      // will be laid out inside the inner multicol when we reach the
      // outermost fragmentation context, so we should not propagate those
      // OOFs up the tree any further. However, if the containing block is
      // inside a column spanner contained by the current fragmentation root, we
      // should continue to propagate that OOF up the tree so it can be laid out
      // in the next fragmentation context.
      if (container_inside_column_spanner) {
        // Reset the OOF node's column spanner tags so that we don't propagate
        // the OOF past the next fragmentation context root ancestor.
        container_inside_column_spanner = false;
        fixedpos_container_inside_column_spanner = false;
      } else {
        DCHECK(!fixedpos_container_inside_column_spanner);
        continue;
      }
    }

    if (is_column_spanner)
      container_inside_column_spanner = true;

    LogicalOffset containing_block_offset =
        converter.ToLogical(descendant.containing_block.Offset(),
                            containing_block_fragment->Size());
    LogicalOffset containing_block_rel_offset = RelativeInsetToLogical(
        descendant.containing_block.RelativeOffset(), GetWritingDirection());
    containing_block_rel_offset += relative_offset;
    if (!fragment.IsFragmentainerBox())
      containing_block_offset += offset;
    containing_block_offset.block_offset += containing_block_adjustment;

    // If the containing block of the OOF is inside a clipped container, update
    // this offset.
    auto UpdatedClippedContainerBlockOffset =
        [&containing_block, &offset, &fragment,
         &containing_block_adjustment](const OofContainingBlock<PhysicalOffset>&
                                           descendant_containing_block) {
          std::optional<LayoutUnit> clipped_container_offset =
              descendant_containing_block.ClippedContainerBlockOffset();
          if (!clipped_container_offset &&
              fragment.HasNonVisibleBlockOverflow()) {
            // We just found a clipped container.
            clipped_container_offset.emplace();
          }
          if (clipped_container_offset) {
            // We're inside a clipped container. Adjust the offset.
            if (!fragment.IsFragmentainerBox()) {
              *clipped_container_offset += offset.block_offset;
            }
            *clipped_container_offset += containing_block_adjustment;
          }
          if (!clipped_container_offset && containing_block &&
              containing_block->ClippedContainerBlockOffset()) {
            // We were not inside a clipped container, but we're contained by an
            // OOF which is inside one. E.g.: <clipped><relpos><abspos><abspos>
            // This happens when we're at the inner abspos in this example.
            clipped_container_offset =
                containing_block->ClippedContainerBlockOffset();
          }
          return clipped_container_offset;
        };

    std::optional<LayoutUnit> clipped_container_block_offset =
        UpdatedClippedContainerBlockOffset(descendant.containing_block);

    LogicalOffset inline_relative_offset = converter.ToLogical(
        descendant.inline_container.relative_offset, PhysicalSize());
    OofInlineContainer<LogicalOffset> new_inline_container(
        descendant.inline_container.container, inline_relative_offset);

    // The static position should remain relative to its containing block
    // fragment.
    const WritingModeConverter containing_block_converter(
        GetWritingDirection(), containing_block_fragment->Size());
    LogicalStaticPosition static_position =
        descendant.StaticPosition().ConvertToLogical(
            containing_block_converter);

    // The relative offset should be applied after fragmentation. Subtract out
    // the accumulated relative offset from the inline container to the
    // containing block so that it can be re-applied at the correct time.
    if (new_inline_container.container && box_fragment &&
        containing_block_fragment == box_fragment)
      static_position.offset -= inline_relative_offset;

    LogicalOffset fixedpos_inline_relative_offset = converter.ToLogical(
        descendant.fixedpos_inline_container.relative_offset, PhysicalSize());
    OofInlineContainer<LogicalOffset> new_fixedpos_inline_container(
        descendant.fixedpos_inline_container.container,
        fixedpos_inline_relative_offset);
    const PhysicalFragment* fixedpos_containing_block_fragment =
        descendant.fixedpos_containing_block.Fragment();

    AdjustFixedposContainerInfo(
        box_fragment, relative_offset, &new_fixedpos_inline_container,
        &fixedpos_containing_block_fragment, &new_inline_container);

    LogicalOffset fixedpos_containing_block_offset;
    LogicalOffset fixedpos_containing_block_rel_offset;
    std::optional<LayoutUnit> fixedpos_clipped_container_block_offset;
    if (fixedpos_containing_block_fragment) {
      fixedpos_containing_block_offset =
          converter.ToLogical(descendant.fixedpos_containing_block.Offset(),
                              fixedpos_containing_block_fragment->Size());
      fixedpos_containing_block_rel_offset = RelativeInsetToLogical(
          descendant.fixedpos_containing_block.RelativeOffset(),
          GetWritingDirection());
      fixedpos_containing_block_rel_offset += relative_offset;
      if (!fragment.IsFragmentainerBox())
        fixedpos_containing_block_offset += offset;
      fixedpos_containing_block_offset.block_offset +=
          containing_block_adjustment;

      fixedpos_clipped_container_block_offset =
          UpdatedClippedContainerBlockOffset(
              descendant.fixedpos_containing_block);

      if (is_column_spanner)
        fixedpos_container_inside_column_spanner = true;
    }

    if (!fixedpos_containing_block_fragment && fixedpos_containing_block) {
      fixedpos_containing_block_fragment =
          fixedpos_containing_block->Fragment();
      fixedpos_containing_block_offset = fixedpos_containing_block->Offset();
      fixedpos_containing_block_rel_offset =
          fixedpos_containing_block->RelativeOffset();
    }
    LogicalOofNodeForFragmentation oof_node(
        descendant.Node(), static_position,
        descendant.requires_content_before_breaking, new_inline_container,
        OofContainingBlock<LogicalOffset>(
            containing_block_offset, containing_block_rel_offset,
            containing_block_fragment, clipped_container_block_offset,
            container_inside_column_spanner),
        OofContainingBlock<LogicalOffset>(
            fixedpos_containing_block_offset,
            fixedpos_containing_block_rel_offset,
            fixedpos_containing_block_fragment,
            fixedpos_clipped_container_block_offset,
            fixedpos_container_inside_column_spanner),
        new_fixedpos_inline_container);

    if (out_list) {
      out_list->emplace_back(oof_node);
    } else {
      AddOutOfFlowFragmentainerDescendant(oof_node);
    }
  }
}

void FragmentBuilder::AdjustFixedposContainerInfo(
    const PhysicalFragment* box_fragment,
    LogicalOffset relative_offset,
    OofInlineContainer<LogicalOffset>* fixedpos_inline_container,
    const PhysicalFragment** fixedpos_containing_block_fragment,
    const OofInlineContainer<LogicalOffset>* current_inline_container) const {
  DCHECK(fixedpos_inline_container);
  DCHECK(fixedpos_containing_block_fragment);
  if (!box_fragment)
    return;

  if (!*fixedpos_containing_block_fragment && box_fragment->GetLayoutObject()) {
    if (current_inline_container && current_inline_container->container &&
        current_inline_container->container->CanContainFixedPositionObjects()) {
      *fixedpos_inline_container = *current_inline_container;
      *fixedpos_containing_block_fragment = box_fragment;
    } else if (box_fragment->GetLayoutObject()
                   ->CanContainFixedPositionObjects()) {
      if (!fixedpos_inline_container->container &&
          box_fragment->GetLayoutObject()->IsLayoutInline()) {
        *fixedpos_inline_container = OofInlineContainer<LogicalOffset>(
            To<LayoutInline>(box_fragment->GetLayoutObject()), relative_offset);
      } else if (!box_fragment->GetLayoutObject()->IsLayoutInline()) {
        *fixedpos_containing_block_fragment = box_fragment;
      }
    } else if (fixedpos_inline_container->container) {
      // Candidates whose containing block is inline are always positioned
      // inside closest parent block flow.
      if (box_fragment->GetLayoutObject() ==
          fixedpos_inline_container->container->ContainingBlock())
        *fixedpos_containing_block_fragment = box_fragment;
    }
  }
}

void FragmentBuilder::PropagateSpaceShortage(
    std::optional<LayoutUnit> space_shortage) {
  // Space shortage should only be reported when we already have a tentative
  // fragmentainer block-size. It's meaningless to talk about space shortage
  // in the initial column balancing pass, because then we have no
  // fragmentainer block-size at all, so who's to tell what's too short or
  // not?
  DCHECK(!IsInitialColumnBalancingPass());
  UpdateMinimalSpaceShortage(space_shortage, &minimal_space_shortage_);
}

void FragmentBuilder::Finalize() {
#if DCHECK_IS_ON()
  DCHECK(!is_finalized_);
  is_finalized_ = true;
#endif

  has_final_size_ = true;
  PropagateSizeDependentData();
}

const LayoutResult* FragmentBuilder::Abort(LayoutResult::EStatus status) {
  return MakeGarbageCollected<LayoutResult>(
      LayoutResult::FragmentBuilderPassKey(), status, this);
}

#if DCHECK_IS_ON()

String FragmentBuilder::ToString() const {
  StringBuilder builder;
  builder.AppendFormat("FragmentBuilder %.2fx%.2f, Children %u\n",
                       InlineSize().ToFloat(), BlockSize().ToFloat(),
                       children_.size());
  for (auto& child : children_) {
    builder.Append(child.fragment->DumpFragmentTree(
        PhysicalFragment::DumpAll & ~PhysicalFragment::DumpHeaderText));
  }
  return builder.ToString();
}

#endif

void FragmentBuilder::PropagateSizeDependentData() {
  DCHECK(has_final_size_);
  for (const LogicalFragmentLink& link :
       children_with_size_dependent_propagation_) {
    PropagateChildAnchors(*link.fragment, link.offset);
  }
  children_with_size_dependent_propagation_.clear();
}

}  // namespace blink