1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef THIRD_PARTY_BLINK_RENDERER_CORE_LAYOUT_FRAGMENT_BUILDER_H_
#define THIRD_PARTY_BLINK_RENDERER_CORE_LAYOUT_FRAGMENT_BUILDER_H_
#include "base/memory/scoped_refptr.h"
#include "third_party/blink/renderer/core/core_export.h"
#include "third_party/blink/renderer/core/layout/block_node.h"
#include "third_party/blink/renderer/core/layout/break_appeal.h"
#include "third_party/blink/renderer/core/layout/break_token.h"
#include "third_party/blink/renderer/core/layout/geometry/logical_size.h"
#include "third_party/blink/renderer/core/layout/layout_result.h"
#include "third_party/blink/renderer/core/layout/list/unpositioned_list_marker.h"
#include "third_party/blink/renderer/core/layout/logical_fragment_link.h"
#include "third_party/blink/renderer/core/layout/oof_positioned_node.h"
#include "third_party/blink/renderer/core/layout/physical_fragment.h"
#include "third_party/blink/renderer/core/layout/style_variant.h"
#include "third_party/blink/renderer/core/style/computed_style.h"
#include "third_party/blink/renderer/platform/heap/collection_support/heap_hash_map.h"
#include "third_party/blink/renderer/platform/text/writing_direction_mode.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
namespace blink {
class ColumnPseudoElement;
class ColumnSpannerPath;
class EarlyBreak;
class FragmentItemsBuilder;
class InlineBreakToken;
class LayoutObject;
class CORE_EXPORT FragmentBuilder {
STACK_ALLOCATED();
public:
~FragmentBuilder() {
// Clear collections so the backing gets promptly freed, and reused.
children_.clear();
oof_positioned_candidates_.clear();
oof_positioned_fragmentainer_descendants_.clear();
oof_positioned_descendants_.clear();
multicols_with_pending_oofs_.clear();
child_break_tokens_.clear();
}
using ChildrenVector = LogicalFragmentLinkVector;
using MulticolCollection =
HeapHashMap<Member<LayoutBox>,
Member<MulticolWithPendingOofs<LogicalOffset>>>;
const ComputedStyle& Style() const {
DCHECK(style_);
return *style_;
}
void SetStyleVariant(StyleVariant style_variant) {
style_variant_ = style_variant;
}
const ConstraintSpace& GetConstraintSpace() const { return space_; }
WritingDirectionMode GetWritingDirection() const {
return writing_direction_;
}
WritingMode GetWritingMode() const {
return writing_direction_.GetWritingMode();
}
TextDirection Direction() const { return writing_direction_.Direction(); }
// Return true if this is a builder for the root fragment.
bool IsRoot() const;
// Return true if this is a builder for the root fragment, and the root is
// paginated.
bool IsPaginatedRoot() const;
// Return the previous (incoming) break token that was generated for the
// previous fragment of this node.
const BreakToken* PreviousBreakToken() const { return previous_break_token_; }
// Either this function or SetBoxType must be called before ToBoxFragment().
void SetIsNewFormattingContext(bool is_new_fc) { is_new_fc_ = is_new_fc; }
PhysicalFragment::BoxType GetBoxType() const;
void SetBoxType(PhysicalFragment::BoxType box_type) { box_type_ = box_type; }
bool IsFragmentainerBoxType() const {
PhysicalFragment::BoxType box_type = GetBoxType();
return box_type == PhysicalFragment::kColumnBox ||
box_type == PhysicalFragment::kPageArea;
}
LayoutUnit InlineSize() const { return size_.inline_size; }
LayoutUnit BlockSize() const {
DCHECK(size_.block_size != kIndefiniteSize);
return size_.block_size;
}
const LogicalSize& Size() const {
DCHECK(size_.block_size != kIndefiniteSize);
return size_;
}
void SetBlockSize(LayoutUnit block_size) { size_.block_size = block_size; }
bool HasBlockSize() const { return size_.block_size != kIndefiniteSize; }
// Return true when the final size of the fragment has been calculated.
bool HasFinalSize() const { return has_final_size_; }
void SetIsHiddenForPaint(bool value) { is_hidden_for_paint_ = value; }
void SetIsOpaque() { is_opaque_ = true; }
void SetHasCollapsedBorders(bool value) { has_collapsed_borders_ = value; }
const LayoutObject* GetLayoutObject() const { return layout_object_; }
LayoutUnit BfcLineOffset() const { return bfc_line_offset_; }
void SetBfcLineOffset(LayoutUnit bfc_line_offset) {
bfc_line_offset_ = bfc_line_offset;
}
// The BFC block-offset is where this fragment was positioned within the BFC.
// If it is not set, this fragment may be placed anywhere within the BFC.
const std::optional<LayoutUnit>& BfcBlockOffset() const {
return bfc_block_offset_;
}
void SetBfcBlockOffset(LayoutUnit bfc_block_offset) {
bfc_block_offset_ = bfc_block_offset;
}
void ResetBfcBlockOffset() { bfc_block_offset_.reset(); }
void SetEndMarginStrut(const MarginStrut& end_margin_strut) {
end_margin_strut_ = end_margin_strut;
}
void SetMayHaveDescendantAboveBlockStart(bool b) {
#if DCHECK_IS_ON()
is_may_have_descendant_above_block_start_explicitly_set_ = true;
#endif
may_have_descendant_above_block_start_ = b;
}
ExclusionSpace& GetExclusionSpace() { return exclusion_space_; }
void SetExclusionSpace(const ExclusionSpace& exclusion_space) {
exclusion_space_ = exclusion_space;
}
void SetLinesUntilClamp(const std::optional<int>& value) {
lines_until_clamp_ = value;
}
bool WouldBeLastLineIfNotForEllipsis() {
return would_be_last_line_if_not_for_ellipsis_;
}
void SetWouldBeLastLineIfNotForEllipsis() {
would_be_last_line_if_not_for_ellipsis_ = true;
}
bool IsBlockEndTrimmableLine() const { return is_block_end_trimmable_line_; }
void SetIsBlockEndTrimmableLine() { is_block_end_trimmable_line_ = true; }
const UnpositionedListMarker& GetUnpositionedListMarker() const {
return unpositioned_list_marker_;
}
void SetUnpositionedListMarker(const UnpositionedListMarker& marker) {
DCHECK(!unpositioned_list_marker_ || !marker);
unpositioned_list_marker_ = marker;
}
void ClearUnpositionedListMarker() {
unpositioned_list_marker_ = UnpositionedListMarker();
}
void ReplaceChild(wtf_size_t index,
const PhysicalFragment& new_child,
const LogicalOffset offset);
const ChildrenVector& Children() const { return children_; }
// True if |this| has |FragmentItemsBuilder|; i.e., if |this| is an inline
// formatting context.
bool HasItems() const { return items_builder_; }
// The |FragmentItemsBuilder| for the inline formatting context of this box.
FragmentItemsBuilder* ItemsBuilder() { return items_builder_; }
void SetItemsBuilder(FragmentItemsBuilder* builder) {
items_builder_ = builder;
}
void PropagateStickyDescendants(const PhysicalFragment& child);
void PropagateSnapAreas(const PhysicalFragment& child);
void AddSnapAreaForColumn(ColumnPseudoElement*);
// Propagate |child|'s anchor for the CSS Anchor Positioning to |this|
// builder. This includes the anchor of the |child| itself and anchors
// propagated to the |child| from its descendants.
void PropagateChildAnchors(const PhysicalFragment& child,
const LogicalOffset& child_offset);
const PhysicalAnchorQuery* AnchorQuery() const { return anchor_query_; }
// Builder has non-trivial OOF-positioned methods.
// They are intended to be used by a layout algorithm like this:
//
// Part 1: layout algorithm positions in-flow children.
// out-of-flow children, and out-of-flow descendants of fragments
// are stored inside builder.
//
// for (child : children)
// if (child->position == (Absolute or Fixed))
// builder->AddOutOfFlowChildCandidate(child);
// else
// fragment = child->Layout()
// builder->AddChild(fragment)
// end
//
// builder->SetSize
//
// Part 2: Out-of-flow layout part positions OOF-positioned nodes.
//
// OutOfFlowLayoutPart(container_style, builder).Run();
//
// See layout part for builder interaction.
void AddOutOfFlowChildCandidate(
BlockNode,
const LogicalOffset& child_offset,
LogicalStaticPosition::InlineEdge = LogicalStaticPosition::kInlineStart,
LogicalStaticPosition::BlockEdge = LogicalStaticPosition::kBlockStart,
LogicalStaticPosition::LogicalAlignmentDirection align_self_direction =
LogicalStaticPosition::LogicalAlignmentDirection::kBlock,
bool allow_top_layer_nodes = false);
// This should only be used for inline-level OOF-positioned nodes.
// |inline_container_writing_direction| is the current writing mode direction
// for determining the correct static-position.
void AddOutOfFlowInlineChildCandidate(
BlockNode,
const LogicalOffset& child_offset,
WritingDirectionMode inline_container_writing_direction,
LayoutUnit line_box_block_size);
void AddOutOfFlowFragmentainerDescendant(
const LogicalOofNodeForFragmentation& descendant);
void AddOutOfFlowFragmentainerDescendant(
const LogicalOofPositionedNode& descendant);
void AddOutOfFlowDescendant(const LogicalOofPositionedNode& descendant);
void SwapOutOfFlowPositionedCandidates(
HeapVector<LogicalOofPositionedNode>* candidates);
void ClearOutOfFlowPositionedCandidates();
// Out-of-flow positioned elements inside a nested fragmentation context
// are laid out once they've reached the outermost fragmentation context.
// However, once at the outer context, they will get laid out inside the
// inner multicol in which their containing block resides. Thus, we need to
// store such inner multicols for later use.
void AddMulticolWithPendingOOFs(
const BlockNode& multicol,
MulticolWithPendingOofs<LogicalOffset>* multicol_info =
MakeGarbageCollected<MulticolWithPendingOofs<LogicalOffset>>());
void SwapMulticolsWithPendingOOFs(
MulticolCollection* multicols_with_pending_oofs);
void SwapOutOfFlowFragmentainerDescendants(
HeapVector<LogicalOofNodeForFragmentation>* descendants);
// Transfer the candidates from |oof_positioned_candidates_| to
// |destination_builder|, adding any |additional_offset| to the candidate
// static positions. |multicol| indicates that the candidates were passed
// up the tree via an inner multicol. This will be used to determine if
// a candidate should be added as a fragmentainer descendant instead
// (i.e. in the case where the |multicol| has found a fixedpos containing
// block in its ancestor path).
void TransferOutOfFlowCandidates(
FragmentBuilder* destination_builder,
LogicalOffset additional_offset,
const MulticolWithPendingOofs<LogicalOffset>* multicol = nullptr);
bool HasOutOfFlowPositionedCandidates() const {
return !oof_positioned_candidates_.empty();
}
bool HasOutOfFlowPositionedDescendants() const {
return !oof_positioned_descendants_.empty();
}
bool HasOutOfFlowFragmentainerDescendants() const {
return !oof_positioned_fragmentainer_descendants_.empty();
}
bool HasMulticolsWithPendingOOFs() const {
return !multicols_with_pending_oofs_.empty();
}
// This method should only be used within the inline layout algorithm. It is
// used to convert all OOF-positioned candidates to descendants.
//
// During the inline layout algorithm, we don't have enough information to
// position OOF candidates yet, (as a containing box may be split over
// multiple lines), instead we bubble all the descendants up to the parent
// block layout algorithm, to perform the final OOF layout and positioning.
void MoveOutOfFlowDescendantCandidatesToDescendants();
// OOF positioned elements inside a fragmentation context are laid out once
// they reach the fragmentation context root, so we need to adjust the offset
// of its containing block to be relative to the fragmentation context
// root. This allows us to determine the proper offset for the OOF inside the
// same context. The block offset returned is the block contribution from
// previous fragmentainers, if the current builder is a fragmentainer.
// Otherwise, |fragmentainer_consumed_block_size| will be used. In some cases,
// for example, we won't be able to calculate the adjustment from the builder.
// This would happen when an OOF positioned element is nested inside another
// OOF positioned element. The nested OOF will never have propagated up
// through a fragmentainer builder. In such cases, the necessary adjustment
// will be passed in via |fragmentainer_consumed_block_size|.
LayoutUnit BlockOffsetAdjustmentForFragmentainer(
LayoutUnit fragmentainer_consumed_block_size = LayoutUnit()) const;
bool HasOutOfFlowFragmentChild() const {
return has_out_of_flow_fragment_child_;
}
void SetHasOutOfFlowFragmentChild(bool has_out_of_flow_fragment_child) {
has_out_of_flow_fragment_child_ = has_out_of_flow_fragment_child;
}
bool HasOutOfFlowInFragmentainerSubtree() const {
return has_out_of_flow_in_fragmentainer_subtree_;
}
void SetHasOutOfFlowInFragmentainerSubtree(
bool has_out_of_flow_in_fragmentainer_subtree) {
has_out_of_flow_in_fragmentainer_subtree_ =
has_out_of_flow_in_fragmentainer_subtree;
}
// Propagate the OOF descendants from a fragment to the builder. Since the OOF
// descendants on the fragment are PhysicalOofPositionedNodes, we first have
// to create LogicalOofPositionedNodes copies before appending them to our
// list of descendants.
// In addition, propagate any inner multicols with pending OOF descendants.
void PropagateOOFPositionedInfo(
const PhysicalFragment& fragment,
LogicalOffset offset,
LogicalOffset relative_offset,
LogicalOffset offset_adjustment = LogicalOffset(),
const OofInlineContainer<LogicalOffset>* inline_container = nullptr,
LayoutUnit containing_block_adjustment = LayoutUnit(),
const OofContainingBlock<LogicalOffset>* containing_block = nullptr,
const OofContainingBlock<LogicalOffset>* fixedpos_containing_block =
nullptr,
const OofInlineContainer<LogicalOffset>* fixedpos_inline_container =
nullptr,
LogicalOffset additional_fixedpos_offset = LogicalOffset());
// Same as PropagateOOFPositionedInfo(), but only performs the propagation of
// OOF fragmentainer descendants. If |out_list| is provided, any OOF
// fragmentainer descendants should be propagated there rather than to this
// builder.
void PropagateOOFFragmentainerDescendants(
const PhysicalFragment& fragment,
LogicalOffset offset,
LogicalOffset relative_offset,
LayoutUnit containing_block_adjustment,
const OofContainingBlock<LogicalOffset>* containing_block,
const OofContainingBlock<LogicalOffset>* fixedpos_containing_block,
HeapVector<LogicalOofNodeForFragmentation>* out_list = nullptr);
void SetIsSelfCollapsing() { is_self_collapsing_ = true; }
void SetIsPushedByFloats() { is_pushed_by_floats_ = true; }
bool IsPushedByFloats() const { return is_pushed_by_floats_; }
// Set when this subtree has modified the incoming margin-strut, such that it
// may change our final position.
void SetSubtreeModifiedMarginStrut() {
DCHECK(!BfcBlockOffset());
subtree_modified_margin_strut_ = true;
}
void ResetAdjoiningObjectTypes() {
adjoining_object_types_ = kAdjoiningNone;
has_adjoining_object_descendants_ = false;
}
void AddAdjoiningObjectTypes(AdjoiningObjectTypes adjoining_object_types) {
adjoining_object_types_ |= adjoining_object_types;
has_adjoining_object_descendants_ |= adjoining_object_types;
}
void SetAdjoiningObjectTypes(AdjoiningObjectTypes adjoining_object_types) {
adjoining_object_types_ = adjoining_object_types;
}
void SetHasAdjoiningObjectDescendants(bool has_adjoining_object_descendants) {
has_adjoining_object_descendants_ = has_adjoining_object_descendants;
}
AdjoiningObjectTypes GetAdjoiningObjectTypes() const {
return adjoining_object_types_;
}
void SetIsBlockInInline() { is_block_in_inline_ = true; }
void SetIsLineForParallelFlow() { is_line_for_parallel_flow_ = true; }
void SetHasBlockFragmentation() { has_block_fragmentation_ = true; }
// Set for any node that establishes a fragmentation context, such as multicol
// containers.
void SetIsBlockFragmentationContextRoot() {
is_fragmentation_context_root_ = true;
}
bool IsBlockFragmentationContextRoot() const {
return is_fragmentation_context_root_;
}
// There may be cases where a column spanner was previously found but is no
// longer accessible. For example, in simplified OOF layout, we may want to
// recreate a spanner break for an existing fragment being relaid out, but
// the spanner node is no longer available. In such cases,
// |has_column_spanner_| may be true while |column_spanner_path_| is not set.
void SetHasColumnSpanner(bool has_column_spanner) {
has_column_spanner_ = has_column_spanner;
}
void SetColumnSpannerPath(const ColumnSpannerPath* spanner_path) {
column_spanner_path_ = spanner_path;
SetHasColumnSpanner(!!spanner_path);
}
bool FoundColumnSpanner() const {
DCHECK(has_column_spanner_ || !column_spanner_path_);
return has_column_spanner_;
}
void SetIsEmptySpannerParent(bool is_empty_spanner_parent) {
DCHECK(FoundColumnSpanner());
is_empty_spanner_parent_ = is_empty_spanner_parent;
}
bool IsEmptySpannerParent() const { return is_empty_spanner_parent_; }
void SetShouldForceSameFragmentationFlow() {
should_force_same_fragmentation_flow_ = true;
}
bool ShouldForceSameFragmentationFlow() const {
return should_force_same_fragmentation_flow_;
}
// True if we need to keep some child content in the current fragmentainer
// before breaking (even that overflows the fragmentainer). We'll do this by
// refusing last-resort breaks when there's no container separation, and we'll
// instead overflow the fragmentainer. See MustStayInCurrentFragmentainer().
void SetRequiresContentBeforeBreaking(bool b) {
requires_content_before_breaking_ = b;
}
bool RequiresContentBeforeBreaking() const {
return requires_content_before_breaking_;
}
// Downgrade the break appeal if the specified break appeal is lower than any
// found so far.
void ClampBreakAppeal(BreakAppeal appeal) {
break_appeal_ = std::min(break_appeal_, appeal);
}
void SetHasDescendantThatDependsOnPercentageBlockSize(bool b = true) {
has_descendant_that_depends_on_percentage_block_size_ = b;
}
// See LayoutResult::AnnotationOverflow().
void SetAnnotationOverflow(LayoutUnit overflow) {
annotation_overflow_ = overflow;
}
LayoutUnit AnnotationOverflow() const { return annotation_overflow_; }
// See LayoutResult::BlockEndAnnotatioSpace().
void SetBlockEndAnnotationSpace(LayoutUnit space) {
block_end_annotation_space_ = space;
}
// Report space shortage, i.e. how much more space would have been sufficient
// to prevent some piece of content from breaking. This information may be
// used by the column balancer to stretch columns.
void PropagateSpaceShortage(std::optional<LayoutUnit> space_shortage);
std::optional<LayoutUnit> MinimalSpaceShortage() const {
if (minimal_space_shortage_ == kIndefiniteSize) {
return std::nullopt;
}
return minimal_space_shortage_;
}
void PropagateTallestUnbreakableBlockSize(LayoutUnit unbreakable_block_size) {
// We should only calculate the block-size of the tallest piece of
// unbreakable content during the initial column balancing pass, when we
// haven't set a tentative fragmentainer block-size yet.
DCHECK(IsInitialColumnBalancingPass());
tallest_unbreakable_block_size_ =
std::max(tallest_unbreakable_block_size_, unbreakable_block_size);
}
void SetIsInitialColumnBalancingPass() {
// Note that we have no dedicated flag for being in the initial column
// balancing pass here. We'll just bump tallest_unbreakable_block_size_ to
// 0, so that LayoutResult knows that we need to store unbreakable
// block-size.
DCHECK_EQ(tallest_unbreakable_block_size_, LayoutUnit::Min());
tallest_unbreakable_block_size_ = LayoutUnit();
}
bool IsInitialColumnBalancingPass() const {
return tallest_unbreakable_block_size_ >= LayoutUnit();
}
// To be called once, after the final size has been set (i.e. in-flow layout
// is done), and before generating the fragment.
void Finalize();
const LayoutResult* Abort(LayoutResult::EStatus);
#if DCHECK_IS_ON()
String ToString() const;
#endif
protected:
FragmentBuilder(const LayoutInputNode& node,
const ComputedStyle* style,
const ConstraintSpace& space,
WritingDirectionMode writing_direction,
const BreakToken* previous_break_token)
: node_(node),
space_(space),
style_(style),
writing_direction_(writing_direction),
style_variant_(StyleVariant::kStandard),
previous_break_token_(previous_break_token),
is_hidden_for_paint_(space.IsHiddenForPaint()) {
DCHECK(style_);
layout_object_ = node.GetLayoutBox();
}
GCedHeapVector<Member<LayoutBoxModelObject>>& EnsureStickyDescendants();
GCedHeapVector<Member<Element>>& EnsureSnapAreas();
PhysicalAnchorQuery& EnsureAnchorQuery();
void PropagateFromLayoutResultAndFragment(
const LayoutResult&,
LogicalOffset child_offset,
LogicalOffset relative_offset,
const OofInlineContainer<LogicalOffset>* = nullptr);
void PropagateFromLayoutResult(const LayoutResult&);
void PropagateScrollInitialTarget(const PhysicalFragment& child);
void PropagateFromFragment(
const PhysicalFragment& child,
LogicalOffset child_offset,
LogicalOffset relative_offset,
const OofInlineContainer<LogicalOffset>* inline_container = nullptr);
void AddChildInternal(const PhysicalFragment*, const LogicalOffset&);
// Set the fixedpos inline container and containing block based on the current
// |box_fragment|, |relative_offset| and |current_inline_container|.
void AdjustFixedposContainerInfo(
const PhysicalFragment* box_fragment,
LogicalOffset relative_offset,
OofInlineContainer<LogicalOffset>* fixedpos_inline_container,
const PhysicalFragment** fixedpos_containing_block_fragment,
const OofInlineContainer<LogicalOffset>* current_inline_container =
nullptr) const;
void UpdateScrollInitialTarget(const LayoutObject* new_target);
// Propagate data that was held back until the final size was known.
void PropagateSizeDependentData();
LayoutInputNode node_;
const ConstraintSpace& space_;
const ComputedStyle* style_;
WritingDirectionMode writing_direction_;
StyleVariant style_variant_;
PhysicalFragment::BoxType box_type_ = PhysicalFragment::BoxType::kNormalBox;
LogicalSize size_;
LayoutObject* layout_object_ = nullptr;
// The break token from the previous fragment, that serves as input now.
const BreakToken* previous_break_token_ = nullptr;
// The break token to store in the resulting fragment.
const BreakToken* break_token_ = nullptr;
GCedHeapVector<Member<LayoutBoxModelObject>>* sticky_descendants_ = nullptr;
GCedHeapVector<Member<Element>>* snap_areas_ = nullptr;
// [1] https://drafts.csswg.org/css-scroll-snap-2/#scroll-initial-target
const LayoutObject* scroll_start_target_ = nullptr;
PhysicalAnchorQuery* anchor_query_ = nullptr;
LayoutUnit bfc_line_offset_;
std::optional<LayoutUnit> bfc_block_offset_;
MarginStrut end_margin_strut_;
ExclusionSpace exclusion_space_;
std::optional<int> lines_until_clamp_;
ChildrenVector children_;
// Children where we need to know the container size before some propagation
// operation can take place.
HeapVector<LogicalFragmentLink> children_with_size_dependent_propagation_;
FragmentItemsBuilder* items_builder_ = nullptr;
// Only used by the BoxFragmentBuilder subclass, but defined here to avoid
// a virtual function call.
BreakTokenVector child_break_tokens_;
const InlineBreakToken* last_inline_break_token_ = nullptr;
HeapVector<LogicalOofPositionedNode> oof_positioned_candidates_;
HeapVector<LogicalOofNodeForFragmentation>
oof_positioned_fragmentainer_descendants_;
HeapVector<LogicalOofPositionedNode> oof_positioned_descendants_;
MulticolCollection multicols_with_pending_oofs_;
UnpositionedListMarker unpositioned_list_marker_;
const ColumnSpannerPath* column_spanner_path_ = nullptr;
const EarlyBreak* early_break_ = nullptr;
// The appeal of breaking inside this container.
BreakAppeal break_appeal_ = kBreakAppealPerfect;
// See LayoutResult::AnnotationOverflow().
LayoutUnit annotation_overflow_;
// See LayoutResult::BlockEndAnnotationSpace().
LayoutUnit block_end_annotation_space_;
LayoutUnit minimal_space_shortage_ = kIndefiniteSize;
LayoutUnit tallest_unbreakable_block_size_ = LayoutUnit::Min();
// The number of line boxes or flex lines added to the builder. Only updated
// if we're performing block fragmentation.
int line_count_ = 0;
AdjoiningObjectTypes adjoining_object_types_ = kAdjoiningNone;
bool has_adjoining_object_descendants_ = false;
bool is_self_collapsing_ = false;
bool is_pushed_by_floats_ = false;
bool subtree_modified_margin_strut_ = false;
bool is_new_fc_ = false;
bool is_block_in_inline_ = false;
bool is_line_for_parallel_flow_ = false;
bool has_floating_descendants_for_paint_ = false;
bool has_descendant_that_depends_on_percentage_block_size_ = false;
bool has_orthogonal_fallback_size_descendant_ = false;
bool may_have_descendant_above_block_start_ = false;
bool has_block_fragmentation_ = false;
bool is_fragmentation_context_root_ = false;
bool is_hidden_for_paint_ = false;
bool is_opaque_ = false;
bool has_collapsed_borders_ = false;
bool has_column_spanner_ = false;
bool is_empty_spanner_parent_ = false;
bool should_force_same_fragmentation_flow_ = false;
bool requires_content_before_breaking_ = false;
bool has_out_of_flow_fragment_child_ = false;
bool has_out_of_flow_in_fragmentainer_subtree_ = false;
bool is_block_end_trimmable_line_ = false;
bool would_be_last_line_if_not_for_ellipsis_ = false;
bool has_final_size_ = false;
bool oof_candidates_may_have_anchor_queries_ = false;
bool oof_fragmentainer_descendants_may_have_anchor_queries_ = false;
#if DCHECK_IS_ON()
bool is_may_have_descendant_above_block_start_explicitly_set_ = false;
bool is_finalized_ = false;
#endif
friend class InlineLayoutStateStack;
friend class LayoutResult;
friend class PhysicalFragment;
};
} // namespace blink
#endif // THIRD_PARTY_BLINK_RENDERER_CORE_LAYOUT_FRAGMENT_BUILDER_H_
|