1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/core/layout/fragmentation_utils.h"
#include "base/containers/adapters.h"
#include "third_party/blink/renderer/core/core_export.h"
#include "third_party/blink/renderer/core/dom/element.h"
#include "third_party/blink/renderer/core/layout/block_break_token.h"
#include "third_party/blink/renderer/core/layout/box_fragment_builder.h"
#include "third_party/blink/renderer/core/layout/constraint_space.h"
#include "third_party/blink/renderer/core/layout/constraint_space_builder.h"
#include "third_party/blink/renderer/core/layout/length_utils.h"
#include "third_party/blink/renderer/core/layout/logical_box_fragment.h"
#include "third_party/blink/renderer/core/layout/physical_box_fragment.h"
#include "third_party/blink/renderer/core/layout/space_utils.h"
#include "third_party/blink/renderer/core/style/computed_style.h"
#include "third_party/blink/renderer/platform/runtime_enabled_features.h"
namespace blink {
namespace {
// At a class A break point [1], the break value with the highest precedence
// wins. If the two values have the same precedence (e.g. "left" and "right"),
// the value specified on a latter object wins.
//
// [1] https://drafts.csswg.org/css-break/#possible-breaks
inline int FragmentainerBreakPrecedence(EBreakBetween break_value) {
// "auto" has the lowest priority.
// "avoid*" values win over "auto".
// "avoid-page" wins over "avoid-column".
// "avoid" wins over "avoid-page".
// Forced break values win over "avoid".
// Any forced page break value wins over "column" forced break.
// More specific break values (left, right, recto, verso) wins over generic
// "page" values.
switch (break_value) {
default:
NOTREACHED();
case EBreakBetween::kAuto:
return 0;
case EBreakBetween::kAvoidColumn:
return 1;
case EBreakBetween::kAvoidPage:
return 2;
case EBreakBetween::kAvoid:
return 3;
case EBreakBetween::kColumn:
return 4;
case EBreakBetween::kPage:
return 5;
case EBreakBetween::kLeft:
case EBreakBetween::kRight:
case EBreakBetween::kRecto:
case EBreakBetween::kVerso:
return 6;
}
}
bool ShouldCloneBlockStartBorderPadding(const BoxFragmentBuilder& builder) {
if (builder.Node().Style().BoxDecorationBreak() !=
EBoxDecorationBreak::kClone) {
return false;
}
const BlockBreakToken* previous_break_token = builder.PreviousBreakToken();
if (!previous_break_token) {
return true;
}
if (previous_break_token->MonolithicOverflow()) {
LayoutUnit space_left =
FragmentainerSpaceLeft(builder, /*is_for_children=*/false);
if (space_left < builder.BorderScrollbarPadding().BlockSum()) {
return false;
}
}
return !previous_break_token->IsAtBlockEnd();
}
} // anonymous namespace
EBreakBetween JoinFragmentainerBreakValues(EBreakBetween first_value,
EBreakBetween second_value) {
if (FragmentainerBreakPrecedence(second_value) >=
FragmentainerBreakPrecedence(first_value))
return second_value;
return first_value;
}
bool IsForcedBreakValue(const ConstraintSpace& constraint_space,
EBreakBetween break_value) {
if (constraint_space.ShouldIgnoreForcedBreaks())
return false;
if (break_value == EBreakBetween::kColumn)
return constraint_space.BlockFragmentationType() == kFragmentColumn;
// TODO(mstensho): The innermost fragmentation type doesn't tell us everything
// here. We might want to force a break to the next page, even if we're in
// multicol (printing multicol, for instance).
if (break_value == EBreakBetween::kLeft ||
break_value == EBreakBetween::kPage ||
break_value == EBreakBetween::kRecto ||
break_value == EBreakBetween::kRight ||
break_value == EBreakBetween::kVerso)
return constraint_space.BlockFragmentationType() == kFragmentPage;
return false;
}
template <typename Property>
bool IsAvoidBreakValue(const ConstraintSpace& constraint_space,
Property break_value) {
if (break_value == Property::kAvoid)
return constraint_space.HasBlockFragmentation();
if (break_value == Property::kAvoidColumn)
return constraint_space.BlockFragmentationType() == kFragmentColumn;
// TODO(mstensho): The innermost fragmentation type doesn't tell us everything
// here. We might want to avoid breaking to the next page, even if we're
// in multicol (printing multicol, for instance).
if (break_value == Property::kAvoidPage)
return constraint_space.BlockFragmentationType() == kFragmentPage;
return false;
}
// The properties break-after, break-before and break-inside may all specify
// avoid* values. break-after and break-before use EBreakBetween, and
// break-inside uses EBreakInside.
template bool CORE_TEMPLATE_EXPORT IsAvoidBreakValue(const ConstraintSpace&,
EBreakBetween);
template bool CORE_TEMPLATE_EXPORT IsAvoidBreakValue(const ConstraintSpace&,
EBreakInside);
EBreakBetween CalculateBreakBetweenValue(LayoutInputNode child,
const LayoutResult& layout_result,
const BoxFragmentBuilder& builder) {
if (child.IsInline())
return EBreakBetween::kAuto;
// Since it's not an inline node, if we have a fragment at all, it has to be a
// box fragment.
const PhysicalBoxFragment* box_fragment = nullptr;
if (layout_result.Status() == LayoutResult::kSuccess) {
box_fragment =
&To<PhysicalBoxFragment>(layout_result.GetPhysicalFragment());
if (!box_fragment->IsFirstForNode()) {
// If the node is resumed after a break, we are not *before* it anymore,
// so ignore values. We normally don't even consider breaking before a
// resumed node, since there normally is no container separation. The
// normal place to resume is at the very start of the fragmentainer -
// cannot break there! However, there are cases where a node is resumed
// at a location past the start of the fragmentainer, e.g. when printing
// monolithic overflowing content.
return EBreakBetween::kAuto;
}
}
EBreakBetween break_before = JoinFragmentainerBreakValues(
child.Style().BreakBefore(), layout_result.InitialBreakBefore());
break_before = builder.JoinedBreakBetweenValue(break_before);
const auto& space = builder.GetConstraintSpace();
if (space.IsPaginated() && box_fragment &&
!IsForcedBreakValue(builder.GetConstraintSpace(), break_before)) {
AtomicString current_name = builder.PageName();
if (current_name == g_null_atom) {
current_name = space.PageName();
}
// If the page name propagated from the child differs from what we already
// have, we need to break before the child.
if (box_fragment->PageName() != current_name) {
return EBreakBetween::kPage;
}
}
return break_before;
}
bool IsBreakableAtStartOfResumedContainer(
const ConstraintSpace& space,
const LayoutResult& child_layout_result,
const BoxFragmentBuilder& builder) {
if (child_layout_result.Status() != LayoutResult::kSuccess) {
return false;
}
bool is_first_for_node = true;
if (const auto* box_fragment = DynamicTo<PhysicalBoxFragment>(
child_layout_result.GetPhysicalFragment())) {
is_first_for_node = box_fragment->IsFirstForNode();
}
return IsBreakableAtStartOfResumedContainer(space, builder,
is_first_for_node);
}
bool IsBreakableAtStartOfResumedContainer(const ConstraintSpace& space,
const BoxFragmentBuilder& builder,
bool is_first_for_node) {
return space.MinBreakAppeal() != kBreakAppealLastResort &&
IsBreakInside(builder.PreviousBreakToken()) && is_first_for_node;
}
BreakAppeal CalculateBreakAppealBefore(const ConstraintSpace& space,
LayoutInputNode child,
const LayoutResult& layout_result,
const BoxFragmentBuilder& builder,
bool has_container_separation) {
bool breakable_at_start_of_container =
IsBreakableAtStartOfResumedContainer(space, layout_result, builder);
EBreakBetween break_between =
CalculateBreakBetweenValue(child, layout_result, builder);
return CalculateBreakAppealBefore(space, layout_result.Status(),
break_between, has_container_separation,
breakable_at_start_of_container);
}
BreakAppeal CalculateBreakAppealBefore(
const ConstraintSpace& space,
LayoutResult::EStatus layout_result_status,
EBreakBetween break_between,
bool has_container_separation,
bool breakable_at_start_of_container) {
DCHECK(layout_result_status == LayoutResult::kSuccess ||
layout_result_status == LayoutResult::kOutOfFragmentainerSpace);
BreakAppeal break_appeal = kBreakAppealPerfect;
if (!has_container_separation &&
layout_result_status == LayoutResult::kSuccess) {
if (!breakable_at_start_of_container) {
// This is not a valid break point. If there's no container separation, it
// means that we're breaking before the first piece of in-flow content
// inside this block, even if it's not a valid class C break point [1]. We
// really don't want to break here, if we can find something better.
//
// [1] https://www.w3.org/TR/css-break-3/#possible-breaks
return kBreakAppealLastResort;
}
// This is the first child after a break. We are normally not allowed to
// break before those, but in this case we will allow it, to prevent
// suboptimal breaks that might otherwise occur further ahead in the
// fragmentainer. If necessary, we'll push this child (and all subsequent
// content) past all the columns in the current row all the way to the the
// next row in the next outer fragmentainer, where there may be more space,
// in order to avoid suboptimal breaks.
break_appeal = space.MinBreakAppeal();
}
if (IsAvoidBreakValue(space, break_between)) {
// If there's a break-{after,before}:avoid* involved at this breakpoint, its
// appeal will decrease.
break_appeal = std::min(break_appeal, kBreakAppealViolatingBreakAvoid);
}
return break_appeal;
}
BreakAppeal CalculateBreakAppealInside(
const ConstraintSpace& space,
const LayoutResult& layout_result,
std::optional<BreakAppeal> hypothetical_appeal) {
if (layout_result.HasForcedBreak())
return kBreakAppealPerfect;
const auto& physical_fragment = layout_result.GetPhysicalFragment();
const auto* break_token =
DynamicTo<BlockBreakToken>(physical_fragment.GetBreakToken());
BreakAppeal appeal;
bool consider_break_inside_avoidance;
if (hypothetical_appeal) {
// The hypothetical appeal of breaking inside should only be considered if
// we haven't actually broken.
DCHECK(!break_token);
appeal = *hypothetical_appeal;
consider_break_inside_avoidance = true;
} else {
appeal = layout_result.GetBreakAppeal();
consider_break_inside_avoidance = IsBreakInside(break_token);
}
// We don't let break-inside:avoid affect the child's stored break appeal, but
// we rather handle it now, on the outside. The reason is that we want to be
// able to honor any 'avoid' values on break-before or break-after among the
// children of the child, even if we need to disregrard a break-inside:avoid
// rule on the child itself. This prevents us from violating more rules than
// necessary: if we need to break inside the child (even if it should be
// avoided), we'll at least break at the most appealing location inside.
if (consider_break_inside_avoidance &&
appeal > kBreakAppealViolatingBreakAvoid &&
IsAvoidBreakValue(space, physical_fragment.Style().BreakInside()))
appeal = kBreakAppealViolatingBreakAvoid;
return appeal;
}
LogicalSize FragmentainerLogicalCapacity(
const PhysicalBoxFragment& fragmentainer) {
DCHECK(fragmentainer.IsFragmentainerBox());
LogicalSize logical_size =
WritingModeConverter(fragmentainer.Style().GetWritingDirection())
.ToLogical(fragmentainer.Size());
// TODO(layout-dev): This should really be checking if there are any
// descendants that take up block space rather than if it has overflow. In
// other words, we would still want to clamp a zero height fragmentainer if
// it had content with zero inline size and non-zero block size. This would
// likely require us to store an extra flag on PhysicalBoxFragment.
if (fragmentainer.HasScrollableOverflow()) {
// Don't clamp the fragmentainer to a block size of 1 if it is truly a
// zero-height column.
logical_size.block_size =
ClampedToValidFragmentainerCapacity(logical_size.block_size);
}
return logical_size;
}
LogicalOffset GetFragmentainerProgression(const BoxFragmentBuilder& builder,
FragmentationType type) {
if (type == kFragmentColumn) {
LayoutUnit column_inline_progression = ColumnInlineProgression(
builder.Style(), builder.ChildAvailableSize().inline_size);
return LogicalOffset(column_inline_progression, LayoutUnit());
}
DCHECK_EQ(type, kFragmentPage);
return LogicalOffset(LayoutUnit(), builder.ChildAvailableSize().block_size);
}
void SetupSpaceBuilderForFragmentation(const ConstraintSpace& parent_space,
const LayoutInputNode& child,
LayoutUnit fragmentainer_offset,
LayoutUnit fragmentainer_block_size,
bool requires_content_before_breaking,
ConstraintSpaceBuilder* builder) {
DCHECK(parent_space.HasBlockFragmentation());
// If the child is truly unbreakable, it won't participate in block
// fragmentation. If it's too tall to fit, it will either overflow the
// fragmentainer or get brutally sliced into pieces (without looking for
// allowed breakpoints, since there are none, by definition), depending on
// fragmentation type (multicol vs. printing). We still need to perform block
// fragmentation inside inline nodes, though: While the line box itself is
// monolithic, there may be floats inside, which are fragmentable.
if (child.IsMonolithic() && !child.IsInline()) {
builder->SetShouldPropagateChildBreakValues(false);
return;
}
builder->SetFragmentainerBlockSize(fragmentainer_block_size);
builder->SetFragmentainerOffset(fragmentainer_offset);
if (fragmentainer_offset <= LayoutUnit())
builder->SetIsAtFragmentainerStart();
builder->SetFragmentationType(parent_space.BlockFragmentationType());
builder->SetShouldPropagateChildBreakValues();
DCHECK(!requires_content_before_breaking ||
!parent_space.IsInitialColumnBalancingPass());
builder->SetRequiresContentBeforeBreaking(requires_content_before_breaking);
if (parent_space.IsInsideBalancedColumns())
builder->SetIsInsideBalancedColumns();
// We lack the required machinery to resume layout inside out-of-flow
// positioned elements during regular layout. OOFs are handled by regular
// layout during the initial column balacning pass, while it's handled
// specially during actual layout - at the outermost fragmentation context in
// OutOfFlowLayoutPart (so this is only an issue when calculating the
// initial column block-size). So just disallow breaks (we only need to worry
// about forced breaks, as soft breaks are impossible in the initial column
// balancing pass). This might result in over-stretched columns in some
// strange cases, but probably something we can live with.
if ((parent_space.IsInitialColumnBalancingPass() &&
child.IsOutOfFlowPositioned()) ||
parent_space.ShouldIgnoreForcedBreaks())
builder->SetShouldIgnoreForcedBreaks();
builder->SetMinBreakAppeal(parent_space.MinBreakAppeal());
if (parent_space.IsPaginated()) {
if (AtomicString page_name = child.PageName())
builder->SetPageName(page_name);
else
builder->SetPageName(parent_space.PageName());
}
}
void SetupSpaceBuilderForFragmentation(
const BoxFragmentBuilder& parent_fragment_builder,
const LayoutInputNode& child,
LayoutUnit fragmentainer_offset_delta,
ConstraintSpaceBuilder* builder) {
LayoutUnit fragmentainer_block_size =
FragmentainerCapacity(parent_fragment_builder, /*is_for_children=*/true);
LayoutUnit fragmentainer_block_offset =
FragmentainerOffset(parent_fragment_builder, /*is_for_children=*/true) +
fragmentainer_offset_delta;
return SetupSpaceBuilderForFragmentation(
parent_fragment_builder.GetConstraintSpace(), child,
fragmentainer_block_offset, fragmentainer_block_size,
parent_fragment_builder.RequiresContentBeforeBreaking(), builder);
}
void SetupFragmentBuilderForFragmentation(
const ConstraintSpace& space,
const LayoutInputNode& node,
const BlockBreakToken* previous_break_token,
BoxFragmentBuilder* builder) {
// When resuming layout after a break, we may not be allowed to break again
// (because of clipped overflow). In such situations, we should not call
// SetHasBlockFragmentation(), but we still need to resume layout correctly,
// based on the previous break token.
DCHECK(space.HasBlockFragmentation() || previous_break_token);
// If the node itself is monolithic, we shouldn't be here.
DCHECK(!node.IsMonolithic() || space.IsAnonymous());
// If we turn off fragmentation on a non-monolithic node, we need to treat the
// resulting fragment as monolithic. This matters when it comes to determining
// the containing block of out-of-flow positioned descendants. In order to
// match the behavior in OOF layout, however, the fragment should only become
// monolithic when fragmentation is forced off at the first fragment. If we
// reach the end of the visible area after the containing block has inserted a
// break, it should not be set as monolithic. (How can we be monolithic, if we
// create more than one fragment, anyway?) An OOF fragment will always become
// a direct child of the fragmentainer if the containing block generates more
// than one fragment. The monolithicness flag is ultimately checked by
// pre-paint, in order to know where in the tree to look for the OOF fragment
// (direct fragmentainer child vs. child of the actual containing block).
builder->SetIsMonolithic(!space.IsAnonymous() &&
space.IsBlockFragmentationForcedOff() &&
!IsBreakInside(previous_break_token));
if (space.HasBlockFragmentation())
builder->SetHasBlockFragmentation();
if (space.IsInitialColumnBalancingPass())
builder->SetIsInitialColumnBalancingPass();
unsigned sequence_number = 0;
if (previous_break_token && !previous_break_token->IsBreakBefore()) {
sequence_number = previous_break_token->SequenceNumber() + 1;
builder->SetIsFirstForNode(false);
}
LayoutUnit space_left =
FragmentainerSpaceLeft(*builder, /*is_for_children=*/false);
// If box decorations are to be cloned, both block-start and block-end should
// obviosuly be present in every fragment, but whether block-end decorations
// count as being cloned or not depends on whether the fragment currently
// being built is known to be the last fragment. If it is, block-end box
// decorations will behave as normally, so that child content may overflow it.
bool clone_box_start_decorations =
ShouldCloneBlockStartBorderPadding(*builder);
bool clone_box_end_decorations = clone_box_start_decorations;
if (clone_box_start_decorations) {
// Include border/padding from previous fragments. When resolving the
// block-size for this fragment, we need the total space used by
// decorations.
builder->UpdateBorderPaddingForClonedBoxDecorations();
}
if (space.HasBlockFragmentation() && !space.IsAnonymous() &&
!space.IsInitialColumnBalancingPass()) {
bool requires_content_before_breaking =
space.RequiresContentBeforeBreaking();
// We're now going to figure out if the (remainder of the) node is
// guaranteed to fit in the fragmentainer, and make some decisions based on
// that. We'll skip this for tables, because table sizing is complicated,
// since captions are not part of the "table box", and any specified
// block-size pertains to the table box, while the captions are on the
// outside of the "table box", but still part of the fragment.
if (!node.IsTable() &&
builder->InitialBorderBoxSize().inline_size != kIndefiniteSize) {
// Pass an "infinite" intrinsic size to see how the block-size is
// constrained. If it doesn't affect the block size, it means that we can
// tell before layout how much more space this node needs.
LayoutUnit max_block_size = ComputeBlockSizeForFragment(
space, To<BlockNode>(node), builder->BorderPadding(),
LayoutUnit::Max(), builder->InitialBorderBoxSize().inline_size);
DCHECK(space.HasKnownFragmentainerBlockSize());
// If max_block_size is "infinite", we can't tell for sure that it's going
// to fit. The calculation below will normally detect that, but it's going
// to be incorrect when we have reached the point where space left
// incorrectly seems to be enough to contain the remaining fragment when
// subtracting previously consumed block-size from its max size.
if (max_block_size != LayoutUnit::Max()) {
LayoutUnit previously_consumed_block_size;
if (previous_break_token) {
previously_consumed_block_size =
previous_break_token->ConsumedBlockSize();
}
if (max_block_size - previously_consumed_block_size <= space_left) {
builder->SetIsKnownToFitInFragmentainer(true);
clone_box_end_decorations = false;
if (builder->MustStayInCurrentFragmentainer())
requires_content_before_breaking = true;
}
}
}
if (clone_box_end_decorations) {
builder->SetShouldCloneBoxEndDecorations(true);
// If block-end border+padding is cloned, they should be repeated in every
// fragment, so breaking before them would be wrong and make no sense.
builder->SetShouldPreventBreakBeforeBlockEndDecorations(true);
}
builder->SetRequiresContentBeforeBreaking(requires_content_before_breaking);
}
builder->SetSequenceNumber(sequence_number);
if (IsBreakInside(previous_break_token) && !clone_box_start_decorations) {
// When resuming after a fragmentation break in the slicing box decoration
// break model, block-start border and padding are omitted. Don't omit it
// here for tables, though. The table box (which contains the border) might
// not start in the first fragment, if there are preceding captions, so the
// table algorithm needs to handle this logic on its own.
if (!node.IsTable()) {
builder->ClearBorderScrollbarPaddingBlockStart();
}
}
if (builder->IsInitialColumnBalancingPass()) {
const BoxStrut& unbreakable = builder->BorderScrollbarPadding();
builder->PropagateTallestUnbreakableBlockSize(unbreakable.block_start);
builder->PropagateTallestUnbreakableBlockSize(unbreakable.block_end);
}
}
bool ShouldIncludeBlockStartBorderPadding(const BoxFragmentBuilder& builder) {
return !IsBreakInside(builder.PreviousBreakToken()) ||
ShouldCloneBlockStartBorderPadding(builder);
}
bool ShouldIncludeBlockEndBorderPadding(const BoxFragmentBuilder& builder) {
if (builder.PreviousBreakToken() &&
builder.PreviousBreakToken()->IsAtBlockEnd()) {
// Past the block-end, and therefore past block-end border+padding.
return false;
}
if (!builder.ShouldBreakInside() || builder.IsKnownToFitInFragmentainer() ||
builder.ShouldCloneBoxEndDecorations()) {
return true;
}
// We're going to break inside.
if (builder.GetConstraintSpace().IsNewFormattingContext()) {
return false;
}
// Not being a formatting context root, only in-flow child breaks will have an
// effect on where the block ends.
return !builder.HasInflowChildBreakInside();
}
BreakStatus FinishFragmentation(BoxFragmentBuilder* builder) {
const BlockNode& node = builder->Node();
const ConstraintSpace& space = builder->GetConstraintSpace();
LayoutUnit space_left = FragmentainerSpaceLeft(*builder,
/*is_for_children=*/false);
const BlockBreakToken* previous_break_token = builder->PreviousBreakToken();
LayoutUnit previously_consumed_block_size;
if (previous_break_token && !previous_break_token->IsBreakBefore())
previously_consumed_block_size = previous_break_token->ConsumedBlockSize();
bool is_past_end =
previous_break_token && previous_break_token->IsAtBlockEnd();
LayoutUnit fragments_total_block_size = builder->FragmentsTotalBlockSize();
LayoutUnit desired_block_size =
fragments_total_block_size - previously_consumed_block_size;
// Consumed block-size stored in the break tokens is always stretched to the
// fragmentainers. If this wasn't also the case for all previous fragments
// (because we reached the end of the node and were overflowing), we may end
// up with negative values here.
desired_block_size = desired_block_size.ClampNegativeToZero();
LayoutUnit desired_intrinsic_block_size = builder->IntrinsicBlockSize();
LayoutUnit final_block_size = desired_block_size;
LayoutUnit trailing_border_padding =
builder->BorderScrollbarPadding().block_end;
LayoutUnit subtractable_border_padding;
if (!builder->ShouldPreventBreakBeforeBlockEndDecorations()) {
if (desired_block_size > trailing_border_padding ||
(previous_break_token && previous_break_token->MonolithicOverflow())) {
// There is a last-resort breakpoint before trailing border and padding,
// if progress can still be guaranteed.
//
// Note that we're always guaranteed progress if there's incoming
// monolithic overflow. We're going to move past monolithic overflow, and
// just add as many fragments we need in order to get past the overflow.
subtractable_border_padding = trailing_border_padding;
}
}
if (space_left != kIndefiniteSize) {
// If intrinsic block-size is larger than space left, it means that we have
// some tall unbreakable child content (otherwise it would already have
// broken to stay within the limits). In such cases, this fragment will be
// allowed to take up more space (within applicable constraints) in a
// similarly unbreakable manner, to encompass the unbreakable content. This
// effectively increases the fragmentainer space available, as far as this
// node is concerned.
space_left = std::max(
space_left, desired_intrinsic_block_size - subtractable_border_padding);
}
if (space.IsPaginated()) {
// Descendants take precedence, but if none of them propagated a page name,
// use the one specified on this element (or on something in the ancestry)
// now, if any.
builder->SetPageNameIfNeeded(space.PageName());
}
if (builder->FoundColumnSpanner())
builder->SetDidBreakSelf();
if (is_past_end) {
final_block_size = LayoutUnit();
} else if (builder->FoundColumnSpanner()) {
// There's a column spanner (or more) inside. This means that layout got
// interrupted and thus hasn't reached the end of this block yet. We're
// going to resume inside this block when done with the spanner(s). This is
// true even if there is no column content siblings after the spanner(s).
//
// <div style="columns:2;">
// <div id="container" style="height:100px;">
// <div id="child" style="height:20px;"></div>
// <div style="column-span:all;"></div>
// </div>
// </div>
//
// We'll create fragments for #container both before and after the spanner.
// Before the spanner we'll create one for each column, each 10px tall
// (height of #child divided into 2 columns). After the spanner, there's no
// more content, but the specified height is 100px, so distribute what we
// haven't already consumed (100px - 20px = 80px) over two columns. We get
// two fragments for #container after the spanner, each 40px tall.
final_block_size =
std::min(final_block_size, desired_intrinsic_block_size) -
trailing_border_padding;
// TODO(crbug.com/1381327): We shouldn't get negative sizes here, but this
// happens if we have incorrectly added trailing border/padding of a
// block-size-restricted container (of a spanner) in a previous fragment, so
// that we're past the block-end border edge, in which case
// desired_block_size will be zero (because of an overly large
// previously_consumed_block_size) - so that subtracting
// trailing_border_padding here might result in a negative value. Note that
// the code block right below has some subtractable_border_padding logic
// that could have saved us here, but it still wouldn't be correct. We
// should never add block-end border/padding if we're interrupted by as
// spanner. So just clamp to zero, to avoid DCHECK failures.
final_block_size = final_block_size.ClampNegativeToZero();
} else if (space_left != kIndefiniteSize && desired_block_size > space_left &&
space.HasBlockFragmentation()) {
// We're taller than what we have room for. We don't want to use more than
// |space_left|, but if the intrinsic block-size is larger than that, it
// means that there's something unbreakable (monolithic) inside (or we'd
// already have broken inside). We'll allow this to overflow the
// fragmentainer.
DCHECK_GE(desired_intrinsic_block_size, trailing_border_padding);
DCHECK_GE(desired_block_size, trailing_border_padding);
LayoutUnit modified_intrinsic_block_size = std::max(
space_left, desired_intrinsic_block_size - subtractable_border_padding);
builder->SetIntrinsicBlockSize(modified_intrinsic_block_size);
final_block_size =
std::min(desired_block_size - subtractable_border_padding,
modified_intrinsic_block_size);
// We'll only need to break inside if we need more space after any
// unbreakable content that we may have forcefully fitted here.
if (final_block_size < desired_block_size)
builder->SetDidBreakSelf();
}
LogicalBoxSides sides;
// If this isn't the first fragment, omit the block-start border, if in the
// slicing box decoration break model.
if (previously_consumed_block_size &&
(node.Style().BoxDecorationBreak() == EBoxDecorationBreak::kSlice ||
is_past_end)) {
sides.block_start = false;
}
// If this isn't the last fragment with same-flow content, omit the block-end
// border. If something overflows the node, we'll keep on creating empty
// fragments to contain the overflow (which establishes a parallel flow), but
// those fragments should make no room (nor paint) block-end border/paddding.
if ((builder->DidBreakSelf() && !builder->ShouldCloneBoxEndDecorations()) ||
is_past_end) {
sides.block_end = false;
}
builder->SetSidesToInclude(sides);
builder->SetConsumedBlockSize(previously_consumed_block_size +
final_block_size);
builder->SetFragmentBlockSize(final_block_size);
if (builder->FoundColumnSpanner() || !space.HasBlockFragmentation())
return BreakStatus::kContinue;
bool was_broken_by_child = builder->HasInflowChildBreakInside();
if (!was_broken_by_child && space.IsNewFormattingContext())
was_broken_by_child = builder->GetExclusionSpace().HasFragmentainerBreak();
if (space_left == kIndefiniteSize) {
// We don't know how much space is available (initial column balancing
// pass), so we won't break. Mark that we're at the block end unless there's
// a (forced) break inside, or if we were already at the block end before
// laying out this fragment.
if (!was_broken_by_child || is_past_end) {
builder->SetIsAtBlockEnd();
}
return BreakStatus::kContinue;
}
if (!final_block_size && previous_break_token &&
previous_break_token->MonolithicOverflow()) {
// See if we've now managed to move past previous fragmentainer overflow, or
// if we need to steer clear of at least some of it in the next
// fragmentainer as well. This only happens when printing monolithic
// content.
LayoutUnit remaining_overflow =
previous_break_token->MonolithicOverflow() -
FragmentainerCapacity(*builder, /*is_for_children=*/false);
if (remaining_overflow > LayoutUnit()) {
builder->ReserveSpaceForMonolithicOverflow(remaining_overflow);
}
}
if (builder->ShouldBreakInside()) {
// We need to break before or inside one of our children (or have already
// done so). Even if we fit within the remaining space, and even if the
// child involved in the break were to be in a parallel flow, we still need
// to prepare a break token for this node, so that we can resume layout of
// its broken or unstarted children in the next fragmentainer.
//
// If we're at the end of the node, we need to mark the outgoing break token
// as such. This is a way for the parent algorithm to determine whether we
// need to insert a break there, or whether we may continue with any sibling
// content. If we are allowed to continue, while there's still child content
// left to be laid out, said content ends up in a parallel flow.
// https://www.w3.org/TR/css-break-3/#parallel-flows
//
// TODO(mstensho): The spec actually says that we enter a parallel flow once
// we're past the block-end *content edge*, but here we're checking against
// the *border edge* instead. Does it matter?
if (is_past_end) {
builder->SetIsAtBlockEnd();
// We entered layout already at the end of the block (but with overflowing
// children). So we should take up no more space on our own.
DCHECK_EQ(final_block_size, LayoutUnit());
} else if (desired_block_size <= space_left) {
// We have room for the calculated block-size in the current
// fragmentainer, but we need to figure out whether this node is going to
// produce more non-zero block-size fragments or not.
//
// If the block-size is constrained / fixed (in which case
// IsKnownToFitInFragmentainer() will return true now), we know that we're
// at the end. If block-size is unconstrained (or at least allowed to grow
// a bit more), we're only at the end if no in-flow content inside broke.
if (!was_broken_by_child || builder->IsKnownToFitInFragmentainer()) {
if (node.HasNonVisibleBlockOverflow() && builder->ShouldBreakInside()) {
// We have reached the end of a fragmentable node that clips overflow
// in the block direction. If something broke inside at this point, we
// need to relayout without fragmentation, so that we don't generate
// any additional fragments (apart from the one we're working on) from
// this node. We don't want any zero-sized clipped fragments that
// contribute to superfluous fragmentainers.
return BreakStatus::kDisableFragmentation;
}
builder->SetIsAtBlockEnd();
}
}
if (builder->IsAtBlockEnd()) {
// This node is to be resumed in the next fragmentainer. Make sure that
// consumed block-size includes the entire remainder of the fragmentainer.
// The fragment will normally take up all that space, but not if we've
// reached the end of the node (and we are breaking because of
// overflow). We include the entire fragmentainer in consumed block-size
// in order to write offsets correctly back to legacy layout.
builder->SetConsumedBlockSize(previously_consumed_block_size +
std::max(final_block_size, space_left));
} else {
// If we're not at the end, it means that block-end border and shadow
// should be omitted, unless box decorations are to be cloned.
if (!builder->ShouldCloneBoxEndDecorations()) {
sides.block_end = false;
builder->SetSidesToInclude(sides);
}
}
return BreakStatus::kContinue;
}
if (desired_block_size > space_left) {
// No child inside broke, but we're too tall to fit.
if (!previously_consumed_block_size) {
// This is the first fragment generated for the node. Avoid breaking
// inside block-start border, scrollbar and padding, if possible. No valid
// breakpoints there.
const FragmentGeometry& geometry = builder->InitialFragmentGeometry();
LayoutUnit block_start_unbreakable_space =
geometry.border.block_start + geometry.scrollbar.block_start +
geometry.padding.block_start;
if (space_left < block_start_unbreakable_space)
builder->ClampBreakAppeal(kBreakAppealLastResort);
}
if (space.BlockFragmentationType() == kFragmentColumn &&
!space.IsInitialColumnBalancingPass())
builder->PropagateSpaceShortage(desired_block_size - space_left);
if (desired_block_size <= desired_intrinsic_block_size) {
// We only want to break inside if there's a valid class C breakpoint [1].
// That is, we need a non-zero gap between the last child (outer block-end
// edge) and this container (inner block-end edge). We've just found that
// not to be the case. If we have found a better early break, we should
// break there. Otherwise mark the break as unappealing, as breaking here
// means that we're going to break inside the block-end padding or border,
// or right before them. No valid breakpoints there.
//
// [1] https://www.w3.org/TR/css-break-3/#possible-breaks
if (builder->HasEarlyBreak())
return BreakStatus::kNeedsEarlierBreak;
builder->ClampBreakAppeal(kBreakAppealLastResort);
}
return BreakStatus::kContinue;
}
// The end of the block fits in the current fragmentainer.
builder->SetIsAtBlockEnd();
return BreakStatus::kContinue;
}
BreakStatus FinishFragmentationForFragmentainer(BoxFragmentBuilder* builder) {
const ConstraintSpace& space = builder->GetConstraintSpace();
DCHECK(builder->IsFragmentainerBoxType());
const BlockBreakToken* previous_break_token = builder->PreviousBreakToken();
LayoutUnit consumed_block_size =
previous_break_token ? previous_break_token->ConsumedBlockSize()
: LayoutUnit();
if (space.HasKnownFragmentainerBlockSize()) {
// Just copy the block-size from the constraint space. Calculating the
// size the regular way would cause some problems with overflow. For one,
// we don't want to produce a break token if there's no child content that
// requires it. When we lay out, we use FragmentainerCapacity(), so this
// is what we need to add to consumed block-size for the next break
// token. The fragment block-size itself will be based directly on the
// fragmentainer size from the constraint space, though.
LayoutUnit block_size = space.FragmentainerBlockSize();
LayoutUnit fragmentainer_capacity =
FragmentainerCapacity(*builder, /*is_for_children=*/false);
builder->SetFragmentBlockSize(block_size);
consumed_block_size += fragmentainer_capacity;
builder->SetConsumedBlockSize(consumed_block_size);
if (!RuntimeEnabledFeatures::LayoutBoxVisualLocationEnabled()) {
// We clamp the fragmentainer block size from 0 to 1 for legacy write-back
// if there is content that overflows the zero-height fragmentainer. Set
// the consumed block size adjustment for legacy if this results in a
// different consumed block size than is used for NG layout.
LayoutUnit consumed_block_size_for_legacy =
previous_break_token
? previous_break_token->ConsumedBlockSizeForLegacy()
: LayoutUnit();
LayoutUnit legacy_fragmentainer_block_size =
(builder->IntrinsicBlockSize() > LayoutUnit())
? fragmentainer_capacity
: block_size;
LayoutUnit consumed_block_size_legacy_adjustment =
consumed_block_size_for_legacy + legacy_fragmentainer_block_size -
consumed_block_size;
builder->SetConsumedBlockSizeLegacyAdjustment(
consumed_block_size_legacy_adjustment);
}
if (previous_break_token && previous_break_token->MonolithicOverflow()) {
// Add pages as long as there's monolithic overflow that requires it.
LayoutUnit remaining_overflow =
previous_break_token->MonolithicOverflow() -
FragmentainerCapacity(*builder, /*is_for_children=*/false);
if (remaining_overflow > LayoutUnit()) {
builder->ReserveSpaceForMonolithicOverflow(remaining_overflow);
}
}
} else {
LayoutUnit fragments_total_block_size = builder->FragmentsTotalBlockSize();
// Just pass the value through. This is a fragmentainer, and fragmentainers
// don't have previously consumed block-size baked in, unlike any other
// fragments.
builder->SetFragmentBlockSize(fragments_total_block_size);
builder->SetConsumedBlockSize(fragments_total_block_size +
consumed_block_size);
}
if (builder->IsEmptySpannerParent() &&
builder->HasOutOfFlowFragmentainerDescendants())
builder->SetIsEmptySpannerParent(false);
return BreakStatus::kContinue;
}
bool HasBreakOpportunityBeforeNextChild(
const PhysicalFragment& child_fragment,
const BreakToken* incoming_child_break_token) {
// Once we have added a child, there'll be a valid class A/B breakpoint [1]
// before consecutive siblings, which implies that we have container
// separation, which means that we may break before such siblings. Exclude
// children in parallel flows, since they shouldn't affect this flow.
//
// [1] https://www.w3.org/TR/css-break-3/#possible-breaks
if (IsA<PhysicalBoxFragment>(&child_fragment)) {
const auto* block_break_token =
To<BlockBreakToken>(incoming_child_break_token);
return !block_break_token || !block_break_token->IsAtBlockEnd();
}
// Only establish a valid break opportunity after a line box if it has
// non-zero height. When there's a block inside an inline, a zero-height line
// may be created before and after the block, but for the sake of
// fragmentation, pretend that they're not there.
DCHECK(child_fragment.IsLineBox());
LogicalFragment fragment(child_fragment.Style().GetWritingDirection(),
child_fragment);
return fragment.BlockSize() != LayoutUnit();
}
BreakStatus BreakBeforeChildIfNeeded(
const ConstraintSpace& space,
LayoutInputNode child,
const LayoutResult& layout_result,
LayoutUnit fragmentainer_block_offset,
LayoutUnit fragmentainer_block_size,
bool has_container_separation,
BoxFragmentBuilder* builder,
bool is_row_item,
FlexColumnBreakInfo* flex_column_break_info) {
DCHECK(space.HasBlockFragmentation());
// Break-before and break-after are handled at the row level.
if (has_container_separation && !is_row_item) {
EBreakBetween break_between =
CalculateBreakBetweenValue(child, layout_result, *builder);
if (IsForcedBreakValue(space, break_between)) {
BreakBeforeChild(space, child, &layout_result, fragmentainer_block_offset,
fragmentainer_block_size, kBreakAppealPerfect,
/*is_forced_break=*/true, builder);
return BreakStatus::kBrokeBefore;
}
}
BreakAppeal appeal_before = CalculateBreakAppealBefore(
space, child, layout_result, *builder, has_container_separation);
// Attempt to move past the break point, and if we can do that, also assess
// the appeal of breaking there, even if we didn't.
if (MovePastBreakpoint(space, child, layout_result,
fragmentainer_block_offset, fragmentainer_block_size,
appeal_before, builder, is_row_item,
flex_column_break_info)) {
return BreakStatus::kContinue;
}
// Breaking inside the child isn't appealing, and we're out of space. Figure
// out where to insert a soft break. It will either be before this child, or
// before an earlier sibling, if there's a more appealing breakpoint there.
if (!AttemptSoftBreak(
space, child, &layout_result, fragmentainer_block_offset,
fragmentainer_block_size, appeal_before, builder,
/*block_size_override=*/std::nullopt, flex_column_break_info)) {
return BreakStatus::kNeedsEarlierBreak;
}
return BreakStatus::kBrokeBefore;
}
void BreakBeforeChild(const ConstraintSpace& space,
LayoutInputNode child,
const LayoutResult* layout_result,
LayoutUnit fragmentainer_block_offset,
LayoutUnit fragmentainer_block_size,
std::optional<BreakAppeal> appeal,
bool is_forced_break,
BoxFragmentBuilder* builder,
std::optional<LayoutUnit> block_size_override) {
#if DCHECK_IS_ON()
DCHECK(layout_result || block_size_override);
if (layout_result && layout_result->Status() == LayoutResult::kSuccess) {
// In order to successfully break before a node, this has to be its first
// fragment.
const auto& physical_fragment = layout_result->GetPhysicalFragment();
DCHECK(!physical_fragment.IsBox() ||
To<PhysicalBoxFragment>(physical_fragment).IsFirstForNode());
}
#endif
if (space.HasKnownFragmentainerBlockSize()) {
PropagateSpaceShortage(space, layout_result, fragmentainer_block_offset,
fragmentainer_block_size, builder,
block_size_override);
}
if (layout_result && space.ShouldPropagateChildBreakValues() &&
!is_forced_break)
builder->PropagateChildBreakValues(*layout_result);
// We'll drop the fragment (if any) on the floor and retry at the start of the
// next fragmentainer.
builder->AddBreakBeforeChild(child, appeal, is_forced_break);
}
void PropagateSpaceShortage(const ConstraintSpace& space,
const LayoutResult* layout_result,
LayoutUnit fragmentainer_block_offset,
LayoutUnit fragmentainer_block_size,
FragmentBuilder* builder,
std::optional<LayoutUnit> block_size_override) {
// Only multicol cares about space shortage.
if (space.BlockFragmentationType() != kFragmentColumn)
return;
LayoutUnit space_shortage =
CalculateSpaceShortage(space, layout_result, fragmentainer_block_offset,
fragmentainer_block_size, block_size_override);
// TODO(mstensho): Turn this into a DCHECK, when the engine is ready for
// it. Space shortage should really be positive here, or we might ultimately
// fail to stretch the columns (column balancing).
if (space_shortage > LayoutUnit())
builder->PropagateSpaceShortage(space_shortage);
}
LayoutUnit CalculateSpaceShortage(
const ConstraintSpace& space,
const LayoutResult* layout_result,
LayoutUnit fragmentainer_block_offset,
LayoutUnit fragmentainer_block_size,
std::optional<LayoutUnit> block_size_override) {
// Space shortage is only reported for soft breaks, and they can only exist if
// we know the fragmentainer block-size.
DCHECK(space.HasKnownFragmentainerBlockSize());
DCHECK(layout_result || block_size_override);
// Only multicol cares about space shortage.
DCHECK_EQ(space.BlockFragmentationType(), kFragmentColumn);
LayoutUnit space_shortage;
if (block_size_override) {
space_shortage = fragmentainer_block_offset + block_size_override.value() -
fragmentainer_block_size;
} else if (!layout_result->MinimalSpaceShortage()) {
// Calculate space shortage: Figure out how much more space would have been
// sufficient to make the child fragment fit right here in the current
// fragmentainer. If layout aborted, though, we can't calculate anything.
if (layout_result->Status() != LayoutResult::kSuccess) {
return kIndefiniteSize;
}
LogicalFragment fragment(space.GetWritingDirection(),
layout_result->GetPhysicalFragment());
space_shortage = fragmentainer_block_offset + fragment.BlockSize() -
fragmentainer_block_size;
} else {
// However, if space shortage was reported inside the child, use that. If we
// broke inside the child, we didn't complete layout, so calculating space
// shortage for the child as a whole would be impossible and pointless.
space_shortage = *layout_result->MinimalSpaceShortage();
}
return space_shortage;
}
void UpdateMinimalSpaceShortage(std::optional<LayoutUnit> new_space_shortage,
LayoutUnit* minimal_space_shortage) {
DCHECK(minimal_space_shortage);
if (!new_space_shortage || *new_space_shortage <= LayoutUnit())
return;
if (*minimal_space_shortage == kIndefiniteSize) {
*minimal_space_shortage = *new_space_shortage;
} else {
*minimal_space_shortage =
std::min(*minimal_space_shortage, *new_space_shortage);
}
}
bool MovePastBreakpoint(const ConstraintSpace& space,
LayoutInputNode child,
const LayoutResult& layout_result,
LayoutUnit fragmentainer_block_offset,
LayoutUnit fragmentainer_block_size,
BreakAppeal appeal_before,
BoxFragmentBuilder* builder,
bool is_row_item,
FlexColumnBreakInfo* flex_column_break_info) {
if (layout_result.Status() != LayoutResult::kSuccess) {
// Layout aborted - no fragment was produced. There's nothing to move
// past. We need to break before.
DCHECK_EQ(layout_result.Status(), LayoutResult::kOutOfFragmentainerSpace);
// The only case where this should happen is with BR clear=all.
DCHECK(child.IsInline());
return false;
}
if (child.IsBlock()) {
const auto& box_fragment =
To<PhysicalBoxFragment>(layout_result.GetPhysicalFragment());
// If we're at a resumed fragment, don't break before it. Once we've found
// room for the first fragment, we cannot skip fragmentainers afterwards. We
// might be out of space at a subsequent fragment e.g. if all space is taken
// up by a float that got pushed ahead from a previous fragmentainer, but we
// still need to allow this fragment here. Inserting a break before on a
// node that has already started producing fragments would result in
// restarting layout from scratch once we find room for a fragment
// again. Preventing breaking here should have no visual effect, since the
// block-size of the fragment will typically be 0 anyway.
if (!box_fragment.IsFirstForNode())
return true;
// If clearance forces the child to the next fragmentainer, we cannot move
// past the breakpoint, but rather retry in the next fragmentainer.
if (builder && builder->GetExclusionSpace().NeedsClearancePastFragmentainer(
child.Style().Clear(space.Direction()))) {
return false;
}
}
if (!space.HasKnownFragmentainerBlockSize() &&
space.IsInitialColumnBalancingPass() && builder) {
if (layout_result.GetPhysicalFragment().IsMonolithic() ||
(child.IsBlock() &&
IsAvoidBreakValue(space, child.Style().BreakInside()))) {
// If this is the initial column balancing pass, attempt to make the
// column block-size at least as large as the tallest piece of monolithic
// content and/or block with break-inside:avoid.
LayoutUnit block_size =
BlockSizeForFragmentation(layout_result, space.GetWritingDirection());
PropagateUnbreakableBlockSize(block_size, fragmentainer_block_offset,
builder);
}
}
bool move_past =
MovePastBreakpoint(space, layout_result, fragmentainer_block_offset,
fragmentainer_block_size, appeal_before, builder,
is_row_item, flex_column_break_info);
if (move_past && builder && child.IsBlock() && !is_row_item) {
// We're tentatively not going to break before this child, but we'll check
// the appeal of breaking there anyway. It may be the best breakpoint we'll
// ever find. (Note that we only do this for block children, since, when it
// comes to inline layout, we first need to lay out all the line boxes, so
// that we know what do to in order to honor orphans and widows, if at all
// possible. We also only do this for non-row items since items in a row
// will be parallel to one another.)
UpdateEarlyBreakAtBlockChild(space, To<BlockNode>(child), layout_result,
appeal_before, builder,
flex_column_break_info);
}
return move_past;
}
bool MovePastBreakpoint(const ConstraintSpace& space,
const LayoutResult& layout_result,
LayoutUnit fragmentainer_block_offset,
LayoutUnit fragmentainer_block_size,
BreakAppeal appeal_before,
BoxFragmentBuilder* builder,
bool is_row_item,
FlexColumnBreakInfo* flex_column_break_info) {
DCHECK_EQ(layout_result.Status(), LayoutResult::kSuccess);
if (!space.HasKnownFragmentainerBlockSize()) {
// We only care about soft breaks if we have a fragmentainer block-size.
// During column balancing this may be unknown.
return true;
}
const auto& physical_fragment = layout_result.GetPhysicalFragment();
LogicalFragment fragment(space.GetWritingDirection(), physical_fragment);
const auto* break_token =
DynamicTo<BlockBreakToken>(physical_fragment.GetBreakToken());
LayoutUnit space_left = fragmentainer_block_size - fragmentainer_block_offset;
// If we haven't used any space at all in the fragmentainer yet, we cannot
// break before this child, or there'd be no progress. We'd risk creating an
// infinite number of fragmentainers without putting any content into them. If
// we have set a minimum break appeal (better than kBreakAppealLastResort),
// though, we might have to allow breaking here.
bool refuse_break_before = space_left >= fragmentainer_block_size &&
(!builder || !IsBreakableAtStartOfResumedContainer(
space, layout_result, *builder));
// If the child starts past the end of the fragmentainer (probably due to a
// block-start margin), we must break before it.
bool must_break_before = false;
if (space_left < LayoutUnit()) {
must_break_before = true;
} else if (space_left == LayoutUnit()) {
// If the child starts exactly at the end, we'll allow the child here if the
// fragment contains the block-end of the child, or if it's a column
// spanner. Otherwise we have to break before it. We don't want empty
// fragments with nothing useful inside, if it's to be resumed in the next
// fragmentainer.
must_break_before = !layout_result.GetColumnSpannerPath() &&
IsBreakInside(break_token) &&
!break_token->IsAtBlockEnd();
}
if (must_break_before) {
DCHECK(!refuse_break_before);
return false;
}
LayoutUnit block_size =
BlockSizeForFragmentation(layout_result, space.GetWritingDirection());
BreakAppeal appeal_inside = CalculateBreakAppealInside(space, layout_result);
// If breaking before is impossible, we have to move past.
bool move_past = refuse_break_before;
if (!move_past) {
if (block_size <= space_left) {
if (IsBreakInside(break_token) || appeal_inside < kBreakAppealPerfect) {
// The block child broke inside, either in this fragmentation context,
// or in an inner one. We now need to decide whether to keep that break,
// or if it would be better to break before it. Allow breaking inside if
// it has the same appeal or higher than breaking before or breaking
// earlier.
if (appeal_inside >= appeal_before) {
if (flex_column_break_info) {
if (!flex_column_break_info->early_break ||
appeal_inside >=
flex_column_break_info->early_break->GetBreakAppeal()) {
move_past = true;
}
} else if (!builder || !builder->HasEarlyBreak() ||
appeal_inside >=
builder->GetEarlyBreak().GetBreakAppeal()) {
move_past = true;
}
}
} else {
move_past = true;
}
} else if (appeal_before == kBreakAppealLastResort && builder &&
builder->RequiresContentBeforeBreaking()) {
// The fragment doesn't fit, but we need to force it to stay here anyway.
builder->SetIsBlockSizeForFragmentationClamped();
move_past = true;
}
}
if (move_past) {
if (builder) {
if (block_size > space_left) {
// We're moving past the breakpoint even if the child doesn't fit. This
// may happen with monolithic content at the beginning of the
// fragmentainer. Report space shortage.
PropagateSpaceShortage(space, &layout_result,
fragmentainer_block_offset,
fragmentainer_block_size, builder);
}
}
return true;
}
// We don't want to break inside, so we should attempt to break before.
return false;
}
void UpdateEarlyBreakAtBlockChild(const ConstraintSpace& space,
BlockNode child,
const LayoutResult& layout_result,
BreakAppeal appeal_before,
BoxFragmentBuilder* builder,
FlexColumnBreakInfo* flex_column_break_info) {
// We may need to create early-breaks even if we have broken inside the child,
// in case it establishes a parallel flow, in which case a break inside won't
// help honor any break avoidance requests that come after this child. But
// breaking *before* the child might help.
const auto* break_token =
To<BlockBreakToken>(layout_result.GetPhysicalFragment().GetBreakToken());
// See if there's a good breakpoint inside the child.
BreakAppeal appeal_inside = kBreakAppealLastResort;
if (const auto* breakpoint = layout_result.GetEarlyBreak()) {
// If the child broke inside, it shouldn't have any early-break.
DCHECK(!IsBreakInside(break_token));
appeal_inside = CalculateBreakAppealInside(space, layout_result,
breakpoint->GetBreakAppeal());
if (flex_column_break_info) {
if (!flex_column_break_info->early_break ||
flex_column_break_info->early_break->GetBreakAppeal() <=
breakpoint->GetBreakAppeal()) {
// Found a good breakpoint inside the child. Add the child to the early
// break chain for the current column.
auto* parent_break =
MakeGarbageCollected<EarlyBreak>(child, appeal_inside, breakpoint);
flex_column_break_info->early_break = parent_break;
}
} else if (!builder->HasEarlyBreak() ||
builder->GetEarlyBreak().GetBreakAppeal() <=
breakpoint->GetBreakAppeal()) {
// Found a good breakpoint inside the child. Add the child to the early
// break container chain, and store it.
auto* parent_break =
MakeGarbageCollected<EarlyBreak>(child, appeal_inside, breakpoint);
builder->SetEarlyBreak(parent_break);
}
}
// Breaking before isn't better if it's less appealing than what we already
// have (obviously), and also not if it has the same appeal as the break
// location inside the child that we just found (when the appeal is the same,
// whatever takes us further wins).
if (appeal_before <= appeal_inside)
return;
if (flex_column_break_info) {
if (flex_column_break_info->early_break &&
flex_column_break_info->early_break->GetBreakAppeal() > appeal_before) {
return;
}
flex_column_break_info->early_break =
MakeGarbageCollected<EarlyBreak>(child, appeal_before);
return;
}
if (builder->HasEarlyBreak() &&
builder->GetEarlyBreak().GetBreakAppeal() > appeal_before) {
return;
}
builder->SetEarlyBreak(
MakeGarbageCollected<EarlyBreak>(child, appeal_before));
}
bool AttemptSoftBreak(const ConstraintSpace& space,
LayoutInputNode child,
const LayoutResult* layout_result,
LayoutUnit fragmentainer_block_offset,
LayoutUnit fragmentainer_block_size,
BreakAppeal appeal_before,
BoxFragmentBuilder* builder,
std::optional<LayoutUnit> block_size_override,
FlexColumnBreakInfo* flex_column_break_info) {
DCHECK(layout_result || block_size_override);
// If there's a breakpoint with higher appeal among earlier siblings, we need
// to abort and re-layout to that breakpoint.
bool found_earlier_break = false;
if (flex_column_break_info) {
found_earlier_break =
flex_column_break_info->early_break &&
flex_column_break_info->early_break->GetBreakAppeal() > appeal_before;
} else {
found_earlier_break =
builder->HasEarlyBreak() &&
builder->GetEarlyBreak().GetBreakAppeal() > appeal_before;
}
if (found_earlier_break) {
// Found a better place to break. Before aborting, calculate and report
// space shortage from where we'd actually break.
PropagateSpaceShortage(space, layout_result, fragmentainer_block_offset,
fragmentainer_block_size, builder,
block_size_override);
return false;
}
// Break before the child. Note that there may be a better break further up
// with higher appeal (but it's too early to tell), in which case this
// breakpoint will be replaced.
BreakBeforeChild(space, child, layout_result, fragmentainer_block_offset,
fragmentainer_block_size, appeal_before,
/* is_forced_break */ false, builder, block_size_override);
return true;
}
const EarlyBreak* EnterEarlyBreakInChild(const BlockNode& child,
const EarlyBreak& early_break) {
if (early_break.Type() != EarlyBreak::kBlock ||
early_break.GetBlockNode() != child) {
return nullptr;
}
// If there's no break inside, we should already have broken before the child.
DCHECK(early_break.BreakInside());
return early_break.BreakInside();
}
bool IsEarlyBreakTarget(const EarlyBreak& early_break,
const BoxFragmentBuilder& builder,
const LayoutInputNode& child) {
if (early_break.Type() == EarlyBreak::kLine) {
DCHECK(child.IsInline() || child.IsFlexItem());
return early_break.LineNumber() == builder.LineCount();
}
return early_break.IsBreakBefore() && early_break.GetBlockNode() == child;
}
ConstraintSpace CreateConstraintSpaceForFragmentainer(
const ConstraintSpace& parent_space,
FragmentationType fragmentation_type,
LogicalSize fragmentainer_size,
LogicalSize percentage_resolution_size,
bool balance_columns,
BreakAppeal min_break_appeal,
const BoxFragmentBuilder* container_builder) {
ConstraintSpaceBuilder space_builder(
parent_space, parent_space.GetWritingDirection(), /* is_new_fc */ true);
space_builder.SetAvailableSize(fragmentainer_size);
space_builder.SetPercentageResolutionSize(percentage_resolution_size);
space_builder.SetInlineAutoBehavior(AutoSizeBehavior::kStretchImplicit);
space_builder.SetFragmentationType(fragmentation_type);
space_builder.SetShouldPropagateChildBreakValues();
space_builder.SetFragmentainerBlockSize(fragmentainer_size.block_size);
space_builder.SetIsAnonymous(true);
if (fragmentation_type == kFragmentColumn) {
space_builder.SetIsInColumnBfc();
}
if (balance_columns) {
DCHECK_EQ(fragmentation_type, kFragmentColumn);
space_builder.SetIsInsideBalancedColumns();
}
space_builder.SetMinBreakAppeal(min_break_appeal);
space_builder.SetBaselineAlgorithmType(
parent_space.GetBaselineAlgorithmType());
if (container_builder && container_builder->ShouldTextBoxTrim()) {
SetTextBoxTrimOnChildSpaceBuilder(*container_builder, &space_builder);
}
return space_builder.ToConstraintSpace();
}
BoxFragmentBuilder CreateContainerBuilderForMulticol(
const BlockNode& multicol,
const ConstraintSpace& space,
const FragmentGeometry& fragment_geometry) {
const ComputedStyle* style = &multicol.Style();
BoxFragmentBuilder multicol_container_builder(
multicol, style, space, style->GetWritingDirection(),
/*previous_break_token=*/nullptr);
multicol_container_builder.SetIsNewFormattingContext(true);
multicol_container_builder.SetInitialFragmentGeometry(fragment_geometry);
multicol_container_builder.SetIsBlockFragmentationContextRoot();
return multicol_container_builder;
}
ConstraintSpace CreateConstraintSpaceForMulticol(const BlockNode& multicol) {
WritingDirectionMode writing_direction_mode =
multicol.Style().GetWritingDirection();
ConstraintSpaceBuilder space_builder(writing_direction_mode.GetWritingMode(),
writing_direction_mode,
/* is_new_fc */ true);
// This constraint space isn't going to be used for actual sizing. Yet,
// someone will use it for initial geometry calculation, and if the multicol
// has percentage sizes, DCHECKs will fail if we don't set any available size
// at all.
space_builder.SetAvailableSize(LogicalSize());
return space_builder.ToConstraintSpace();
}
const BlockBreakToken* FindPreviousBreakToken(
const PhysicalBoxFragment& fragment) {
const LayoutBox* box = To<LayoutBox>(fragment.GetLayoutObject());
DCHECK(box);
DCHECK_GE(box->PhysicalFragmentCount(), 1u);
// Bail early if this is the first fragment. There'll be no previous break
// token then.
if (fragment.IsFirstForNode())
return nullptr;
// If this isn't the first fragment, it means that there has to be multiple
// fragments.
DCHECK_GT(box->PhysicalFragmentCount(), 1u);
const PhysicalBoxFragment* previous_fragment;
if (const BlockBreakToken* break_token = fragment.GetBreakToken()) {
// The sequence number of the outgoing break token is the same as the index
// of this fragment.
DCHECK_GE(break_token->SequenceNumber(), 1u);
previous_fragment =
box->GetPhysicalFragment(break_token->SequenceNumber() - 1);
} else {
// This is the last fragment, so its incoming break token will be the
// outgoing one from the penultimate fragment.
previous_fragment =
box->GetPhysicalFragment(box->PhysicalFragmentCount() - 2);
}
return previous_fragment->GetBreakToken();
}
wtf_size_t BoxFragmentIndex(const PhysicalBoxFragment& fragment) {
DCHECK(!fragment.IsInlineBox());
const BlockBreakToken* token = FindPreviousBreakToken(fragment);
return token ? token->SequenceNumber() + 1 : 0;
}
PhysicalOffset OffsetInStitchedFragments(
const PhysicalBoxFragment& fragment,
PhysicalSize* out_stitched_fragments_size) {
auto writing_direction = fragment.Style().GetWritingDirection();
LayoutUnit stitched_block_size;
LayoutUnit fragment_block_offset;
const LayoutBox* layout_box = To<LayoutBox>(fragment.GetLayoutObject());
const auto& first_fragment = *layout_box->GetPhysicalFragment(0);
if (first_fragment.GetBreakToken() &&
first_fragment.GetBreakToken()->IsRepeated()) {
// Repeated content isn't stitched.
stitched_block_size =
LogicalFragment(writing_direction, first_fragment).BlockSize();
} else {
if (const auto* previous_break_token = FindPreviousBreakToken(fragment)) {
fragment_block_offset = previous_break_token->ConsumedBlockSize();
}
if (fragment.IsOnlyForNode()) {
stitched_block_size =
LogicalFragment(writing_direction, fragment).BlockSize();
} else {
wtf_size_t idx = layout_box->PhysicalFragmentCount();
DCHECK_GT(idx, 1u);
idx--;
// Calculating the stitched size is straight-forward if the node isn't
// overflowed: Just add the consumed block-size of the last break token
// and the block-size of the last fragment. If it is overflowed, on the
// other hand, we need to search backwards until we find the end of the
// block-end border edge.
while (idx) {
const PhysicalBoxFragment* walker =
layout_box->GetPhysicalFragment(idx);
stitched_block_size =
LogicalFragment(writing_direction, *walker).BlockSize();
// Look at the preceding break token.
idx--;
const BlockBreakToken* break_token =
layout_box->GetPhysicalFragment(idx)->GetBreakToken();
if (!break_token->IsAtBlockEnd()) {
stitched_block_size += break_token->ConsumedBlockSize();
break;
}
}
}
}
LogicalSize stitched_fragments_logical_size(
LogicalFragment(writing_direction, fragment).InlineSize(),
stitched_block_size);
PhysicalSize stitched_fragments_physical_size(ToPhysicalSize(
stitched_fragments_logical_size, writing_direction.GetWritingMode()));
if (out_stitched_fragments_size)
*out_stitched_fragments_size = stitched_fragments_physical_size;
LogicalOffset offset_in_stitched_box(LayoutUnit(), fragment_block_offset);
WritingModeConverter converter(writing_direction,
stitched_fragments_physical_size);
return converter.ToPhysical(offset_in_stitched_box, fragment.Size());
}
LayoutUnit BlockSizeForFragmentation(
const LayoutResult& result,
WritingDirectionMode container_writing_direction) {
LayoutUnit block_size = result.BlockSizeForFragmentation();
if (block_size == kIndefiniteSize) {
// Just use the border-box size of the fragment if block-size for
// fragmentation hasn't been calculated. This happens for line boxes and any
// other kind of monolithic content.
WritingMode writing_mode = container_writing_direction.GetWritingMode();
LogicalSize logical_size =
ToLogicalSize(result.GetPhysicalFragment().Size(), writing_mode);
block_size = logical_size.block_size;
// Then remove any block-end trimming, since it shouldn't take up space in
// ancestry layout.
block_size -= result.TrimBlockEndBy().value_or(LayoutUnit());
}
// Ruby annotations do not take up space in the line box, so we need this to
// make sure that we don't let them cross the fragmentation line without
// noticing.
block_size += result.AnnotationBlockOffsetAdjustment();
LayoutUnit annotation_overflow = result.AnnotationOverflow();
if (annotation_overflow > LayoutUnit())
block_size += annotation_overflow;
return block_size;
}
bool CanPaintMultipleFragments(const PhysicalBoxFragment& fragment) {
if (!fragment.IsCSSBox())
return true;
DCHECK(fragment.GetLayoutObject());
return CanPaintMultipleFragments(*fragment.GetLayoutObject());
}
bool CanPaintMultipleFragments(const LayoutObject& layout_object) {
const auto* layout_box = DynamicTo<LayoutBox>(&layout_object);
// Only certain LayoutBox types are problematic.
if (!layout_box)
return true;
DCHECK(!layout_box->IsFragmentLessBox());
// If the object isn't monolithic, we're good.
if (!layout_box->IsMonolithic()) {
return true;
}
// There seems to be many issues preventing us from allowing repeated
// scrollable containers, so we need to disallow them (unless we're printing,
// in which case they're not really scrollable). Should we be able to fix all
// the issues some day (after removing the legacy layout code), we could
// change this policy. But for now we need to forbid this, which also means
// that we cannot paint repeated text input form elements (because they use
// scrollable containers internally) (if it makes sense at all to repeat form
// elements...).
if (layout_box->IsScrollContainer() &&
!layout_object.GetDocument().Printing())
return false;
// It's somewhat problematic and strange to repeat most kinds of
// LayoutReplaced (how would that make sense for iframes, for instance?). For
// now, just allow regular images and SVGs. We may consider expanding this
// list in the future. One reason for being extra strict for the time being is
// legacy layout / paint code, but it may be that it doesn't make a lot of
// sense to repeat too many types of replaced content, even if we should
// become technically capable of doing it.
if (layout_box->IsLayoutReplaced()) {
if (layout_box->IsLayoutImage() && !layout_box->IsMedia())
return true;
if (layout_box->IsSVGRoot())
return true;
return false;
}
if (auto* element = DynamicTo<Element>(layout_box->GetNode())) {
// We're already able to support *some* types of form controls, but for now,
// just disallow everything. Does it even make sense to allow repeated form
// controls?
if (element->IsFormControlElement())
return false;
}
return true;
}
} // namespace blink
|