File: outline_painter.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (958 lines) | stat: -rw-r--r-- 38,844 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/core/paint/outline_painter.h"

#include <optional>

#include "build/build_config.h"
#include "third_party/blink/renderer/core/layout/geometry/physical_rect.h"
#include "third_party/blink/renderer/core/paint/box_border_painter.h"
#include "third_party/blink/renderer/core/paint/contoured_border_geometry.h"
#include "third_party/blink/renderer/core/paint/paint_auto_dark_mode.h"
#include "third_party/blink/renderer/core/paint/paint_info.h"
#include "third_party/blink/renderer/core/style/border_edge.h"
#include "third_party/blink/renderer/core/style/computed_style.h"
#include "third_party/blink/renderer/platform/geometry/contoured_rect.h"
#include "third_party/blink/renderer/platform/geometry/path.h"
#include "third_party/blink/renderer/platform/geometry/stroke_data.h"
#include "third_party/blink/renderer/platform/graphics/color.h"
#include "third_party/blink/renderer/platform/graphics/graphics_context.h"
#include "third_party/blink/renderer/platform/graphics/graphics_context_state_saver.h"
#include "third_party/blink/renderer/platform/graphics/paint/drawing_recorder.h"
#include "third_party/blink/renderer/platform/graphics/skia/skia_utils.h"
#include "third_party/blink/renderer/platform/graphics/styled_stroke_data.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/skia_conversions.h"
#include "ui/native_theme/native_theme.h"

namespace blink {

namespace {

float FocusRingStrokeWidth(const ComputedStyle& style) {
  DCHECK(style.OutlineStyleIsAuto());
  // Draw focus ring with thickness in proportion to the zoom level, but never
  // so narrow that it becomes invisible.
  float width = 3.f;
  if (style.EffectiveZoom() >= 1.0f) {
    width = ui::NativeTheme::GetInstanceForWeb()->AdjustBorderWidthByZoom(
        width, style.EffectiveZoom());
    DCHECK_GE(width, 3.f);
  }
  return std::max(style.EffectiveZoom(), width);
}

float FocusRingOuterStrokeWidth(const ComputedStyle& style) {
  // The focus ring is made of two rings which have a 2:1 ratio.
  return FocusRingStrokeWidth(style) / 3.f * 2;
}

float FocusRingInnerStrokeWidth(const ComputedStyle& style) {
  return FocusRingStrokeWidth(style) / 3.f;
}

int FocusRingOffset(const ComputedStyle& style,
                    const LayoutObject::OutlineInfo& info) {
  DCHECK(style.OutlineStyleIsAuto());
  // How much space the focus ring would like to take from the actual border.
  const float max_inside_border_width =
      ui::NativeTheme::GetInstanceForWeb()->AdjustBorderWidthByZoom(
          1.0f, style.EffectiveZoom());
  int offset = info.offset;
  // Focus ring is dependent on whether the border is large enough to have an
  // inset outline. Use the smallest border edge for that test.
  float min_border_width =
      std::min({style.BorderTopWidth(), style.BorderBottomWidth(),
                style.BorderLeftWidth(), style.BorderRightWidth()});
  if (min_border_width >= max_inside_border_width)
    offset -= max_inside_border_width;
  return offset;
}

// A negative outline-offset should not cause the rendered outline shape to
// become smaller than twice the computed value of the outline-width, in each
// direction separately. See: https://drafts.csswg.org/css-ui/#outline-offset
gfx::Outsets AdjustedOutlineOffset(const gfx::Rect& rect, int offset) {
  return gfx::Outsets::VH(std::max(offset, -rect.height() / 2),
                          std::max(offset, -rect.width() / 2));
}

// Construct a clockwise path along the outer edge of the region covered by
// |rects| expanded by |outline_offset| (which can be negative and clamped by
// the rect size) and |additional_outset| (which should be non-negative).
bool ComputeRightAnglePath(SkPath& path,
                           const Vector<gfx::Rect>& rects,
                           int outline_offset,
                           int additional_outset) {
  DCHECK_GE(additional_outset, 0);
  SkRegion region;
  for (auto& r : rects) {
    gfx::Rect rect = r;
    rect.Outset(AdjustedOutlineOffset(rect, outline_offset));
    rect.Outset(additional_outset);
    region.op(gfx::RectToSkIRect(rect), SkRegion::kUnion_Op);
  }
  return region.getBoundaryPath(&path);
}

using Line = OutlinePainter::Line;

// Merge line2 into line1 if they are in the same straight line.
bool MergeLineIfPossible(Line& line1, const Line& line2) {
  DCHECK(line1.end == line2.start);
  if ((line1.start.x() == line1.end.x() && line1.start.x() == line2.end.x()) ||
      (line1.start.y() == line1.end.y() && line1.start.y() == line2.end.y())) {
    line1.end = line2.end;
    return true;
  }
  return false;
}

// Iterate a right angle |path| by running |contour_action| on each contour.
// The path contains one or more contours each of which is like (kMove_Verb,
// kLine_Verb, ..., kClose_Verb). Each line must be either horizontal or
// vertical. Each pair of adjacent lines (including the last and the first)
// should either create a right angle or be in the same straight line.
template <typename Action>
void IterateRightAnglePath(const SkPath& path, const Action& contour_action) {
  SkPath::Iter iter(path, /*forceClose*/ true);
  SkPoint points[4];
  Vector<Line> lines;
  for (SkPath::Verb verb = iter.next(points); verb != SkPath::kDone_Verb;
       verb = iter.next(points)) {
    switch (verb) {
      case SkPath::kMove_Verb:
        DCHECK(lines.empty());
        break;
      case SkPath::kLine_Verb: {
        Line new_line{points[0], points[1]};
        if (lines.empty() || !MergeLineIfPossible(lines.back(), new_line)) {
          lines.push_back(new_line);
          DCHECK(lines.size() == 1 ||
                 lines.back().start == lines[lines.size() - 2].end);
        }
        break;
      }
      case SkPath::kClose_Verb: {
        if (lines.size() >= 4u) {
          if (MergeLineIfPossible(lines.back(), lines.front())) {
            lines.front() = lines.back();
            lines.pop_back();
          }
          DCHECK(lines.front().start == lines.back().end);
          // lines.size() < 4 means that the contour is collapsed (i.e. the area
          // in the contour is empty). Ignore it.
          if (lines.size() >= 4u)
            contour_action(lines);
        }
        lines.clear();
        break;
      }
      default:
        NOTREACHED();
    }
  }
}

// Given 3 points defining a right angle corner, returns |p2| shifted to make
// the containing path shrunk by |inset|.
SkPoint ShrinkCorner(const SkPoint& p1,
                     const SkPoint& p2,
                     const SkPoint& p3,
                     int inset) {
  if (p1.x() == p2.x()) {
    if (p1.y() < p2.y()) {
      return p2.x() < p3.x() ? p2 + SkVector::Make(-inset, inset)
                             : p2 + SkVector::Make(-inset, -inset);
    }
    return p2.x() < p3.x() ? p2 + SkVector::Make(inset, inset)
                           : p2 + SkVector::Make(inset, -inset);
  }
  if (p1.x() < p2.x()) {
    return p2.y() < p3.y() ? p2 + SkVector::Make(-inset, inset)
                           : p2 + SkVector::Make(inset, inset);
  }
  return p2.y() < p3.y() ? p2 + SkVector::Make(-inset, -inset)
                         : p2 + SkVector::Make(inset, -inset);
}

void ShrinkRightAnglePath(SkPath& path, int inset) {
  SkPath input;
  std::swap(input, path);
  IterateRightAnglePath(input, [&path, inset](const Vector<Line>& lines) {
    for (wtf_size_t i = 0; i < lines.size(); i++) {
      const SkPoint& prev_point =
          lines[i == 0 ? lines.size() - 1 : i - 1].start;
      SkPoint new_point =
          ShrinkCorner(prev_point, lines[i].start, lines[i].end, inset);
      if (i == 0) {
        path.moveTo(new_point);
      } else {
        path.lineTo(new_point);
      }
    }
    path.close();
  });
}

FloatRoundedRect::Radii ComputeCornerRadii(
    const ComputedStyle& style,
    const PhysicalRect& reference_border_rect,
    float offset) {
  return ContouredBorderGeometry::PixelSnappedContouredBorderWithOutsets(
             style, reference_border_rect, PhysicalBoxStrut(LayoutUnit(offset)))
      .GetRadii();
}

// Given 3 points defining a right angle corner, returns the corresponding
// corner in |convex_radii| or |concave_radii|.
gfx::SizeF GetRadiiCorner(const FloatRoundedRect::Radii& convex_radii,
                          const FloatRoundedRect::Radii& concave_radii,
                          const SkPoint& p1,
                          const SkPoint& p2,
                          const SkPoint& p3) {
  if (p1.x() == p2.x()) {
    if (p1.y() == p2.y() || p2.x() == p3.x())
      return gfx::SizeF();
    DCHECK_EQ(p2.y(), p3.y());
    if (p1.y() < p2.y()) {
      return p2.x() < p3.x() ? concave_radii.BottomLeft()
                             : convex_radii.BottomRight();
    }
    return p2.x() < p3.x() ? convex_radii.TopLeft() : concave_radii.TopRight();
  }
  DCHECK_EQ(p1.y(), p2.y());
  if (p2.x() != p3.x() || p2.y() == p3.y())
    return gfx::SizeF();
  if (p1.x() < p2.x()) {
    return p2.y() < p3.y() ? convex_radii.TopRight()
                           : concave_radii.BottomRight();
  }
  return p2.y() < p3.y() ? concave_radii.TopLeft() : convex_radii.BottomLeft();
}

// Shorten |line| between rounded corners.
void AdjustLineBetweenCorners(Line& line,
                              const FloatRoundedRect::Radii& convex_radii,
                              const FloatRoundedRect::Radii& concave_radii,
                              const SkPoint& prev_point,
                              const SkPoint& next_point) {
  gfx::SizeF corner1 = GetRadiiCorner(convex_radii, concave_radii, prev_point,
                                      line.start, line.end);
  gfx::SizeF corner2 = GetRadiiCorner(convex_radii, concave_radii, line.start,
                                      line.end, next_point);
  if (line.start.x() == line.end.x()) {
    // |line| is vertical, and adjacent lines are horizontal.
    float height = std::abs(line.end.y() - line.start.y());
    float corner1_height = corner1.height();
    float corner2_height = corner2.height();
    if (corner1_height + corner2_height > height) {
      // Scale down the corner heights to make the corners fit in |height|.
      float scale = height / (corner1_height + corner2_height);
      corner1_height = floorf(corner1_height * scale);
      corner2_height = floorf(corner2_height * scale);
    }
    if (line.start.y() < line.end.y()) {
      line.start.offset(0, corner1_height);
      line.end.offset(0, -corner2_height);
    } else {
      line.start.offset(0, -corner1_height);
      line.end.offset(0, corner2_height);
    }
  } else {
    // |line| is horizontal, and adjacent lines are vertical.
    float width = std::abs(line.end.x() - line.start.x());
    float corner1_width = corner1.width();
    float corner2_width = corner2.width();
    if (corner1_width + corner2_width > width) {
      // Scale down the corner widths to make the corners fit in |width|.
      float scale = width / (corner1_width + corner2_width);
      corner1_width = floorf(corner1_width * scale);
      corner2_width = floorf(corner2_width * scale);
    }
    if (line.start.x() < line.end.x()) {
      line.start.offset(corner1_width, 0);
      line.end.offset(-corner2_width, 0);
    } else {
      line.start.offset(-corner1_width, 0);
      line.end.offset(corner2_width, 0);
    }
  }
}

// The weight of SkPath::conicTo() to create a 90deg rounded corner arc.
constexpr float kCornerConicWeight = 0.707106781187;  // 1/sqrt(2)

// Create a rounded path from a right angle |path| by
// - inserting arc segments for corners;
// - adjusting length of the lines.
void AddCornerRadiiToPath(SkPath& path,
                          const FloatRoundedRect::Radii& convex_radii,
                          const FloatRoundedRect::Radii& concave_radii) {
  SkPath input;
  input.swap(path);
  IterateRightAnglePath(input, [&](const Vector<Line>& lines) {
    auto new_lines = lines;
    for (wtf_size_t i = 0; i < lines.size(); i++) {
      const SkPoint& prev_point =
          lines[i == 0 ? lines.size() - 1 : i - 1].start;
      const SkPoint& next_point = lines[i == lines.size() - 1 ? 0 : i + 1].end;
      AdjustLineBetweenCorners(new_lines[i], convex_radii, concave_radii,
                               prev_point, next_point);
    }
    // Generate the new contour into |path|.
    DCHECK_EQ(lines.size(), new_lines.size());
    path.moveTo(new_lines.back().end);
    for (wtf_size_t i = 0; i < new_lines.size(); i++) {
      // Keep empty arcs and lines to allow RoundedEdgePathIterator to match
      // edges. Produce a 90 degree arc from the current point (end of the
      // previous line) towards lines[i].start to new_lines[i].start.
      path.conicTo(lines[i].start, new_lines[i].start, kCornerConicWeight);
      path.lineTo(new_lines[i].end);
    }
    path.close();
  });
}

// Move |point| so that the length of the line to |other| will be extended by
// |offset|.
void ExtendLineAtEndpoint(SkPoint& point, const SkPoint& other, int offset) {
  if (point.x() == other.x()) {
    point.offset(0, point.y() < other.y() ? -offset : offset);
  } else {
    DCHECK_EQ(point.y(), other.y());
    point.offset(point.x() < other.x() ? -offset : offset, 0);
  }
}

// Iterates a rounded outline center path, and for each edge [1] returns the
// path that can be used to stroke the edge.
// [1] An "edge" means a segment of the path, including a horizontal or vertical
// line and approximate halves of its adjacent arcs if any.
class RoundedEdgePathIterator {
  STACK_ALLOCATED();

 public:
  RoundedEdgePathIterator(const SkPath& rounded_center_path, int center_inset)
      : iter_(rounded_center_path, /*forceClose*/ true),
        center_inset_(center_inset) {}

  SkPath Next() {
    SkPath edge_stroke_path;
    while (true) {
      SkPoint points[4];
      switch (iter_.next(points)) {
        case SkPath::kConic_Verb:
          if (is_new_contour_) {
            std::copy_n(points, kArcPointCount, prev_arc_points_);
            std::copy_n(points, kArcPointCount, first_arc_points_);
            is_new_contour_ = false;
            continue;
          }
          GenerateEdgeStrokePath(edge_stroke_path, prev_arc_points_, points);
          std::copy_n(points, kArcPointCount, prev_arc_points_);
          return edge_stroke_path;
        case SkPath::kClose_Verb:
          DCHECK(!is_new_contour_);
          GenerateEdgeStrokePath(edge_stroke_path, prev_arc_points_,
                                 first_arc_points_);
          is_new_contour_ = true;
          return edge_stroke_path;
        case SkPath::kDone_Verb:
          return edge_stroke_path;
        default:
          continue;
      }
    }
  }

 private:
  // An example of an edge stroke path:
  // |             Short extension before the starting arc (see code comment)
  //  \            Starting arc
  //   \______     Line
  //          \    Ending arc
  //           |   Short extension after the ending arc (see code comment)
  // The edge will drawn with a clip to remove the first half of the starting
  // arc and the second half of the ending arc.
  void GenerateEdgeStrokePath(SkPath& edge_stroke_path,
                              base::span<const SkPoint> starting_arc_points,
                              base::span<const SkPoint> ending_arc_points) {
    SkPoint line_start = starting_arc_points[2];
    SkPoint line_end = ending_arc_points[0];
    if (starting_arc_points[0] == line_start) {
      // No starting arc. Extend the line to fill the miter.
      ExtendLineAtEndpoint(line_start, ending_arc_points[1], center_inset_);
      edge_stroke_path.moveTo(line_start);
    } else {
      SkPoint start = starting_arc_points[0];
      // Add a short line before the arc in case the starting arc is too short
      // to fill the miter.
      ExtendLineAtEndpoint(start, starting_arc_points[1], center_inset_);
      edge_stroke_path.moveTo(start);
      edge_stroke_path.lineTo(starting_arc_points[0]);
      edge_stroke_path.conicTo(starting_arc_points[1], line_start,
                               kCornerConicWeight);
    }
    if (line_end == ending_arc_points[2]) {
      // No ending arc. Extend the line to fill the miter.
      ExtendLineAtEndpoint(line_end, starting_arc_points[1], center_inset_);
      edge_stroke_path.lineTo(line_end);
    } else {
      edge_stroke_path.lineTo(line_end);
      SkPoint end = ending_arc_points[2];
      edge_stroke_path.conicTo(ending_arc_points[1], end, kCornerConicWeight);
      // Add a short line after the ending arc in case the arc is too short to
      // fill the miter.
      ExtendLineAtEndpoint(end, ending_arc_points[1], center_inset_);
      edge_stroke_path.lineTo(end);
    }
  }

  SkPath::Iter iter_;
  const int center_inset_;
  bool is_new_contour_ = true;
  // The three points are: start, control (the right-angle corner), end.
  static constexpr size_t kArcPointCount = 3;
  SkPoint first_arc_points_[kArcPointCount];
  SkPoint prev_arc_points_[kArcPointCount];
};

class ComplexOutlinePainter {
  STACK_ALLOCATED();

 public:
  ComplexOutlinePainter(GraphicsContext& context,
                        const Vector<gfx::Rect>& rects,
                        const PhysicalRect& reference_border_rect,
                        const ComputedStyle& style,
                        const LayoutObject::OutlineInfo& info)
      : context_(context),
        rects_(rects),
        reference_border_rect_(reference_border_rect),
        style_(style),
        outline_style_(style.OutlineStyle()),
        offset_(info.offset),
        width_(info.width),
        color_(style.VisitedDependentColor(GetCSSPropertyOutlineColor())),
        is_rounded_(style.HasBorderRadius()) {
    DCHECK(!style.OutlineStyleIsAuto());
    DCHECK_NE(width_, 0);
    if (width_ <= 2 && outline_style_ == EBorderStyle::kDouble) {
      outline_style_ = EBorderStyle::kSolid;
    } else if (width_ == 1 && (outline_style_ == EBorderStyle::kRidge ||
                               outline_style_ == EBorderStyle::kGroove)) {
      outline_style_ = EBorderStyle::kSolid;
      color_ = Color::FromColorMix(Color::ColorSpace::kSRGB, std::nullopt,
                                   color_, color_.Dark(), 0.5f, 1.0f);
    }
  }

  void Paint() {
    if (!ComputeRightAnglePath(right_angle_outer_path_, rects_, offset_,
                               width_)) {
      return;
    }

    bool use_alpha_layer = !color_.IsOpaque() &&
                           outline_style_ != EBorderStyle::kSolid &&
                           outline_style_ != EBorderStyle::kDouble;
    if (use_alpha_layer) {
      context_.BeginLayer(color_.Alpha());
      color_ = color_.MakeOpaque();
    }

    SkPath outer_path = right_angle_outer_path_;
    SkPath inner_path = right_angle_outer_path_;
    ShrinkRightAnglePath(inner_path, width_);
    if (is_rounded_) {
      auto inner_radii = ComputeRadii(0);
      auto outer_radii = ComputeRadii(width_);
      AddCornerRadiiToPath(outer_path, outer_radii, inner_radii);
      AddCornerRadiiToPath(inner_path, inner_radii, outer_radii);
    }

    GraphicsContextStateSaver saver(context_);
    context_.ClipPath(outer_path, kAntiAliased);
    MakeClipOutPath(inner_path);
    context_.ClipPath(inner_path, kAntiAliased);
    context_.SetFillColor(color_);

    switch (outline_style_) {
      case EBorderStyle::kSolid:
        context_.FillRect(
            gfx::SkRectToRectF(outer_path.getBounds()),
            PaintAutoDarkMode(style_,
                              DarkModeFilter::ElementRole::kBackground));
        break;
      case EBorderStyle::kDouble:
        PaintDoubleOutline();
        break;
      case EBorderStyle::kDotted:
      case EBorderStyle::kDashed:
        PaintDottedOrDashedOutline();
        break;
      case EBorderStyle::kGroove:
      case EBorderStyle::kRidge:
        PaintGrooveOrRidgeOutline();
        break;
      case EBorderStyle::kInset:
      case EBorderStyle::kOutset:
        PaintInsetOrOutsetOutline(CenterPath(),
                                  outline_style_ == EBorderStyle::kInset);
        break;
      default:
        NOTREACHED();
    }

    if (use_alpha_layer)
      context_.EndLayer();
  }

 private:
  void PaintDoubleOutline() {
    SkPath inner_third_path = right_angle_outer_path_;
    SkPath outer_third_path = right_angle_outer_path_;
    int stroke_width = std::round(width_ / 3.0);
    ShrinkRightAnglePath(inner_third_path, width_ - stroke_width);
    ShrinkRightAnglePath(outer_third_path, stroke_width);
    if (is_rounded_) {
      auto inner_third_radii = ComputeRadii(stroke_width);
      auto outer_third_radii = ComputeRadii(width_ - stroke_width);
      AddCornerRadiiToPath(inner_third_path, inner_third_radii,
                           outer_third_radii);
      AddCornerRadiiToPath(outer_third_path, outer_third_radii,
                           inner_third_radii);
    }
    AutoDarkMode auto_dark_mode(
        PaintAutoDarkMode(style_, DarkModeFilter::ElementRole::kBackground));
    context_.FillPath(inner_third_path, auto_dark_mode);
    MakeClipOutPath(outer_third_path);
    context_.ClipPath(outer_third_path, kAntiAliased);
    context_.FillRect(gfx::SkRectToRectF(right_angle_outer_path_.getBounds()),
                      auto_dark_mode);
  }

  void PaintDottedOrDashedOutline() {
    auto stroke_style =
        outline_style_ == EBorderStyle::kDashed ? kDashedStroke : kDottedStroke;
    StyledStrokeData styled_stroke;
    styled_stroke.SetStyle(stroke_style);
    if ((width_ % 2) &&
        StyledStrokeData::StrokeIsDashed(width_, stroke_style)) {
      // If width_ is odd, draw wider to fill the clip area.
      styled_stroke.SetThickness(width_ + 2);
    } else {
      styled_stroke.SetThickness(width_);
    }
    context_.SetStrokeColor(color_);

    SkPath center_path = CenterPath();
    AutoDarkMode auto_dark_mode(
        PaintAutoDarkMode(style_, DarkModeFilter::ElementRole::kBackground));
    if (is_rounded_) {
      const Path path(center_path);
      const StrokeData stroke_data = styled_stroke.ConvertToStrokeData(
          {static_cast<int>(path.length()), width_, path.IsClosed()});
      context_.SetStroke(stroke_data);
      context_.StrokePath(path, auto_dark_mode);
    } else {
      // Draw edges one by one instead of the whole path to let the corners
      // have starting/ending dots/dashes.
      IterateRightAnglePath(
          center_path,
          [this, &styled_stroke, &auto_dark_mode](const Vector<Line>& lines) {
            for (const auto& line : lines) {
              PaintStraightEdge(line, styled_stroke, auto_dark_mode);
            }
          });
    }
  }

  void PaintGrooveOrRidgeOutline() {
    SkPath center_path = CenterPath();
    // Paint the whole outline, treating kGroove as kInset.
    PaintInsetOrOutsetOutline(center_path,
                              outline_style_ == EBorderStyle::kGroove);
    // Paint dark color in the inner half.
    context_.ClipPath(center_path, kAntiAliased);
    context_.SetStrokeColor(color_.Dark());
    PaintTopLeftOrBottomRight(center_path,
                              outline_style_ == EBorderStyle::kRidge);
    // Paint light color in the inner half. If width_ is odd, draw thinner
    // (by preferring outer half) because light color looks wider.
    if (width_ % 2) {
      SkPath center_path_prefer_outer = CenterPath(/*prefer_outer*/ true);
      context_.ClipPath(center_path_prefer_outer, kAntiAliased);
    }
    context_.SetStrokeColor(color_);
    PaintTopLeftOrBottomRight(center_path,
                              outline_style_ == EBorderStyle::kGroove);
  }

  void PaintInsetOrOutsetOutline(const SkPath& center_path, bool is_inset) {
    context_.SetStrokeColor(color_);
    PaintTopLeftOrBottomRight(center_path, !is_inset);
    context_.SetStrokeColor(color_.Dark());
    PaintTopLeftOrBottomRight(center_path, is_inset);
  }

  void PaintTopLeftOrBottomRight(const SkPath& center_path,
                                 bool top_left_or_bottom_right) {
    StyledStrokeData styled_stroke;
    // If width_ is odd, draw wider to fill the clip area.
    styled_stroke.SetThickness(width_ % 2 ? width_ + 2 : width_);
    std::optional<RoundedEdgePathIterator> rounded_edge_path_iterator;
    if (is_rounded_)
      rounded_edge_path_iterator.emplace(center_path, (width_ + 1) / 2);
    AutoDarkMode auto_dark_mode(
        PaintAutoDarkMode(style_, DarkModeFilter::ElementRole::kBackground));
    IterateRightAnglePath(
        is_rounded_ ? right_angle_outer_path_ : center_path,
        [this, top_left_or_bottom_right, &rounded_edge_path_iterator,
         &styled_stroke, &auto_dark_mode](const Vector<Line>& lines) {
          for (wtf_size_t i = 0; i < lines.size(); i++) {
            const Line& line = lines[i];
            std::optional<SkPath> rounded_edge_path;
            if (rounded_edge_path_iterator)
              rounded_edge_path = rounded_edge_path_iterator->Next();
            bool is_top_or_left =
                line.start.x() < line.end.x() || line.start.y() > line.end.y();
            if (is_top_or_left != top_left_or_bottom_right)
              continue;
            const Line& prev_line = lines[i == 0 ? lines.size() - 1 : i - 1];
            const Line& next_line = lines[i == lines.size() - 1 ? 0 : i + 1];
            GraphicsContextStateSaver clip_saver(context_);
            context_.ClipPath(
                MiterClipPath(prev_line.start, line, next_line.end),
                kNotAntiAliased);
            if (is_rounded_) {
              context_.SetStrokeThickness(styled_stroke.Thickness());
              context_.StrokePath(*rounded_edge_path, auto_dark_mode);
            } else {
              PaintStraightEdge(line, styled_stroke, auto_dark_mode);
            }
          }
        });
  }

  void MakeClipOutPath(SkPath& path) const {
    // Add a counter-clockwise rect around the path, so that with kWinding fill
    // type:
    // 1. the areas enclosed in clockwise boundaries become "out",
    // 2. the areas outside of the original path become "in", and
    // 3. the areas enclosed in counter-clockwise boundaries are still "in".
    // This is different from kInverseWinding or GraphicsContext::ClipOut()
    // in #3, which is important not to clip out the areas enclosed by crossing
    // edges produced when shrinking from the outer path.
    DCHECK_EQ(path.getFillType(), SkPathFillType::kWinding);
    path.addRect(right_angle_outer_path_.getBounds(), SkPathDirection::kCCW);
  }

  FloatRoundedRect::Radii ComputeRadii(int outset) const {
    DCHECK(is_rounded_);
    return ComputeCornerRadii(style_, reference_border_rect_, offset_ + outset);
  }

  SkPath CenterPath(bool prefer_outer_half = false) const {
    SkPath center_path = right_angle_outer_path_;
    // If |prefer_outer_half| and width_ is odd_, give the outer half 1 more
    // pixel than the inner half.
    int outset_from_inner = prefer_outer_half ? width_ / 2 : (width_ + 1) / 2;
    ShrinkRightAnglePath(center_path, width_ - outset_from_inner);
    if (is_rounded_) {
      auto center_radii = ComputeRadii(outset_from_inner);
      AddCornerRadiiToPath(center_path, center_radii, center_radii);
    }
    return center_path;
  }

  static int MiterSlope(const SkPoint& p1,
                        const SkPoint& p2,
                        const SkPoint& p3) {
    if (p1.x() == p2.x())
      return (p3.x() > p2.x()) == (p2.y() > p1.y()) ? 1 : -1;
    return (p3.y() > p2.y()) == (p2.x() > p1.x()) ? 1 : -1;
  }

  // Apply clip to remove the extra part of an edge exceeding the miters
  // (formed by 45deg divisions between edges, across the rounded or right-angle
  // corners). The clip should be big enough to include rounded corners within
  // the miters.
  SkPath MiterClipPath(const SkPoint& prev_point,
                       const Line& line,
                       const SkPoint& next_point) const {
    SkRect bounds = right_angle_outer_path_.getBounds();
    int start_miter_slope = MiterSlope(prev_point, line.start, line.end);
    int end_miter_slope = MiterSlope(line.start, line.end, next_point);
    SkPoint p1 = SkPoint::Make(
        line.start.x() + start_miter_slope * (line.start.y() - bounds.top()),
        bounds.top());
    SkPoint p2 = SkPoint::Make(
        line.end.x() + end_miter_slope * (line.end.y() - bounds.top()),
        bounds.top());
    SkPoint p3 = SkPoint::Make(
        line.end.x() - end_miter_slope * (bounds.bottom() - line.end.y()),
        bounds.bottom());
    SkPoint p4 = SkPoint::Make(
        line.start.x() - start_miter_slope * (bounds.bottom() - line.start.y()),
        bounds.bottom());
    // If start_miter_slope == end_miter_slope, the clip path is a parallelogram
    // which is good for both horizontal and vertical edges. Otherwise the path
    // is a trapezoid or a butterfly quadrilateral, and a vertical edge is
    // outside of the path.
    auto path = SkPath::Polygon({p1, p2, p3, p4}, /*isClosed*/ true);
    if (start_miter_slope != end_miter_slope && line.start.x() == line.end.x())
      path.setFillType(SkPathFillType::kInverseWinding);
    return path;
  }

  void PaintStraightEdge(const Line& line,
                         const StyledStrokeData& styled_stroke,
                         const AutoDarkMode& auto_dark_mode) {
    Line adjusted_line = line;
    // GraphicsContext::DrawLine requires the line to be top-to-down or
    // left-to-right get correct interval among dots/dashes.
    if (line.start.x() > line.end.x() || line.start.y() > line.end.y())
      std::swap(adjusted_line.start, adjusted_line.end);
    // Extend the line to fully cover the corners at both endpoints.
    int joint_offset = (width_ + 1) / 2;
    ExtendLineAtEndpoint(adjusted_line.start, adjusted_line.end, joint_offset);
    ExtendLineAtEndpoint(adjusted_line.end, adjusted_line.start, joint_offset);
    context_.DrawLine(
        gfx::ToRoundedPoint(gfx::SkPointToPointF(adjusted_line.start)),
        gfx::ToRoundedPoint(gfx::SkPointToPointF(adjusted_line.end)),
        styled_stroke, auto_dark_mode);
  }

  GraphicsContext& context_;
  const Vector<gfx::Rect>& rects_;
  const PhysicalRect& reference_border_rect_;
  const ComputedStyle& style_;
  EBorderStyle outline_style_;
  int offset_;
  int width_;
  Color color_;
  bool is_rounded_;
  SkPath right_angle_outer_path_;
};

float DefaultFocusRingCornerRadius(const ComputedStyle& style) {
  // Default style is corner radius equal to outline width.
  return FocusRingStrokeWidth(style);
}

FloatRoundedRect::Radii GetFocusRingCornerRadii(
    const ComputedStyle& style,
    const PhysicalRect& reference_border_rect,
    const LayoutObject::OutlineInfo& info) {
  if (style.HasBorderRadius() &&
      ((style.HasEffectiveAppearance() &&
        style.EffectiveAppearance() == AppearanceValue::kBaseSelect) ||
       style.HasAuthorBorderRadius())) {
    auto radii = ComputeCornerRadii(style, reference_border_rect, info.offset);
    radii.SetMinimumRadius(DefaultFocusRingCornerRadius(style));
    return radii;
  }

  if (!style.HasAuthorBorder() && style.HasEffectiveAppearance()) {
    // For the elements that have not been styled and that have an appearance,
    // the focus ring should use the same border radius as the one used for
    // drawing the element.
    std::optional<ui::NativeTheme::Part> part;
    switch (style.EffectiveAppearance()) {
      case AppearanceValue::kCheckbox:
        part = ui::NativeTheme::kCheckbox;
        break;
      case AppearanceValue::kRadio:
        part = ui::NativeTheme::kRadio;
        break;
      case AppearanceValue::kPushButton:
      case AppearanceValue::kSquareButton:
      case AppearanceValue::kButton:
        part = ui::NativeTheme::kPushButton;
        break;
      case AppearanceValue::kTextField:
      case AppearanceValue::kTextArea:
      case AppearanceValue::kSearchField:
        part = ui::NativeTheme::kTextField;
        break;
      default:
        break;
    }
    if (part) {
      float corner_radius =
          ui::NativeTheme::GetInstanceForWeb()->GetBorderRadiusForPart(
              part.value(), reference_border_rect.size.width,
              reference_border_rect.size.height);
      corner_radius =
          ui::NativeTheme::GetInstanceForWeb()->AdjustBorderRadiusByZoom(
              part.value(), corner_radius, style.EffectiveZoom());
      return FloatRoundedRect::Radii(corner_radius);
    }
  }

  return FloatRoundedRect::Radii(DefaultFocusRingCornerRadius(style));
}

void PaintSingleFocusRing(GraphicsContext& context,
                          const Vector<gfx::Rect>& rects,
                          float width,
                          int offset,
                          const FloatRoundedRect::Radii& corner_radii,
                          const Color& color,
                          const AutoDarkMode& auto_dark_mode) {
  DCHECK(!rects.empty());
  SkPath path;
  if (!ComputeRightAnglePath(path, rects, offset, 0))
    return;

  SkRect rect;
  if (path.isRect(&rect)) {
    context.DrawFocusRingRect(
        SkRRect(FloatRoundedRect(gfx::SkRectToRectF(rect), corner_radii)),
        color, width, auto_dark_mode);
    return;
  }

  std::optional<float> corner_radius = corner_radii.UniformRadius();
  if (corner_radius.has_value()) {
    context.DrawFocusRingPath(path, color, width, *corner_radius,
                              auto_dark_mode);
    return;
  }

  // Bake non-uniform radii into the path, and draw the path with 0 corner
  // radius as the path already has rounded corners.
  AddCornerRadiiToPath(path, corner_radii, corner_radii);
  context.DrawFocusRingPath(path, color, width, 0, auto_dark_mode);
}

void PaintFocusRing(GraphicsContext& context,
                    const Vector<gfx::Rect>& rects,
                    const ComputedStyle& style,
                    const FloatRoundedRect::Radii& corner_radii,
                    const LayoutObject::OutlineInfo& info) {
  Color inner_color = style.VisitedDependentColor(GetCSSPropertyOutlineColor());
#if !BUILDFLAG(IS_MAC)
  if (style.DarkColorScheme()) {
    inner_color = Color::kWhite;
  }
#endif

  const float outer_ring_width = FocusRingOuterStrokeWidth(style);
  const float inner_ring_width = FocusRingInnerStrokeWidth(style);
  const int offset = FocusRingOffset(style, info);

  Color outer_color =
      style.DarkColorScheme() ? Color(0x10, 0x10, 0x10) : Color::kWhite;
  PaintSingleFocusRing(context, rects, outer_ring_width,
                       offset + std::ceil(inner_ring_width), corner_radii,
                       outer_color, AutoDarkMode::Disabled());
  // Draw the inner ring using |outer_ring_width| (which should be wider than
  // the additional offset of the outer ring) over the outer ring to ensure no
  // gaps or AA artifacts.
  DCHECK_GE(outer_ring_width, std::ceil(inner_ring_width));
  PaintSingleFocusRing(context, rects, outer_ring_width, offset, corner_radii,
                       inner_color, AutoDarkMode::Disabled());
}

}  // anonymous namespace

void OutlinePainter::PaintOutlineRects(
    const PaintInfo& paint_info,
    const DisplayItemClient& client,
    const Vector<PhysicalRect>& outline_rects,
    const LayoutObject::OutlineInfo& info,
    const ComputedStyle& style) {
  DCHECK(style.HasOutline());
  DCHECK(!outline_rects.empty());

  if (DrawingRecorder::UseCachedDrawingIfPossible(paint_info.context, client,
                                                  paint_info.phase))
    return;

  Vector<gfx::Rect> pixel_snapped_outline_rects;
  std::optional<gfx::Rect> united_outline_rect;
  for (auto& r : outline_rects) {
    gfx::Rect pixel_snapped_rect = ToPixelSnappedRect(r);
    // Keep empty rect for normal outline, but not for focus rings.
    if (!pixel_snapped_rect.IsEmpty() || !style.OutlineStyleIsAuto()) {
      pixel_snapped_outline_rects.push_back(pixel_snapped_rect);
      if (!united_outline_rect)
        united_outline_rect = pixel_snapped_rect;
      else
        united_outline_rect->UnionEvenIfEmpty(pixel_snapped_rect);
    }
  }
  if (pixel_snapped_outline_rects.empty())
    return;

  gfx::Rect visual_rect = *united_outline_rect;
  visual_rect.Outset(OutlineOutsetExtent(style, info));
  DrawingRecorder recorder(paint_info.context, client, paint_info.phase,
                           visual_rect);

  if (style.OutlineStyleIsAuto()) {
    auto corner_radii = GetFocusRingCornerRadii(style, outline_rects[0], info);
    PaintFocusRing(paint_info.context, pixel_snapped_outline_rects, style,
                   corner_radii, info);
    return;
  }

  if (*united_outline_rect == pixel_snapped_outline_rects[0]) {
    gfx::Outsets offset =
        AdjustedOutlineOffset(*united_outline_rect, info.offset);
    BoxBorderPainter::PaintSingleRectOutline(
        paint_info.context, style, outline_rects[0], info.width,
        PhysicalBoxStrut(offset.top(), offset.right(), offset.bottom(),
                         offset.left()));
    return;
  }

  ComplexOutlinePainter(paint_info.context, pixel_snapped_outline_rects,
                        outline_rects[0], style, info)
      .Paint();
}

void OutlinePainter::PaintFocusRingPath(GraphicsContext& context,
                                        const Path& focus_ring_path,
                                        const ComputedStyle& style) {
  if (!style.OutlineStyleIsAuto()) {
    return;
  }
  // TODO(crbug/251206): Implement outline-offset and double focus rings like
  // right angle focus rings, which requires SkPathOps to support expanding and
  // shrinking generic paths.
  context.DrawFocusRingPath(
      focus_ring_path.GetSkPath(),
      style.VisitedDependentColor(GetCSSPropertyOutlineColor()),
      FocusRingStrokeWidth(style), DefaultFocusRingCornerRadius(style),
      PaintAutoDarkMode(style, DarkModeFilter::ElementRole::kBackground));
}

int OutlinePainter::OutlineOutsetExtent(const ComputedStyle& style,
                                        const LayoutObject::OutlineInfo& info) {
  if (!style.HasOutline())
    return 0;
  if (style.OutlineStyleIsAuto()) {
    // Unlike normal outlines (whole width is outside of the offset), focus
    // rings are drawn with only part of it outside of the offset.
    return FocusRingOffset(style, info) +
           std::ceil(FocusRingStrokeWidth(style) / 3.f) * 2;
  }
  return base::ClampAdd(info.width, info.offset).Max(0);
}

void OutlinePainter::IterateRightAnglePathForTesting(
    const SkPath& path,
    const base::RepeatingCallback<void(const Vector<Line>&)>& contour_action) {
  IterateRightAnglePath(path, [contour_action](const Vector<Line>& lines) {
    contour_action.Run(lines);
  });
}

}  // namespace blink