File: position_area.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (305 lines) | stat: -rw-r--r-- 12,576 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/core/style/position_area.h"

#include "base/check_op.h"
#include "third_party/blink/renderer/core/layout/geometry/axis.h"
#include "third_party/blink/renderer/core/style/anchor_specifier_value.h"
#include "third_party/blink/renderer/platform/geometry/calculation_value.h"
#include "third_party/blink/renderer/platform/text/writing_mode_utils.h"
#include "third_party/blink/renderer/platform/wtf/static_constructors.h"

namespace blink {

namespace {

inline PhysicalAxes PhysicalAxisFromRegion(
    PositionAreaRegion region,
    const WritingDirectionMode& container_writing_direction,
    const WritingDirectionMode& self_writing_direction) {
  switch (region) {
    case PositionAreaRegion::kTop:
    case PositionAreaRegion::kBottom:
    case PositionAreaRegion::kYStart:
    case PositionAreaRegion::kYEnd:
    case PositionAreaRegion::kYSelfStart:
    case PositionAreaRegion::kYSelfEnd:
      return kPhysicalAxesVertical;
    case PositionAreaRegion::kLeft:
    case PositionAreaRegion::kRight:
    case PositionAreaRegion::kXStart:
    case PositionAreaRegion::kXEnd:
    case PositionAreaRegion::kXSelfStart:
    case PositionAreaRegion::kXSelfEnd:
      return kPhysicalAxesHorizontal;
    case PositionAreaRegion::kInlineStart:
    case PositionAreaRegion::kInlineEnd:
      return container_writing_direction.IsHorizontal()
                 ? kPhysicalAxesHorizontal
                 : kPhysicalAxesVertical;
    case PositionAreaRegion::kSelfInlineStart:
    case PositionAreaRegion::kSelfInlineEnd:
      return self_writing_direction.IsHorizontal() ? kPhysicalAxesHorizontal
                                                   : kPhysicalAxesVertical;
    case PositionAreaRegion::kBlockStart:
    case PositionAreaRegion::kBlockEnd:
      return container_writing_direction.IsHorizontal()
                 ? kPhysicalAxesVertical
                 : kPhysicalAxesHorizontal;
    case PositionAreaRegion::kSelfBlockStart:
    case PositionAreaRegion::kSelfBlockEnd:
      return self_writing_direction.IsHorizontal() ? kPhysicalAxesVertical
                                                   : kPhysicalAxesHorizontal;
    default:
      // Neutral region. Axis depends on the other span or order of appearance
      // if both spans are neutral.
      return kPhysicalAxesNone;
  }
}

// Return the physical axis for an position-area span if given by the regions, or
// kPhysicalAxesNone if we need the direction/writing-mode to decide.
inline PhysicalAxes PhysicalAxisFromSpan(
    PositionAreaRegion start,
    PositionAreaRegion end,
    const WritingDirectionMode& container_writing_direction,
    const WritingDirectionMode& self_writing_direction) {
  if (start == PositionAreaRegion::kAll) {
    return kPhysicalAxesNone;
  }
  PositionAreaRegion indicator = start == PositionAreaRegion::kCenter ? end : start;
  return PhysicalAxisFromRegion(indicator, container_writing_direction,
                                self_writing_direction);
}

// Convert a logical region to the corresponding physical region based on the
// span's axis and the direction/writing-mode of the anchored element and its
// containing block.
PositionAreaRegion ToPhysicalRegion(
    PositionAreaRegion region,
    PhysicalAxes axis,
    const WritingDirectionMode& container_writing_direction,
    const WritingDirectionMode& self_writing_direction) {
  bool is_horizontal = axis == kPhysicalAxesHorizontal;
  PositionAreaRegion axis_region = region;
  switch (region) {
    case PositionAreaRegion::kNone:
    case PositionAreaRegion::kAll:
      NOTREACHED() << "Should be handled directly in PositionArea::ToPhysical";
    case PositionAreaRegion::kCenter:
    case PositionAreaRegion::kTop:
    case PositionAreaRegion::kBottom:
    case PositionAreaRegion::kLeft:
    case PositionAreaRegion::kRight:
      return region;
    case PositionAreaRegion::kStart:
    case PositionAreaRegion::kInlineStart:
    case PositionAreaRegion::kBlockStart:
      axis_region =
          is_horizontal ? PositionAreaRegion::kXStart : PositionAreaRegion::kYStart;
      break;
    case PositionAreaRegion::kEnd:
    case PositionAreaRegion::kInlineEnd:
    case PositionAreaRegion::kBlockEnd:
      axis_region =
          is_horizontal ? PositionAreaRegion::kXEnd : PositionAreaRegion::kYEnd;
      break;
    case PositionAreaRegion::kSelfStart:
    case PositionAreaRegion::kSelfInlineStart:
    case PositionAreaRegion::kSelfBlockStart:
      axis_region = is_horizontal ? PositionAreaRegion::kXSelfStart
                                  : PositionAreaRegion::kYSelfStart;
      break;
    case PositionAreaRegion::kSelfEnd:
    case PositionAreaRegion::kSelfInlineEnd:
    case PositionAreaRegion::kSelfBlockEnd:
      axis_region = is_horizontal ? PositionAreaRegion::kXSelfEnd
                                  : PositionAreaRegion::kYSelfEnd;
      break;
    default:
      break;
  }

  if (is_horizontal) {
    if ((axis_region == PositionAreaRegion::kXStart &&
         container_writing_direction.IsFlippedX()) ||
        (axis_region == PositionAreaRegion::kXEnd &&
         !container_writing_direction.IsFlippedX()) ||
        (axis_region == PositionAreaRegion::kXSelfStart &&
         self_writing_direction.IsFlippedX()) ||
        (axis_region == PositionAreaRegion::kXSelfEnd &&
         !self_writing_direction.IsFlippedX())) {
      return PositionAreaRegion::kRight;
    }
    return PositionAreaRegion::kLeft;
  }

  if ((axis_region == PositionAreaRegion::kYStart &&
       container_writing_direction.IsFlippedY()) ||
      (axis_region == PositionAreaRegion::kYEnd &&
       !container_writing_direction.IsFlippedY()) ||
      (axis_region == PositionAreaRegion::kYSelfStart &&
       self_writing_direction.IsFlippedY()) ||
      (axis_region == PositionAreaRegion::kYSelfEnd &&
       !self_writing_direction.IsFlippedY())) {
    return PositionAreaRegion::kBottom;
  }
  return PositionAreaRegion::kTop;
}

}  // namespace

PositionArea PositionArea::ToPhysical(
    const WritingDirectionMode& container_writing_direction,
    const WritingDirectionMode& self_writing_direction) const {
  if (IsNone()) {
    return *this;
  }
  PhysicalAxes first_axis =
      PhysicalAxisFromSpan(FirstStart(), FirstEnd(),
                           container_writing_direction, self_writing_direction);
  PhysicalAxes second_axis =
      PhysicalAxisFromSpan(SecondStart(), SecondEnd(),
                           container_writing_direction, self_writing_direction);

  if (first_axis == second_axis) {
    CHECK_EQ(first_axis, kPhysicalAxesNone)
        << "Both regions representing the same axis should not happen";
    // If neither span includes a physical keyword, the first refers to the
    // block axis of the containing block, and the second to the inline axis.
    first_axis = ToPhysicalAxes(kLogicalAxesBlock,
                                container_writing_direction.GetWritingMode());
    second_axis = ToPhysicalAxes(kLogicalAxesInline,
                                 container_writing_direction.GetWritingMode());
  } else {
    if (first_axis == kPhysicalAxesNone) {
      first_axis = second_axis ^ kPhysicalAxesBoth;
    } else if (second_axis == kPhysicalAxesNone) {
      second_axis = first_axis ^ kPhysicalAxesBoth;
    }
  }
  DCHECK_EQ(first_axis ^ second_axis, kPhysicalAxesBoth)
      << "Both axes should be defined and orthogonal";

  auto regions = std::to_array<PositionAreaRegion>(
      {PositionAreaRegion::kTop, PositionAreaRegion::kBottom,
       PositionAreaRegion::kLeft, PositionAreaRegion::kRight});

  // Adjust the index to always make the first span the vertical one in the
  // resulting PositionArea, regardless of the original ordering.
  size_t index = first_axis == kPhysicalAxesHorizontal ? 2 : 0;
  if (FirstStart() != PositionAreaRegion::kAll) {
    regions[index] =
        ToPhysicalRegion(FirstStart(), first_axis, container_writing_direction,
                         self_writing_direction);
    regions[index + 1] =
        ToPhysicalRegion(FirstEnd(), first_axis, container_writing_direction,
                         self_writing_direction);
  }
  index = (index + 2) % 4;
  if (SecondStart() != PositionAreaRegion::kAll) {
    regions[index] =
        ToPhysicalRegion(SecondStart(), second_axis,
                         container_writing_direction, self_writing_direction);
    regions[index + 1] =
        ToPhysicalRegion(SecondEnd(), second_axis, container_writing_direction,
                         self_writing_direction);
  }
  if (regions[0] == PositionAreaRegion::kBottom ||
      regions[1] == PositionAreaRegion::kTop) {
    std::swap(regions[0], regions[1]);
  }
  if (regions[2] == PositionAreaRegion::kRight ||
      regions[3] == PositionAreaRegion::kLeft) {
    std::swap(regions[2], regions[3]);
  }
  return PositionArea(regions[0], regions[1], regions[2], regions[3]);
}

std::pair<StyleSelfAlignmentData, StyleSelfAlignmentData>
PositionArea::AlignJustifySelfFromPhysical(
    WritingDirectionMode container_writing_direction,
    bool is_containing_block_scrollable) const {
  const OverflowAlignment overflow = is_containing_block_scrollable
                                         ? OverflowAlignment::kUnsafe
                                         : OverflowAlignment::kDefault;

  StyleSelfAlignmentData align(ItemPosition::kStart, overflow);
  StyleSelfAlignmentData align_reverse(ItemPosition::kEnd, overflow);
  StyleSelfAlignmentData justify(ItemPosition::kStart, overflow);
  StyleSelfAlignmentData justify_reverse(ItemPosition::kEnd, overflow);

  if ((FirstStart() == PositionAreaRegion::kTop &&
       FirstEnd() == PositionAreaRegion::kBottom) ||
      (FirstStart() == PositionAreaRegion::kCenter &&
       FirstEnd() == PositionAreaRegion::kCenter)) {
    // 'center' or 'all' should align with anchor center.
    align = align_reverse = {ItemPosition::kAnchorCenter, overflow};
  } else {
    // 'top' and 'top center' aligns with end, 'bottom' and 'center bottom' with
    // start.
    if (FirstStart() == PositionAreaRegion::kTop) {
      std::swap(align, align_reverse);
    }
  }
  if ((SecondStart() == PositionAreaRegion::kLeft &&
       SecondEnd() == PositionAreaRegion::kRight) ||
      (SecondStart() == PositionAreaRegion::kCenter &&
       SecondEnd() == PositionAreaRegion::kCenter)) {
    // 'center' or 'all' should align with anchor center.
    justify = justify_reverse = {ItemPosition::kAnchorCenter, overflow};
  } else {
    // 'left' and 'left center' aligns with end, 'right' and 'center right' with
    // start.
    if (SecondStart() == PositionAreaRegion::kLeft) {
      std::swap(justify, justify_reverse);
    }
  }

  if ((FirstStart() == PositionAreaRegion::kTop &&
       FirstEnd() == PositionAreaRegion::kTop) ||
      (FirstStart() == PositionAreaRegion::kBottom &&
       FirstEnd() == PositionAreaRegion::kBottom)) {
    align.SetOverflow(OverflowAlignment::kUnsafe);
    align_reverse.SetOverflow(OverflowAlignment::kUnsafe);
  }
  if ((SecondStart() == PositionAreaRegion::kLeft &&
       SecondEnd() == PositionAreaRegion::kLeft) ||
      (SecondStart() == PositionAreaRegion::kRight &&
       SecondEnd() == PositionAreaRegion::kRight)) {
    justify.SetOverflow(OverflowAlignment::kUnsafe);
    justify_reverse.SetOverflow(OverflowAlignment::kUnsafe);
  }

  PhysicalToLogical converter(container_writing_direction, align,
                              justify_reverse, align_reverse, justify);
  return {converter.BlockStart(), converter.InlineStart()};
}

AnchorQuery PositionArea::AnchorTop() {
  return AnchorQuery(CSSAnchorQueryType::kAnchor,
                     AnchorSpecifierValue::Default(), /* percentage */ 0,
                     CSSAnchorValue::kTop);
}

AnchorQuery PositionArea::AnchorBottom() {
  return AnchorQuery(CSSAnchorQueryType::kAnchor,
                     AnchorSpecifierValue::Default(), /* percentage */ 0,
                     CSSAnchorValue::kBottom);
}

AnchorQuery PositionArea::AnchorLeft() {
  return AnchorQuery(CSSAnchorQueryType::kAnchor,
                     AnchorSpecifierValue::Default(), /* percentage */ 0,
                     CSSAnchorValue::kLeft);
}

AnchorQuery PositionArea::AnchorRight() {
  return AnchorQuery(CSSAnchorQueryType::kAnchor,
                     AnchorSpecifierValue::Default(), /* percentage */ 0,
                     CSSAnchorValue::kRight);
}

}  // namespace blink