1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/core/style/position_area.h"
#include "base/check_op.h"
#include "third_party/blink/renderer/core/layout/geometry/axis.h"
#include "third_party/blink/renderer/core/style/anchor_specifier_value.h"
#include "third_party/blink/renderer/platform/geometry/calculation_value.h"
#include "third_party/blink/renderer/platform/text/writing_mode_utils.h"
#include "third_party/blink/renderer/platform/wtf/static_constructors.h"
namespace blink {
namespace {
inline PhysicalAxes PhysicalAxisFromRegion(
PositionAreaRegion region,
const WritingDirectionMode& container_writing_direction,
const WritingDirectionMode& self_writing_direction) {
switch (region) {
case PositionAreaRegion::kTop:
case PositionAreaRegion::kBottom:
case PositionAreaRegion::kYStart:
case PositionAreaRegion::kYEnd:
case PositionAreaRegion::kYSelfStart:
case PositionAreaRegion::kYSelfEnd:
return kPhysicalAxesVertical;
case PositionAreaRegion::kLeft:
case PositionAreaRegion::kRight:
case PositionAreaRegion::kXStart:
case PositionAreaRegion::kXEnd:
case PositionAreaRegion::kXSelfStart:
case PositionAreaRegion::kXSelfEnd:
return kPhysicalAxesHorizontal;
case PositionAreaRegion::kInlineStart:
case PositionAreaRegion::kInlineEnd:
return container_writing_direction.IsHorizontal()
? kPhysicalAxesHorizontal
: kPhysicalAxesVertical;
case PositionAreaRegion::kSelfInlineStart:
case PositionAreaRegion::kSelfInlineEnd:
return self_writing_direction.IsHorizontal() ? kPhysicalAxesHorizontal
: kPhysicalAxesVertical;
case PositionAreaRegion::kBlockStart:
case PositionAreaRegion::kBlockEnd:
return container_writing_direction.IsHorizontal()
? kPhysicalAxesVertical
: kPhysicalAxesHorizontal;
case PositionAreaRegion::kSelfBlockStart:
case PositionAreaRegion::kSelfBlockEnd:
return self_writing_direction.IsHorizontal() ? kPhysicalAxesVertical
: kPhysicalAxesHorizontal;
default:
// Neutral region. Axis depends on the other span or order of appearance
// if both spans are neutral.
return kPhysicalAxesNone;
}
}
// Return the physical axis for an position-area span if given by the regions, or
// kPhysicalAxesNone if we need the direction/writing-mode to decide.
inline PhysicalAxes PhysicalAxisFromSpan(
PositionAreaRegion start,
PositionAreaRegion end,
const WritingDirectionMode& container_writing_direction,
const WritingDirectionMode& self_writing_direction) {
if (start == PositionAreaRegion::kAll) {
return kPhysicalAxesNone;
}
PositionAreaRegion indicator = start == PositionAreaRegion::kCenter ? end : start;
return PhysicalAxisFromRegion(indicator, container_writing_direction,
self_writing_direction);
}
// Convert a logical region to the corresponding physical region based on the
// span's axis and the direction/writing-mode of the anchored element and its
// containing block.
PositionAreaRegion ToPhysicalRegion(
PositionAreaRegion region,
PhysicalAxes axis,
const WritingDirectionMode& container_writing_direction,
const WritingDirectionMode& self_writing_direction) {
bool is_horizontal = axis == kPhysicalAxesHorizontal;
PositionAreaRegion axis_region = region;
switch (region) {
case PositionAreaRegion::kNone:
case PositionAreaRegion::kAll:
NOTREACHED() << "Should be handled directly in PositionArea::ToPhysical";
case PositionAreaRegion::kCenter:
case PositionAreaRegion::kTop:
case PositionAreaRegion::kBottom:
case PositionAreaRegion::kLeft:
case PositionAreaRegion::kRight:
return region;
case PositionAreaRegion::kStart:
case PositionAreaRegion::kInlineStart:
case PositionAreaRegion::kBlockStart:
axis_region =
is_horizontal ? PositionAreaRegion::kXStart : PositionAreaRegion::kYStart;
break;
case PositionAreaRegion::kEnd:
case PositionAreaRegion::kInlineEnd:
case PositionAreaRegion::kBlockEnd:
axis_region =
is_horizontal ? PositionAreaRegion::kXEnd : PositionAreaRegion::kYEnd;
break;
case PositionAreaRegion::kSelfStart:
case PositionAreaRegion::kSelfInlineStart:
case PositionAreaRegion::kSelfBlockStart:
axis_region = is_horizontal ? PositionAreaRegion::kXSelfStart
: PositionAreaRegion::kYSelfStart;
break;
case PositionAreaRegion::kSelfEnd:
case PositionAreaRegion::kSelfInlineEnd:
case PositionAreaRegion::kSelfBlockEnd:
axis_region = is_horizontal ? PositionAreaRegion::kXSelfEnd
: PositionAreaRegion::kYSelfEnd;
break;
default:
break;
}
if (is_horizontal) {
if ((axis_region == PositionAreaRegion::kXStart &&
container_writing_direction.IsFlippedX()) ||
(axis_region == PositionAreaRegion::kXEnd &&
!container_writing_direction.IsFlippedX()) ||
(axis_region == PositionAreaRegion::kXSelfStart &&
self_writing_direction.IsFlippedX()) ||
(axis_region == PositionAreaRegion::kXSelfEnd &&
!self_writing_direction.IsFlippedX())) {
return PositionAreaRegion::kRight;
}
return PositionAreaRegion::kLeft;
}
if ((axis_region == PositionAreaRegion::kYStart &&
container_writing_direction.IsFlippedY()) ||
(axis_region == PositionAreaRegion::kYEnd &&
!container_writing_direction.IsFlippedY()) ||
(axis_region == PositionAreaRegion::kYSelfStart &&
self_writing_direction.IsFlippedY()) ||
(axis_region == PositionAreaRegion::kYSelfEnd &&
!self_writing_direction.IsFlippedY())) {
return PositionAreaRegion::kBottom;
}
return PositionAreaRegion::kTop;
}
} // namespace
PositionArea PositionArea::ToPhysical(
const WritingDirectionMode& container_writing_direction,
const WritingDirectionMode& self_writing_direction) const {
if (IsNone()) {
return *this;
}
PhysicalAxes first_axis =
PhysicalAxisFromSpan(FirstStart(), FirstEnd(),
container_writing_direction, self_writing_direction);
PhysicalAxes second_axis =
PhysicalAxisFromSpan(SecondStart(), SecondEnd(),
container_writing_direction, self_writing_direction);
if (first_axis == second_axis) {
CHECK_EQ(first_axis, kPhysicalAxesNone)
<< "Both regions representing the same axis should not happen";
// If neither span includes a physical keyword, the first refers to the
// block axis of the containing block, and the second to the inline axis.
first_axis = ToPhysicalAxes(kLogicalAxesBlock,
container_writing_direction.GetWritingMode());
second_axis = ToPhysicalAxes(kLogicalAxesInline,
container_writing_direction.GetWritingMode());
} else {
if (first_axis == kPhysicalAxesNone) {
first_axis = second_axis ^ kPhysicalAxesBoth;
} else if (second_axis == kPhysicalAxesNone) {
second_axis = first_axis ^ kPhysicalAxesBoth;
}
}
DCHECK_EQ(first_axis ^ second_axis, kPhysicalAxesBoth)
<< "Both axes should be defined and orthogonal";
auto regions = std::to_array<PositionAreaRegion>(
{PositionAreaRegion::kTop, PositionAreaRegion::kBottom,
PositionAreaRegion::kLeft, PositionAreaRegion::kRight});
// Adjust the index to always make the first span the vertical one in the
// resulting PositionArea, regardless of the original ordering.
size_t index = first_axis == kPhysicalAxesHorizontal ? 2 : 0;
if (FirstStart() != PositionAreaRegion::kAll) {
regions[index] =
ToPhysicalRegion(FirstStart(), first_axis, container_writing_direction,
self_writing_direction);
regions[index + 1] =
ToPhysicalRegion(FirstEnd(), first_axis, container_writing_direction,
self_writing_direction);
}
index = (index + 2) % 4;
if (SecondStart() != PositionAreaRegion::kAll) {
regions[index] =
ToPhysicalRegion(SecondStart(), second_axis,
container_writing_direction, self_writing_direction);
regions[index + 1] =
ToPhysicalRegion(SecondEnd(), second_axis, container_writing_direction,
self_writing_direction);
}
if (regions[0] == PositionAreaRegion::kBottom ||
regions[1] == PositionAreaRegion::kTop) {
std::swap(regions[0], regions[1]);
}
if (regions[2] == PositionAreaRegion::kRight ||
regions[3] == PositionAreaRegion::kLeft) {
std::swap(regions[2], regions[3]);
}
return PositionArea(regions[0], regions[1], regions[2], regions[3]);
}
std::pair<StyleSelfAlignmentData, StyleSelfAlignmentData>
PositionArea::AlignJustifySelfFromPhysical(
WritingDirectionMode container_writing_direction,
bool is_containing_block_scrollable) const {
const OverflowAlignment overflow = is_containing_block_scrollable
? OverflowAlignment::kUnsafe
: OverflowAlignment::kDefault;
StyleSelfAlignmentData align(ItemPosition::kStart, overflow);
StyleSelfAlignmentData align_reverse(ItemPosition::kEnd, overflow);
StyleSelfAlignmentData justify(ItemPosition::kStart, overflow);
StyleSelfAlignmentData justify_reverse(ItemPosition::kEnd, overflow);
if ((FirstStart() == PositionAreaRegion::kTop &&
FirstEnd() == PositionAreaRegion::kBottom) ||
(FirstStart() == PositionAreaRegion::kCenter &&
FirstEnd() == PositionAreaRegion::kCenter)) {
// 'center' or 'all' should align with anchor center.
align = align_reverse = {ItemPosition::kAnchorCenter, overflow};
} else {
// 'top' and 'top center' aligns with end, 'bottom' and 'center bottom' with
// start.
if (FirstStart() == PositionAreaRegion::kTop) {
std::swap(align, align_reverse);
}
}
if ((SecondStart() == PositionAreaRegion::kLeft &&
SecondEnd() == PositionAreaRegion::kRight) ||
(SecondStart() == PositionAreaRegion::kCenter &&
SecondEnd() == PositionAreaRegion::kCenter)) {
// 'center' or 'all' should align with anchor center.
justify = justify_reverse = {ItemPosition::kAnchorCenter, overflow};
} else {
// 'left' and 'left center' aligns with end, 'right' and 'center right' with
// start.
if (SecondStart() == PositionAreaRegion::kLeft) {
std::swap(justify, justify_reverse);
}
}
if ((FirstStart() == PositionAreaRegion::kTop &&
FirstEnd() == PositionAreaRegion::kTop) ||
(FirstStart() == PositionAreaRegion::kBottom &&
FirstEnd() == PositionAreaRegion::kBottom)) {
align.SetOverflow(OverflowAlignment::kUnsafe);
align_reverse.SetOverflow(OverflowAlignment::kUnsafe);
}
if ((SecondStart() == PositionAreaRegion::kLeft &&
SecondEnd() == PositionAreaRegion::kLeft) ||
(SecondStart() == PositionAreaRegion::kRight &&
SecondEnd() == PositionAreaRegion::kRight)) {
justify.SetOverflow(OverflowAlignment::kUnsafe);
justify_reverse.SetOverflow(OverflowAlignment::kUnsafe);
}
PhysicalToLogical converter(container_writing_direction, align,
justify_reverse, align_reverse, justify);
return {converter.BlockStart(), converter.InlineStart()};
}
AnchorQuery PositionArea::AnchorTop() {
return AnchorQuery(CSSAnchorQueryType::kAnchor,
AnchorSpecifierValue::Default(), /* percentage */ 0,
CSSAnchorValue::kTop);
}
AnchorQuery PositionArea::AnchorBottom() {
return AnchorQuery(CSSAnchorQueryType::kAnchor,
AnchorSpecifierValue::Default(), /* percentage */ 0,
CSSAnchorValue::kBottom);
}
AnchorQuery PositionArea::AnchorLeft() {
return AnchorQuery(CSSAnchorQueryType::kAnchor,
AnchorSpecifierValue::Default(), /* percentage */ 0,
CSSAnchorValue::kLeft);
}
AnchorQuery PositionArea::AnchorRight() {
return AnchorQuery(CSSAnchorQueryType::kAnchor,
AnchorSpecifierValue::Default(), /* percentage */ 0,
CSSAnchorValue::kRight);
}
} // namespace blink
|