1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/modules/mediastream/media_stream_constraints_util_sets.h"
#include <cmath>
#include <optional>
#include "third_party/blink/public/platform/web_string.h"
#include "third_party/blink/renderer/modules/mediastream/media_constraints.h"
#include "third_party/blink/renderer/modules/mediastream/media_stream_constraints_util.h"
namespace blink {
namespace media_constraints {
using Point = ResolutionSet::Point;
namespace {
constexpr double kTolerance = 1e-5;
// Not perfect, but good enough for this application.
bool AreApproximatelyEqual(double d1, double d2) {
if (std::fabs((d1 - d2)) <= kTolerance)
return true;
return d1 == d2 || (std::fabs((d1 - d2) / d1) <= kTolerance &&
std::fabs((d1 - d2) / d2) <= kTolerance);
}
bool IsLess(double d1, double d2) {
return d1 < d2 && !AreApproximatelyEqual(d1, d2);
}
bool IsLessOrEqual(double d1, double d2) {
return d1 < d2 || AreApproximatelyEqual(d1, d2);
}
bool IsGreater(double d1, double d2) {
return d1 > d2 && !AreApproximatelyEqual(d1, d2);
}
bool IsGreaterOrEqual(double d1, double d2) {
return d1 > d2 || AreApproximatelyEqual(d1, d2);
}
int ToValidDimension(int dimension) {
if (dimension > ResolutionSet::kMaxDimension)
return ResolutionSet::kMaxDimension;
if (dimension < 0)
return 0;
return static_cast<int>(dimension);
}
int MinDimensionFromConstraint(const LongConstraint& constraint) {
if (!ConstraintHasMin(constraint))
return 0;
return ToValidDimension(ConstraintMin(constraint));
}
int MaxDimensionFromConstraint(const LongConstraint& constraint) {
if (!ConstraintHasMax(constraint))
return ResolutionSet::kMaxDimension;
return ToValidDimension(ConstraintMax(constraint));
}
double ToValidAspectRatio(double aspect_ratio) {
return aspect_ratio < 0.0 ? 0.0 : aspect_ratio;
}
double MinAspectRatioFromConstraint(const DoubleConstraint& constraint) {
if (!ConstraintHasMin(constraint))
return 0.0;
return ToValidAspectRatio(ConstraintMin(constraint));
}
double MaxAspectRatioFromConstraint(const DoubleConstraint& constraint) {
if (!ConstraintHasMax(constraint))
return HUGE_VAL;
return ToValidAspectRatio(ConstraintMax(constraint));
}
bool IsPositiveFiniteAspectRatio(double aspect_ratio) {
return std::isfinite(aspect_ratio) && aspect_ratio > 0.0;
}
// If |vertices| has a single element, return |vertices[0]|.
// If |vertices| has two elements, returns the point in the segment defined by
// |vertices| that is closest to |point|.
// |vertices| must have 1 or 2 elements. Otherwise, behavior is undefined.
// This function is called when |point| has already been determined to be
// outside a polygon and |vertices| is the vertex or side closest to |point|.
Point GetClosestPointToVertexOrSide(const Vector<Point>& vertices,
const Point& point) {
DCHECK(!vertices.empty());
// If only a single vertex closest to |point|, return that vertex.
if (vertices.size() == 1U)
return vertices[0];
DCHECK_EQ(vertices.size(), 2U);
// If a polygon side is closest to the ideal height, return the
// point with aspect ratio closest to the default.
return Point::ClosestPointInSegment(point, vertices[0], vertices[1]);
}
Point SelectPointWithLargestArea(const Point& p1, const Point& p2) {
return p1.width() * p1.height() > p2.width() * p2.height() ? p1 : p2;
}
} // namespace
Point::Point(double height, double width) : height_(height), width_(width) {
DCHECK(!std::isnan(height_));
DCHECK(!std::isnan(width_));
}
Point::Point(const Point& other) = default;
Point& Point::operator=(const Point& other) = default;
bool Point::operator==(const Point& other) const {
return height_ == other.height_ && width_ == other.width_;
}
bool Point::operator!=(const Point& other) const {
return !(*this == other);
}
bool Point::IsApproximatelyEqualTo(const Point& other) const {
return AreApproximatelyEqual(height_, other.height_) &&
AreApproximatelyEqual(width_, other.width_);
}
Point Point::operator+(const Point& other) const {
return Point(height_ + other.height_, width_ + other.width_);
}
Point Point::operator-(const Point& other) const {
return Point(height_ - other.height_, width_ - other.width_);
}
Point operator*(double d, const Point& p) {
return Point(d * p.height(), d * p.width());
}
// Returns the dot product between |p1| and |p2|.
// static
double Point::Dot(const Point& p1, const Point& p2) {
return p1.height_ * p2.height_ + p1.width_ * p2.width_;
}
// static
double Point::SquareEuclideanDistance(const Point& p1, const Point& p2) {
Point diff = p1 - p2;
return Dot(diff, diff);
}
// static
Point Point::ClosestPointInSegment(const Point& p,
const Point& s1,
const Point& s2) {
// If |s1| and |s2| are the same, it is not really a segment. The closest
// point to |p| is |s1|=|s2|.
if (s1 == s2)
return s1;
// Translate coordinates to a system where the origin is |s1|.
Point p_trans = p - s1;
Point s2_trans = s2 - s1;
// On this system, we are interested in the projection of |p_trans| on
// |s2_trans|. The projection is m * |s2_trans|, where
// m = Dot(|s2_trans|, |p_trans|) / Dot(|s2_trans|, |s2_trans|).
// If 0 <= m <= 1, the projection falls within the segment, and the closest
// point is the projection itself.
// If m < 0, the closest point is S1.
// If m > 1, the closest point is S2.
double m = Dot(s2_trans, p_trans) / Dot(s2_trans, s2_trans);
if (m < 0)
return s1;
if (m > 1)
return s2;
// Return the projection in the original coordinate system.
return s1 + m * s2_trans;
}
ResolutionSet::ResolutionSet(int min_height,
int max_height,
int min_width,
int max_width,
double min_aspect_ratio,
double max_aspect_ratio)
: min_height_(min_height),
max_height_(max_height),
min_width_(min_width),
max_width_(max_width),
min_aspect_ratio_(min_aspect_ratio),
max_aspect_ratio_(max_aspect_ratio) {
DCHECK_GE(min_height_, 0);
DCHECK_GE(max_height_, 0);
DCHECK_LE(max_height_, kMaxDimension);
DCHECK_GE(min_width_, 0);
DCHECK_GE(max_width_, 0);
DCHECK_LE(max_width_, kMaxDimension);
DCHECK_GE(min_aspect_ratio_, 0.0);
DCHECK_GE(max_aspect_ratio_, 0.0);
DCHECK(!std::isnan(min_aspect_ratio_));
DCHECK(!std::isnan(max_aspect_ratio_));
}
ResolutionSet::ResolutionSet()
: ResolutionSet(0, kMaxDimension, 0, kMaxDimension, 0.0, HUGE_VAL) {}
ResolutionSet::ResolutionSet(const ResolutionSet& other) = default;
ResolutionSet& ResolutionSet::operator=(const ResolutionSet& other) = default;
bool ResolutionSet::IsHeightEmpty() const {
return min_height_ > max_height_ || min_height_ >= kMaxDimension ||
max_height_ <= 0;
}
bool ResolutionSet::IsWidthEmpty() const {
return min_width_ > max_width_ || min_width_ >= kMaxDimension ||
max_width_ <= 0;
}
bool ResolutionSet::IsAspectRatioEmpty() const {
double max_resolution_aspect_ratio =
static_cast<double>(max_width_) / static_cast<double>(min_height_);
double min_resolution_aspect_ratio =
static_cast<double>(min_width_) / static_cast<double>(max_height_);
return IsGreater(min_aspect_ratio_, max_aspect_ratio_) ||
IsLess(max_resolution_aspect_ratio, min_aspect_ratio_) ||
IsGreater(min_resolution_aspect_ratio, max_aspect_ratio_) ||
!std::isfinite(min_aspect_ratio_) || max_aspect_ratio_ <= 0.0;
}
bool ResolutionSet::IsEmpty() const {
return IsHeightEmpty() || IsWidthEmpty() || IsAspectRatioEmpty();
}
bool ResolutionSet::ContainsPoint(const Point& point) const {
double ratio = point.AspectRatio();
return point.height() >= min_height_ && point.height() <= max_height_ &&
point.width() >= min_width_ && point.width() <= max_width_ &&
((IsGreaterOrEqual(ratio, min_aspect_ratio_) &&
IsLessOrEqual(ratio, max_aspect_ratio_)) ||
// (0.0, 0.0) is always included in the aspect-ratio range.
(point.width() == 0.0 && point.height() == 0.0));
}
bool ResolutionSet::ContainsPoint(int height, int width) const {
return ContainsPoint(Point(height, width));
}
ResolutionSet ResolutionSet::Intersection(const ResolutionSet& other) const {
return ResolutionSet(std::max(min_height_, other.min_height_),
std::min(max_height_, other.max_height_),
std::max(min_width_, other.min_width_),
std::min(max_width_, other.max_width_),
std::max(min_aspect_ratio_, other.min_aspect_ratio_),
std::min(max_aspect_ratio_, other.max_aspect_ratio_));
}
Point ResolutionSet::SelectClosestPointToIdeal(
const MediaTrackConstraintSetPlatform& constraint_set,
int default_height,
int default_width) const {
DCHECK_GE(default_height, 1);
DCHECK_GE(default_width, 1);
double default_aspect_ratio =
static_cast<double>(default_width) / static_cast<double>(default_height);
DCHECK(!IsEmpty());
int num_ideals = 0;
if (constraint_set.height.HasIdeal())
++num_ideals;
if (constraint_set.width.HasIdeal())
++num_ideals;
if (constraint_set.aspect_ratio.HasIdeal())
++num_ideals;
switch (num_ideals) {
case 0:
return SelectClosestPointToIdealAspectRatio(
default_aspect_ratio, default_height, default_width);
case 1:
// This case requires a point closest to a line.
// In all variants, if the ideal line intersects the polygon, select the
// point in the intersection that is closest to preserving the default
// aspect ratio or a default dimension.
// If the ideal line is outside the polygon, there is either a single
// vertex or a polygon side closest to the ideal line. If a single vertex,
// select that vertex. If a polygon side, select the point on that side
// that is closest to preserving the default aspect ratio or a default
// dimension.
if (constraint_set.height.HasIdeal()) {
int ideal_height = ToValidDimension(constraint_set.height.Ideal());
ResolutionSet ideal_line = ResolutionSet::FromExactHeight(ideal_height);
ResolutionSet intersection = Intersection(ideal_line);
if (!intersection.IsEmpty()) {
return intersection.ClosestPointTo(
Point(ideal_height, ideal_height * default_aspect_ratio));
}
Vector<Point> closest_vertices =
GetClosestVertices(&Point::height, ideal_height);
Point ideal_point(closest_vertices[0].height(),
closest_vertices[0].height() * default_aspect_ratio);
return GetClosestPointToVertexOrSide(closest_vertices, ideal_point);
}
if (constraint_set.width.HasIdeal()) {
int ideal_width = ToValidDimension(constraint_set.width.Ideal());
ResolutionSet ideal_line = ResolutionSet::FromExactWidth(ideal_width);
ResolutionSet intersection = Intersection(ideal_line);
if (!intersection.IsEmpty()) {
return intersection.ClosestPointTo(
Point(ideal_width / default_aspect_ratio, ideal_width));
}
Vector<Point> closest_vertices =
GetClosestVertices(&Point::width, ideal_width);
Point ideal_point(closest_vertices[0].width() / default_aspect_ratio,
closest_vertices[0].width());
return GetClosestPointToVertexOrSide(closest_vertices, ideal_point);
}
{
DCHECK(constraint_set.aspect_ratio.HasIdeal());
double ideal_aspect_ratio =
ToValidAspectRatio(constraint_set.aspect_ratio.Ideal());
return SelectClosestPointToIdealAspectRatio(
ideal_aspect_ratio, default_height, default_width);
}
case 2:
case 3:
double ideal_height;
double ideal_width;
if (constraint_set.height.HasIdeal()) {
ideal_height = ToValidDimension(constraint_set.height.Ideal());
ideal_width =
constraint_set.width.HasIdeal()
? ToValidDimension(constraint_set.width.Ideal())
: ideal_height *
ToValidAspectRatio(constraint_set.aspect_ratio.Ideal());
} else {
DCHECK(constraint_set.width.HasIdeal());
DCHECK(constraint_set.aspect_ratio.HasIdeal());
ideal_width = ToValidDimension(constraint_set.width.Ideal());
ideal_height = ideal_width /
ToValidAspectRatio(constraint_set.aspect_ratio.Ideal());
}
return ClosestPointTo(Point(ideal_height, ideal_width));
default:
NOTREACHED();
}
}
Point ResolutionSet::SelectClosestPointToIdealAspectRatio(
double ideal_aspect_ratio,
int default_height,
int default_width) const {
ResolutionSet intersection =
Intersection(ResolutionSet::FromExactAspectRatio(ideal_aspect_ratio));
if (!intersection.IsEmpty()) {
Point default_height_point(default_height,
default_height * ideal_aspect_ratio);
Point default_width_point(default_width / ideal_aspect_ratio,
default_width);
return SelectPointWithLargestArea(
intersection.ClosestPointTo(default_height_point),
intersection.ClosestPointTo(default_width_point));
}
Vector<Point> closest_vertices =
GetClosestVertices(&Point::AspectRatio, ideal_aspect_ratio);
double actual_aspect_ratio = closest_vertices[0].AspectRatio();
Point default_height_point(default_height,
default_height * actual_aspect_ratio);
Point default_width_point(default_width / actual_aspect_ratio, default_width);
return SelectPointWithLargestArea(
GetClosestPointToVertexOrSide(closest_vertices, default_height_point),
GetClosestPointToVertexOrSide(closest_vertices, default_width_point));
}
Point ResolutionSet::ClosestPointTo(const Point& point) const {
DCHECK(std::numeric_limits<double>::has_infinity);
DCHECK(std::isfinite(point.height()));
DCHECK(std::isfinite(point.width()));
if (ContainsPoint(point))
return point;
auto vertices = ComputeVertices();
DCHECK_GE(vertices.size(), 1U);
Point best_candidate(0, 0);
double best_distance = HUGE_VAL;
for (WTF::wtf_size_t i = 0; i < vertices.size(); ++i) {
Point candidate = Point::ClosestPointInSegment(
point, vertices[i], vertices[(i + 1) % vertices.size()]);
double distance = Point::SquareEuclideanDistance(point, candidate);
if (distance < best_distance) {
best_candidate = candidate;
best_distance = distance;
}
}
DCHECK(std::isfinite(best_distance));
return best_candidate;
}
Vector<Point> ResolutionSet::GetClosestVertices(double (Point::*accessor)()
const,
double value) const {
DCHECK(!IsEmpty());
Vector<Point> vertices = ComputeVertices();
Vector<Point> closest_vertices;
double best_diff = HUGE_VAL;
for (const auto& vertex : vertices) {
double diff;
if (std::isfinite(value))
diff = std::fabs((vertex.*accessor)() - value);
else
diff = (vertex.*accessor)() == value ? 0.0 : HUGE_VAL;
if (diff <= best_diff) {
if (diff < best_diff) {
best_diff = diff;
closest_vertices.clear();
}
closest_vertices.push_back(vertex);
}
}
DCHECK(!closest_vertices.empty());
DCHECK_LE(closest_vertices.size(), 2U);
return closest_vertices;
}
// static
ResolutionSet ResolutionSet::FromHeight(int min, int max) {
return ResolutionSet(min, max, 0, kMaxDimension, 0.0, HUGE_VAL);
}
// static
ResolutionSet ResolutionSet::FromExactHeight(int value) {
return ResolutionSet(value, value, 0, kMaxDimension, 0.0, HUGE_VAL);
}
// static
ResolutionSet ResolutionSet::FromWidth(int min, int max) {
return ResolutionSet(0, kMaxDimension, min, max, 0.0, HUGE_VAL);
}
// static
ResolutionSet ResolutionSet::FromExactWidth(int value) {
return ResolutionSet(0, kMaxDimension, value, value, 0.0, HUGE_VAL);
}
// static
ResolutionSet ResolutionSet::FromAspectRatio(double min, double max) {
return ResolutionSet(0, kMaxDimension, 0, kMaxDimension, min, max);
}
// static
ResolutionSet ResolutionSet::FromExactAspectRatio(double value) {
return ResolutionSet(0, kMaxDimension, 0, kMaxDimension, value, value);
}
// static
ResolutionSet ResolutionSet::FromExactResolution(int width, int height) {
double aspect_ratio = ToValidAspectRatio(static_cast<double>(width) / height);
return ResolutionSet(ToValidDimension(height), ToValidDimension(height),
ToValidDimension(width), ToValidDimension(width),
std::isnan(aspect_ratio) ? 0.0 : aspect_ratio,
std::isnan(aspect_ratio) ? HUGE_VAL : aspect_ratio);
}
Vector<Point> ResolutionSet::ComputeVertices() const {
Vector<Point> vertices;
// Add vertices in counterclockwise order
// Start with (min_height, min_width) and continue along min_width.
TryAddVertex(&vertices, Point(min_height_, min_width_));
if (IsPositiveFiniteAspectRatio(max_aspect_ratio_))
TryAddVertex(&vertices, Point(min_width_ / max_aspect_ratio_, min_width_));
if (IsPositiveFiniteAspectRatio(min_aspect_ratio_))
TryAddVertex(&vertices, Point(min_width_ / min_aspect_ratio_, min_width_));
TryAddVertex(&vertices, Point(max_height_, min_width_));
// Continue along max_height.
if (IsPositiveFiniteAspectRatio(min_aspect_ratio_)) {
TryAddVertex(&vertices,
Point(max_height_, max_height_ * min_aspect_ratio_));
}
if (IsPositiveFiniteAspectRatio(max_aspect_ratio_)) {
TryAddVertex(&vertices,
Point(max_height_, max_height_ * max_aspect_ratio_));
}
TryAddVertex(&vertices, Point(max_height_, max_width_));
// Continue along max_width.
if (IsPositiveFiniteAspectRatio(min_aspect_ratio_))
TryAddVertex(&vertices, Point(max_width_ / min_aspect_ratio_, max_width_));
if (IsPositiveFiniteAspectRatio(max_aspect_ratio_))
TryAddVertex(&vertices, Point(max_width_ / max_aspect_ratio_, max_width_));
TryAddVertex(&vertices, Point(min_height_, max_width_));
// Finish along min_height.
if (IsPositiveFiniteAspectRatio(max_aspect_ratio_)) {
TryAddVertex(&vertices,
Point(min_height_, min_height_ * max_aspect_ratio_));
}
if (IsPositiveFiniteAspectRatio(min_aspect_ratio_)) {
TryAddVertex(&vertices,
Point(min_height_, min_height_ * min_aspect_ratio_));
}
DCHECK_LE(vertices.size(), 6U);
return vertices;
}
void ResolutionSet::TryAddVertex(Vector<Point>* vertices,
const Point& point) const {
if (!ContainsPoint(point))
return;
// Add the point to the |vertices| if not already added.
// This is to prevent duplicates in case an aspect ratio intersects a width
// or height right on a vertex.
if (vertices->empty() ||
(vertices->back() != point && vertices->front() != point)) {
vertices->push_back(point);
}
}
ResolutionSet ResolutionSet::FromConstraintSet(
const MediaTrackConstraintSetPlatform& constraint_set) {
return ResolutionSet(
MinDimensionFromConstraint(constraint_set.height),
MaxDimensionFromConstraint(constraint_set.height),
MinDimensionFromConstraint(constraint_set.width),
MaxDimensionFromConstraint(constraint_set.width),
MinAspectRatioFromConstraint(constraint_set.aspect_ratio),
MaxAspectRatioFromConstraint(constraint_set.aspect_ratio));
}
DiscreteSet<std::string> StringSetFromConstraint(
const StringConstraint& constraint) {
if (!constraint.HasExact())
return DiscreteSet<std::string>::UniversalSet();
Vector<std::string> elements;
for (const auto& entry : constraint.Exact())
elements.push_back(entry.Ascii());
return DiscreteSet<std::string>(std::move(elements));
}
DiscreteSet<bool> BoolSetFromConstraint(const BooleanConstraint& constraint) {
if (!constraint.HasExact())
return DiscreteSet<bool>::UniversalSet();
return DiscreteSet<bool>({constraint.Exact()});
}
DiscreteSet<bool> RescaleSetFromConstraint(
const StringConstraint& resize_mode_constraint) {
DCHECK_EQ(resize_mode_constraint.GetName(),
MediaTrackConstraintSetPlatform().resize_mode.GetName());
bool contains_none = resize_mode_constraint.Matches(
WebString::FromASCII(WebMediaStreamTrack::kResizeModeNone));
bool contains_rescale = resize_mode_constraint.Matches(
WebString::FromASCII(WebMediaStreamTrack::kResizeModeRescale));
if (resize_mode_constraint.Exact().empty() ||
(contains_none && contains_rescale)) {
return DiscreteSet<bool>::UniversalSet();
}
if (contains_none)
return DiscreteSet<bool>({false});
if (contains_rescale)
return DiscreteSet<bool>({true});
return DiscreteSet<bool>::EmptySet();
}
NumericRangeWithBoolSupportSet<double>
DoubleRangeWithBoolSupportSetFromConstraint(
const DoubleOrBooleanConstraint& constraint) {
if (!constraint.HasMandatory()) {
return NumericRangeWithBoolSupportSet<double>();
}
std::optional<double> max, min;
std::optional<bool> support;
if (constraint.HasMax()) {
max = constraint.Max();
support = true;
}
if (constraint.HasMin()) {
min = constraint.Min();
support = true;
}
if (constraint.HasExact()) {
if ((max && *max < constraint.Exact()) ||
(min && *min > constraint.Exact())) {
return NumericRangeWithBoolSupportSet<double>::EmptySet();
}
max = min = constraint.Exact();
support = true;
}
if (constraint.HasExactBoolean()) {
if (support.has_value() && *support != constraint.ExactBoolean()) {
return NumericRangeWithBoolSupportSet<double>::EmptySet();
}
support = constraint.ExactBoolean();
}
return NumericRangeWithBoolSupportSet<double>(std::move(min), std::move(max),
std::move(support));
}
} // namespace media_constraints
} // namespace blink
|