File: media_stream_constraints_util_sets.h

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (568 lines) | stat: -rw-r--r-- 24,133 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef THIRD_PARTY_BLINK_RENDERER_MODULES_MEDIASTREAM_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_
#define THIRD_PARTY_BLINK_RENDERER_MODULES_MEDIASTREAM_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_

#include <algorithm>
#include <limits>
#include <optional>
#include <string>
#include <utility>

#include "base/check_op.h"
#include "base/containers/contains.h"
#include "base/gtest_prod_util.h"
#include "third_party/blink/renderer/modules/mediastream/media_constraints.h"
#include "third_party/blink/renderer/modules/modules_export.h"
#include "third_party/blink/renderer/platform/wtf/vector.h"

namespace blink {

struct MediaTrackConstraintSetPlatform;

template <typename ConstraintType>
bool ConstraintHasMax(const ConstraintType& constraint) {
  return constraint.HasMax() || constraint.HasExact();
}

template <typename ConstraintType>
bool ConstraintHasMin(const ConstraintType& constraint) {
  return constraint.HasMin() || constraint.HasExact();
}

template <typename ConstraintType>
auto ConstraintMax(const ConstraintType& constraint)
    -> decltype(constraint.Max()) {
  DCHECK(ConstraintHasMax(constraint));
  return constraint.HasExact() ? constraint.Exact() : constraint.Max();
}

template <typename ConstraintType>
auto ConstraintMin(const ConstraintType& constraint)
    -> decltype(constraint.Min()) {
  DCHECK(ConstraintHasMin(constraint));
  return constraint.HasExact() ? constraint.Exact() : constraint.Min();
}

namespace media_constraints {

// This class template represents a set of candidates suitable for a numeric
// range-based constraint.
template <typename T>
class NumericRangeSet {
 public:
  NumericRangeSet() = default;
  NumericRangeSet(std::optional<T> min, std::optional<T> max)
      : min_(std::move(min)), max_(std::move(max)) {}
  NumericRangeSet(const NumericRangeSet& other) = default;
  NumericRangeSet& operator=(const NumericRangeSet& other) = default;
  ~NumericRangeSet() = default;

  const std::optional<T>& Min() const { return min_; }
  const std::optional<T>& Max() const { return max_; }
  bool IsEmpty() const { return Max() && Min() && *Max() < *Min(); }
  bool IsUniversal() const { return !(Max() || Min()); }

  NumericRangeSet Intersection(const NumericRangeSet& other) const {
    return NumericRangeSet(Max(Min(), other.Min()), Min(Max(), other.Max()));
  }

  bool Contains(T value) const {
    return (!Min() || value >= *Min()) && (!Max() || value <= *Max());
  }

  // Creates a NumericRangeSet based on the minimum and maximum values of
  // |constraint| and a client-provided range of valid values.
  // If the range given in |constraint| has empty intersection with the range
  // [|lower_bound|, |upper_bound|], an empty NumericRangeSet is returned.
  // Otherwise, if the minimum or maximum value of |constraint| is outside
  // [|lower_bound|, |upper_bound|], the value is ignored.
  template <typename ConstraintType>
  static NumericRangeSet<T> FromConstraint(ConstraintType constraint,
                                           T lower_bound,
                                           T upper_bound) {
    DCHECK_LE(lower_bound, upper_bound);
    // Return an empty set if the constraint range does not overlap with the
    // valid range.
    if ((ConstraintHasMax(constraint) &&
         ConstraintMax(constraint) < lower_bound) ||
        (ConstraintHasMin(constraint) &&
         ConstraintMin(constraint) > upper_bound)) {
      return NumericRangeSet<decltype(constraint.Min())>(1, 0);
    }

    return NumericRangeSet<T>(
        ConstraintHasMin(constraint) && ConstraintMin(constraint) >= lower_bound
            ? ConstraintMin(constraint)
            : std::optional<T>(),
        ConstraintHasMax(constraint) && ConstraintMax(constraint) <= upper_bound
            ? ConstraintMax(constraint)
            : std::optional<T>());
  }

  // Creates a NumericRangeSet based on the minimum and maximum values of
  // |constraint|.
  template <typename ConstraintType>
  static NumericRangeSet<T> FromConstraint(ConstraintType constraint) {
    return NumericRangeSet<T>(
        ConstraintHasMin(constraint) ? ConstraintMin(constraint)
                                     : std::optional<T>(),
        ConstraintHasMax(constraint) ? ConstraintMax(constraint)
                                     : std::optional<T>());
  }

  // Creates a NumericRangeSet based on a single value representing both the
  // minimum and the maximum values for this range.
  static NumericRangeSet<T> FromValue(T value) {
    return NumericRangeSet<T>(value, value);
  }

  static NumericRangeSet<T> EmptySet() { return NumericRangeSet(1, 0); }

 protected:
  std::optional<T> Max(const std::optional<T>& a,
                       const std::optional<T>& b) const {
    return a ? (b ? std::max(*a, *b) : a) : b;
  }
  std::optional<T> Min(const std::optional<T>& a,
                       const std::optional<T>& b) const {
    return a ? (b ? std::min(*a, *b) : a) : b;
  }

 private:
  std::optional<T> min_;
  std::optional<T> max_;
};

// This class template represents a set of optional candidates suitable for
// numeric range-based and boolean support-based constraints.
//
// There are two kind of candidates:
//  - candidates which have a numeric setting
//    (just like in the case of the NumericRangeSet<T> candidates), and
//  - candidates which do not have a setting
//    (because the underlying device does not support the property or
//     because the support of the property is not to be exposed).
//
// A candidate can have a setting only if the underlying device supports
// the property and the support of the property is to be exposed.
// Therefore, the set holds an invariant that either the support is true or
// the numeric range is universal.
// Therefore, the set is always in one of the following states:
//
// State            | Min     | Max     | Support | Suitable candidates
// -----------------+---------+---------+---------+-------------------------
// Universal        | nullopt | nullopt | nullopt | All
// -----------------+---------+---------+---------+-------------------------
// No support       | nullopt | nullopt | false   | Only the candidates which
//                  |         |         |         | do not have a setting
// -----------------+---------+---------+---------+-------------------------
// Support with     | nullopt | nullopt | true    | All the candidates which
// a universal      |         |         |         | have a numeric setting
// numeric range    |         |         |         |
// -----------------+---------+---------+---------+-------------------------
// Support with     | min     | max     | true    | All the candidates which
// a specific       | min     | nullopt |         | have a numeric setting
// numeric range    | nullopt | max     |         | within the range
// -----------------+---------+---------+---------+-------------------------
// Empty            | 1   (*) | 0   (*) | true    | None
// -----------------+---------+---------+---------+-------------------------
// (*): Or other similar values.
//
// The set is never in a specific numeric range with a universal support state
// (non-nullopt min and/or max and nullopt support)
// because that state is better represented by the support with a specific
// numeric range state above.
// The empty state is always encoded as above, in order to hold the invariant.
template <typename T>
class NumericRangeWithBoolSupportSet : public NumericRangeSet<T> {
 public:
  NumericRangeWithBoolSupportSet() = default;
  explicit NumericRangeWithBoolSupportSet(std::optional<bool> support)
      : support_(std::move(support)) {}
  NumericRangeWithBoolSupportSet(std::optional<T> min,
                                 std::optional<T> max,
                                 std::optional<bool> support)
      : NumericRangeSet<T>(std::move(min), std::move(max)),
        support_(std::move(support)) {
    CHECK(NumericRangeSet<T>::IsUniversal() ||
          (Support().has_value() && *Support()));
  }
  NumericRangeWithBoolSupportSet(const NumericRangeWithBoolSupportSet& other) =
      default;
  NumericRangeWithBoolSupportSet& operator=(
      const NumericRangeWithBoolSupportSet& other) = default;
  ~NumericRangeWithBoolSupportSet() = default;

  static NumericRangeWithBoolSupportSet EmptySet() {
    return NumericRangeWithBoolSupportSet(1, 0, true);
  }

  bool ContainsSupport(bool value) const {
    return !Support().has_value() || value == *Support();
  }

  bool IsEmpty() const {
    if (Support().has_value() && *Support()) {
      return NumericRangeSet<T>::IsEmpty();
    }
    CHECK(NumericRangeSet<T>::IsUniversal());
    return false;
  }
  bool IsUniversal() const {
    if (Support().has_value()) {
      return false;
    }
    CHECK(NumericRangeSet<T>::IsUniversal());
    return true;
  }
  using NumericRangeSet<T>::Max;
  using NumericRangeSet<T>::Min;
  const std::optional<bool>& Support() const { return support_; }

  NumericRangeWithBoolSupportSet Intersection(
      const NumericRangeWithBoolSupportSet& other) const {
    if (Support().has_value() && other.Support().has_value() &&
        *Support() != *other.Support()) {
      return EmptySet();
    }
    return NumericRangeWithBoolSupportSet(
        Max(Min(), other.Min()), Min(Max(), other.Max()),
        Support().has_value() ? Support() : other.Support());
  }

 private:
  std::optional<bool> support_;
};

MODULES_EXPORT NumericRangeWithBoolSupportSet<double>
DoubleRangeWithBoolSupportSetFromConstraint(
    const DoubleOrBooleanConstraint& constraint);

// This class defines a set of discrete elements suitable for resolving
// constraints with a countable number of choices not suitable to be constrained
// by range. Examples are strings, booleans and certain constraints of type
// long. A DiscreteSet can be empty, have their elements explicitly stated, or
// be the universal set. The universal set is a set that contains all possible
// elements. The specific definition of what elements are in the universal set
// is application defined (e.g., it could be all possible boolean values, all
// possible strings of length N, or anything that suits a particular
// application).
// TODO(guidou): Rename this class. https://crbug.com/731166
template <typename T>
class DiscreteSet {
 public:
  // Creates a universal set.
  DiscreteSet() : is_universal_(true) {}
  // Creates a set containing the elements in |elements|.
  // It is the responsibility of the caller to ensure that |elements| is not
  // equivalent to the universal set and that |elements| has no repeated
  // values. Takes ownership of |elements|.
  explicit DiscreteSet(Vector<T> elements)
      : is_universal_(false), elements_(std::move(elements)) {}
  // Creates an empty set;
  static DiscreteSet EmptySet() { return DiscreteSet(Vector<T>()); }
  static DiscreteSet UniversalSet() { return DiscreteSet(); }

  DiscreteSet(const DiscreteSet& other) = default;
  DiscreteSet& operator=(const DiscreteSet& other) = default;
  DiscreteSet(DiscreteSet&& other) = default;
  DiscreteSet& operator=(DiscreteSet&& other) = default;
  ~DiscreteSet() = default;

  bool Contains(const T& value) const {
    return is_universal_ || base::Contains(elements_, value);
  }

  bool IsEmpty() const { return !is_universal_ && elements_.empty(); }

  bool HasExplicitElements() const { return !elements_.empty(); }

  DiscreteSet Intersection(const DiscreteSet& other) const {
    if (is_universal_)
      return other;
    if (other.is_universal_)
      return *this;
    if (IsEmpty() || other.IsEmpty())
      return EmptySet();

    // Both sets have explicit elements.
    Vector<T> intersection;
    for (const auto& entry : elements_) {
      if (base::Contains(other.elements_, entry))
        intersection.push_back(entry);
    }
    return DiscreteSet(std::move(intersection));
  }

  // Returns a copy of the first element in the set. This is useful as a simple
  // tie-breaker rule. This applies only to constrained nonempty sets.
  // Behavior is undefined if the set is empty or universal.
  T FirstElement() const {
    DCHECK(HasExplicitElements());
    return elements_[0];
  }

  // Returns a reference to the list of elements in the set.
  // Behavior is undefined if the set is universal.
  const Vector<T>& elements() const {
    DCHECK(!is_universal_);
    return elements_;
  }

  bool is_universal() const { return is_universal_; }

 private:
  bool is_universal_;
  Vector<T> elements_;
};

// Special case for DiscreteSet<bool> where it is easy to produce an explicit
// set that contains all possible elements.
template <>
inline bool DiscreteSet<bool>::is_universal() const {
  return Contains(true) && Contains(false);
}

MODULES_EXPORT DiscreteSet<std::string> StringSetFromConstraint(
    const StringConstraint& constraint);
MODULES_EXPORT DiscreteSet<bool> BoolSetFromConstraint(
    const BooleanConstraint& constraint);

// This class represents a set of (height, width) screen resolution candidates
// determined by width, height and aspect-ratio constraints.
// This class supports widths and heights from 0 to kMaxDimension, both
// inclusive and aspect ratios from 0.0 to positive infinity, both inclusive.
class MODULES_EXPORT ResolutionSet {
 public:
  static const int kMaxDimension = std::numeric_limits<int>::max();

  // Helper class that represents (height, width) points on a plane.
  // TODO(guidou): Use a generic point/vector class that uses double once it
  // becomes available (e.g., a gfx::Vector2dD).
  class MODULES_EXPORT Point {
   public:
    // Creates a (|height|, |width|) point. |height| and |width| must be finite.
    Point(double height, double width);
    Point(const Point& other);
    Point& operator=(const Point& other);

    // Accessors.
    double height() const { return height_; }
    double width() const { return width_; }
    double AspectRatio() const { return width_ / height_; }

    // Exact equality/inequality operators.
    bool operator==(const Point& other) const;
    bool operator!=(const Point& other) const;

    // Returns true if the coordinates of this point and |other| are
    // approximately equal.
    bool IsApproximatelyEqualTo(const Point& other) const;

    // Vector-style addition and subtraction operators.
    Point operator+(const Point& other) const;
    Point operator-(const Point& other) const;

    // Returns the dot product between |p1| and |p2|.
    static double Dot(const Point& p1, const Point& p2);

    // Returns the square Euclidean distance between |p1| and |p2|.
    static double SquareEuclideanDistance(const Point& p1, const Point& p2);

    // Returns the point in the line segment determined by |s1| and |s2| that
    // is closest to |p|.
    static Point ClosestPointInSegment(const Point& p,
                                       const Point& s1,
                                       const Point& s2);

   private:
    double height_;
    double width_;
  };

  // Creates a set with the maximum supported ranges for width, height and
  // aspect ratio.
  ResolutionSet();
  ResolutionSet(int min_height,
                int max_height,
                int min_width,
                int max_width,
                double min_aspect_ratio,
                double max_aspect_ratio);
  ResolutionSet(const ResolutionSet& other);
  ResolutionSet& operator=(const ResolutionSet& other);

  // Getters.
  int min_height() const { return min_height_; }
  int max_height() const { return max_height_; }
  int min_width() const { return min_width_; }
  int max_width() const { return max_width_; }
  double min_aspect_ratio() const { return min_aspect_ratio_; }
  double max_aspect_ratio() const { return max_aspect_ratio_; }

  // Returns true if this set is empty.
  bool IsEmpty() const;

  // These functions return true if a particular variable causes the set to be
  // empty.
  bool IsHeightEmpty() const;
  bool IsWidthEmpty() const;
  bool IsAspectRatioEmpty() const;

  // These functions return true if the given point is included in this set.
  bool ContainsPoint(const Point& point) const;
  bool ContainsPoint(int height, int width) const;

  // Returns a new set with the intersection of |*this| and |other|.
  ResolutionSet Intersection(const ResolutionSet& other) const;

  // Returns a point in this (nonempty) set closest to the ideal values for the
  // height, width and aspectRatio constraints in |constraint_set|.
  // Note that this function ignores all the other data in |constraint_set|.
  // Only the ideal height, width and aspect ratio are used, and from now on
  // referred to as |ideal_height|, |ideal_width| and |ideal_aspect_ratio|
  // respectively.
  //
  // * If all three ideal values are given, |ideal_aspect_ratio| is ignored and
  //   the point closest to (|ideal_height|, |ideal_width|) is returned.
  // * If two ideal values are given, they are used to determine a single ideal
  //   point, which can be one of:
  //    - (|ideal_height|, |ideal_width|),
  //    - (|ideal_height|, |ideal_height|*|ideal_aspect_ratio|), or
  //    - (|ideal_width| / |ideal_aspect_ratio|, |ideal_width|).
  //   The point in the set closest to the ideal point is returned.
  // * If a single ideal value is given, a point in the set closest to the line
  //   defined by the ideal value is returned. If there is more than one point
  //   closest to the ideal line, the following tie-breaker rules are used:
  //  - If |ideal_height| is provided, the point closest to
  //      (|ideal_height|, |ideal_height| * default_aspect_ratio), where
  //      default_aspect_ratio is the result of the floating-point division
  //      |default_width|/|default_height|.
  //  - If |ideal_width| is provided, the point closest to
  //      (|ideal_width| / default_aspect_ratio, |ideal_width|).
  //  - If |ideal_aspect_ratio| is provided, the point with largest area among
  //    the points closest to
  //      (|default_height|, |default_height| * aspect_ratio) and
  //      (|default_width| / aspect_ratio, |default_width|),
  //    where aspect_ratio is |ideal_aspect_ratio| if the ideal line intersects
  //    the set, and the closest aspect ratio to |ideal_aspect_ratio| among the
  //    points in the set if no point in the set has an aspect ratio equal to
  //    |ideal_aspect_ratio|.
  // * If no ideal value is given, proceed as if only |ideal_aspect_ratio| was
  //   provided with a value of default_aspect_ratio.
  //
  // This is intended to support the implementation of the spec algorithm for
  // selection of track settings, as defined in
  // https://w3c.github.io/mediacapture-main/#dfn-selectsettings.
  //
  // The main difference between this algorithm and the spec is that when ideal
  // values are provided, the spec mandates finding a point that minimizes the
  // sum of custom relative distances for each provided ideal value, while this
  // algorithm minimizes either the Euclidean distance (sum of square distances)
  // on a height-width plane for the cases where two or three ideal values are
  // provided, or the absolute distance for the case with one ideal value.
  // Also, in the case with three ideal values, this algorithm ignores the
  // distance to the ideal aspect ratio.
  // In most cases the difference in the final result should be negligible.
  // The reason to follow this approach is that optimization in the worst case
  // is reduced to projection of a point on line segment, which is a simple
  // operation that provides exact results. Using the distance function of the
  // spec, which is not continuous, would require complex optimization methods
  // that do not necessarily guarantee finding the real optimal value.
  //
  // This function has undefined behavior if this set is empty.
  Point SelectClosestPointToIdeal(
      const MediaTrackConstraintSetPlatform& constraint_set,
      int default_height,
      int default_width) const;

  // Utilities that return ResolutionSets constrained on a specific variable.
  static ResolutionSet FromHeight(int min, int max);
  static ResolutionSet FromExactHeight(int value);
  static ResolutionSet FromWidth(int min, int max);
  static ResolutionSet FromExactWidth(int value);
  static ResolutionSet FromAspectRatio(double min, double max);
  static ResolutionSet FromExactAspectRatio(double value);

  // Returns a ResolutionSet containing only the specified width and height.
  static ResolutionSet FromExactResolution(int width, int height);

  // Returns a ResolutionCandidateSet initialized with |constraint_set|'s
  // width, height and aspectRatio constraints.
  static ResolutionSet FromConstraintSet(
      const MediaTrackConstraintSetPlatform& constraint_set);

 private:
  FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
                           ResolutionPointSetClosestPoint);
  FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
                           ResolutionLineSetClosestPoint);
  FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
                           ResolutionGeneralSetClosestPoint);
  FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
                           ResolutionIdealOutsideSinglePoint);
  FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
                           ResolutionVertices);

  // Returns the closest point in this set to |point|. If |point| is included in
  // this set, Point is returned. If this set is empty, behavior is undefined.
  Point ClosestPointTo(const Point& point) const;

  // Returns a list of the vertices defined by the constraints on a height-width
  // Cartesian plane.
  // If the list is empty, the set is empty.
  // If the list contains a single point, the set contains a single point.
  // If the list contains two points, the set is composed of points on a line
  // segment.
  // If the list contains three to six points, they are the vertices of a
  // convex polygon containing all valid points in the set. Each pair of
  // consecutive vertices (modulo the size of the list) corresponds to a side of
  // the polygon, with the vertices given in counterclockwise order.
  // The list cannot contain more than six points.
  Vector<Point> ComputeVertices() const;

 private:
  // Implements SelectClosestPointToIdeal() for the case when only the ideal
  // aspect ratio is provided.
  Point SelectClosestPointToIdealAspectRatio(double ideal_aspect_ratio,
                                             int default_height,
                                             int default_width) const;

  // Returns the vertices of the set that have the property accessed
  // by |accessor| closest to |value|. The returned vector always has one or two
  // elements. Behavior is undefined if the set is empty.
  Vector<Point> GetClosestVertices(double (Point::*accessor)() const,
                                   double value) const;

  // Adds |point| to |vertices| if |point| is included in this candidate set.
  void TryAddVertex(Vector<ResolutionSet::Point>* vertices,
                    const ResolutionSet::Point& point) const;

  int min_height_;
  int max_height_;
  int min_width_;
  int max_width_;
  double min_aspect_ratio_;
  double max_aspect_ratio_;
};

// Scalar multiplication for Points.
MODULES_EXPORT ResolutionSet::Point operator*(double d,
                                              const ResolutionSet::Point& p);

// This function returns a set of bools from a resizeMode StringConstraint.
// If |resize_mode_constraint| includes
// WebMediaStreamTrack::kResizeModeNone, false is included in the
// returned value. If |resize_mode_constraint| includes
// WebMediaStreamTrack::kResizeModeRescale, true is included in the
// returned value.
MODULES_EXPORT DiscreteSet<bool> RescaleSetFromConstraint(
    const StringConstraint& resize_mode_constraint);

}  // namespace media_constraints
}  // namespace blink

#endif  // THIRD_PARTY_BLINK_RENDERER_MODULES_MEDIASTREAM_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_