1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/modules/ml/webnn/ml_graph_utils.h"
#include <numeric>
#include "third_party/blink/public/mojom/devtools/console_message.mojom-blink-forward.h"
#include "third_party/blink/renderer/bindings/modules/v8/v8_ml_gemm_options.h"
#include "third_party/blink/renderer/core/execution_context/execution_context.h"
#include "third_party/blink/renderer/core/inspector/console_message.h"
#include "third_party/blink/renderer/core/typed_arrays/dom_typed_array.h"
#include "third_party/blink/renderer/modules/ml/webnn/ml_operand.h"
#include "third_party/blink/renderer/modules/ml/webnn/ml_operator.h"
#include "third_party/blink/renderer/platform/bindings/script_state.h"
#include "third_party/blink/renderer/platform/heap/collection_support/heap_deque.h"
#include "third_party/blink/renderer/platform/heap/collection_support/heap_hash_set.h"
namespace blink {
HeapVector<Member<MLOperator>> GetOperatorsInTopologicalOrder(
const MLNamedOperands& named_outputs) {
// A WebNN graph is represented by a directed acyclic graph (DAG) that has
// operators as vertices and operand as edges. The topological sorting is
// implemented by depth-first search (DFS) and visiting vertices in
// post-order. It means a vertex (operator) is visited (pushed to the back of
// the sorted list) after all its dependent vertices (operators) are visited.
// With that, it ensures operator 'j' appears before operator 'i' in the
// result, if 'i' depends on 'j'. The DFS algorithm is based on the
// non-recursive implementation of:
// https://en.wikipedia.org/wiki/Depth-first_search
// The topologically sorted operators.
HeapVector<Member<MLOperator>> toposorted_operators;
// The to-visit stack and visited set for DFS graph traversal.
HeapDeque<Member<MLOperator>> operators_to_visit;
HeapHashSet<Member<MLOperator>> visited_operators;
// Enumerate output operands and initialize the to-visit stack with their
// dependent operators.
for (const auto& output : named_outputs) {
const auto* operand = output.second.Get();
operators_to_visit.push_back(operand->Operator());
}
while (operators_to_visit.size() > 0) {
// Get the current operator from the top of the to-visit stack.
auto& current_operator = operators_to_visit.back();
if (!visited_operators.Contains(current_operator.Get())) {
// The current operator is not visited, check whether its dependent
// operators are visited or not.
bool skip_visit = false;
for (const auto& operand : current_operator->Inputs()) {
if (operand->Kind() == webnn::mojom::blink::Operand::Kind::kOutput) {
auto* dependent_operator = operand->Operator();
CHECK(dependent_operator);
if (!visited_operators.Contains(dependent_operator)) {
// As there is an dependent operator is not visited, skip visiting
// this operator and push the dependent operator into the to-visit
// stack.
skip_visit = true;
operators_to_visit.push_back(dependent_operator);
}
}
}
if (!skip_visit) {
// When all dependent operators have been visited, visit the current
// operator and add it into the visited set.
toposorted_operators.push_back(current_operator);
visited_operators.insert(current_operator);
// Pop the current operator from the to-visit stack.
operators_to_visit.pop_back();
}
} else {
// The current operator is already visited, pop it and check the next
// one.
operators_to_visit.pop_back();
}
}
return toposorted_operators;
}
DOMArrayBufferView::ViewType GetArrayBufferViewType(
webnn::OperandDataType data_type) {
switch (data_type) {
case webnn::OperandDataType::kFloat32:
return DOMArrayBufferView::ViewType::kTypeFloat32;
case webnn::OperandDataType::kFloat16:
return DOMArrayBufferView::ViewType::kTypeFloat16;
case webnn::OperandDataType::kInt32:
return DOMArrayBufferView::ViewType::kTypeInt32;
case webnn::OperandDataType::kUint32:
return DOMArrayBufferView::ViewType::kTypeUint32;
case webnn::OperandDataType::kInt64:
return DOMArrayBufferView::ViewType::kTypeBigInt64;
case webnn::OperandDataType::kUint64:
return DOMArrayBufferView::ViewType::kTypeBigUint64;
case webnn::OperandDataType::kInt8:
return DOMArrayBufferView::ViewType::kTypeInt8;
case webnn::OperandDataType::kUint8:
return DOMArrayBufferView::ViewType::kTypeUint8;
case webnn::OperandDataType::kInt4:
case webnn::OperandDataType::kUint4:
return DOMArrayBufferView::ViewType::kTypeUint8;
}
}
Vector<uint32_t> CreateDefaultPermutation(const wtf_size_t rank) {
Vector<uint32_t> default_permutation(rank);
for (wtf_size_t i = 0; i < rank; ++i) {
default_permutation[i] = rank - 1 - i;
}
return default_permutation;
}
Vector<uint32_t> CreateAllAxes(const wtf_size_t rank) {
Vector<uint32_t> default_axes(rank);
std::iota(default_axes.begin(), default_axes.end(), 0);
return default_axes;
}
Vector<uint32_t> CreateLayerNormalizationDefaultAxes(const wtf_size_t rank) {
Vector<uint32_t> default_axes;
if (rank > 1) {
default_axes.resize(rank - 1);
std::iota(default_axes.begin(), default_axes.end(), 1);
}
return default_axes;
}
Vector<uint32_t> CreateSliceDefaultStrides(wtf_size_t rank) {
return Vector<uint32_t>(rank, 1);
}
base::expected<void, String> ValidateFilterLayout(
bool depthwise,
V8MLInputOperandLayout input_layout,
V8MLConv2dFilterOperandLayout filter_layout) {
CHECK(input_layout.AsEnum() == V8MLInputOperandLayout::Enum::kNhwc);
if (!depthwise) {
// For regular conv2d, NHWC input layout expects weights layout in ohwi that
// is [groups * group_output_channels, kernel_height, kernel_width,
// group_input_channels].
//
// TODO(crbug.com/1273291): support other layouts by transposing the
// filter operand.
if (filter_layout.AsEnum() != V8MLConv2dFilterOperandLayout::Enum::kOhwi) {
return base::unexpected(String::Format(
"The filter layout %s is not supported.", filter_layout.AsCStr()));
}
} else {
// For depthwise conv2d, NHWC input layout expects weights layout in ihwo
// that is [1, kernel_height, kernel_width, input_channels *
// depth_multiplier].
//
// TODO(crbug.com/1273291): support other layouts by transposing the
// filter operand.
if (filter_layout.AsEnum() != V8MLConv2dFilterOperandLayout::Enum::kIhwo) {
return base::unexpected(String::Format(
"The filter layout %s is not supported.", filter_layout.AsCStr()));
}
}
return base::ok();
}
webnn::Size2d<uint32_t> CalculateConvTransposeOutputSize2D(
const blink::MLConvTranspose2dOptions* options,
uint32_t input_height,
uint32_t input_width,
uint32_t filter_height,
uint32_t filter_width,
uint32_t stride_height,
uint32_t stride_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t output_padding_height,
uint32_t output_padding_width) {
// Set the padding from WebNN explicit padding that is in
// [beginning_height, ending_height, beginning_width, ending_width],
// default to 0.
auto ml_padding = options->getPaddingOr({0, 0, 0, 0});
CHECK_EQ(ml_padding.size(), 4u);
const webnn::Padding2d padding{
.beginning = webnn::Size2d<uint32_t>{.height = ml_padding[0],
.width = ml_padding[2]},
.ending = webnn::Size2d<uint32_t>{.height = ml_padding[1],
.width = ml_padding[3]}};
const auto output_height = webnn::CalculateConvTranspose2dOutputSize(
input_height, filter_height, padding.beginning.height,
padding.ending.height, stride_height, dilation_height,
output_padding_height);
CHECK(output_height.has_value());
const auto output_width = webnn::CalculateConvTranspose2dOutputSize(
input_width, filter_width, padding.beginning.width, padding.ending.width,
stride_width, dilation_width, output_padding_width);
CHECK(output_width.has_value());
return webnn::Size2d<uint32_t>{.height = output_height.value(),
.width = output_width.value()};
}
V8MLOperandDataType ToBlinkDataType(webnn::OperandDataType data_type) {
switch (data_type) {
case webnn::OperandDataType::kFloat32:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kFloat32);
case webnn::OperandDataType::kFloat16:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kFloat16);
case webnn::OperandDataType::kInt32:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kInt32);
case webnn::OperandDataType::kUint32:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kUint32);
case webnn::OperandDataType::kInt64:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kInt64);
case webnn::OperandDataType::kUint64:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kUint64);
case webnn::OperandDataType::kInt8:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kInt8);
case webnn::OperandDataType::kUint8:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kUint8);
case webnn::OperandDataType::kInt4:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kInt4);
case webnn::OperandDataType::kUint4:
return V8MLOperandDataType(V8MLOperandDataType::Enum::kUint4);
}
}
webnn::OperandDataType FromBlinkDataType(V8MLOperandDataType::Enum data_type) {
switch (data_type) {
case V8MLOperandDataType::Enum::kFloat32:
return webnn::OperandDataType::kFloat32;
case V8MLOperandDataType::Enum::kFloat16:
return webnn::OperandDataType::kFloat16;
case V8MLOperandDataType::Enum::kInt32:
return webnn::OperandDataType::kInt32;
case V8MLOperandDataType::Enum::kUint32:
return webnn::OperandDataType::kUint32;
case V8MLOperandDataType::Enum::kInt64:
return webnn::OperandDataType::kInt64;
case V8MLOperandDataType::Enum::kUint64:
return webnn::OperandDataType::kUint64;
case V8MLOperandDataType::Enum::kInt8:
return webnn::OperandDataType::kInt8;
case V8MLOperandDataType::Enum::kUint8:
return webnn::OperandDataType::kUint8;
case V8MLOperandDataType::Enum::kInt4:
return webnn::OperandDataType::kInt4;
case V8MLOperandDataType::Enum::kUint4:
return webnn::OperandDataType::kUint4;
}
}
bool IsLogicalBinaryOperator(
webnn::mojom::blink::ElementWiseBinary::Kind kind) {
switch (kind) {
case webnn::mojom::blink::ElementWiseBinary::Kind::kAdd:
case webnn::mojom::blink::ElementWiseBinary::Kind::kSub:
case webnn::mojom::blink::ElementWiseBinary::Kind::kMul:
case webnn::mojom::blink::ElementWiseBinary::Kind::kDiv:
case webnn::mojom::blink::ElementWiseBinary::Kind::kMax:
case webnn::mojom::blink::ElementWiseBinary::Kind::kMin:
case webnn::mojom::blink::ElementWiseBinary::Kind::kPow:
return false;
case webnn::mojom::blink::ElementWiseBinary::Kind::kEqual:
case webnn::mojom::blink::ElementWiseBinary::Kind::kGreater:
case webnn::mojom::blink::ElementWiseBinary::Kind::kGreaterOrEqual:
case webnn::mojom::blink::ElementWiseBinary::Kind::kLesser:
case webnn::mojom::blink::ElementWiseBinary::Kind::kLesserOrEqual:
case webnn::mojom::blink::ElementWiseBinary::Kind::kNotEqual:
case webnn::mojom::blink::ElementWiseBinary::Kind::kLogicalAnd:
case webnn::mojom::blink::ElementWiseBinary::Kind::kLogicalOr:
case webnn::mojom::blink::ElementWiseBinary::Kind::kLogicalXor:
return true;
}
}
void LogConsoleWarning(ScriptState* script_state,
const String& message,
mojom::blink::ConsoleMessageSource message_source) {
ExecutionContext* execution_context = ExecutionContext::From(script_state);
if (!execution_context) {
return;
}
execution_context->AddConsoleMessage(MakeGarbageCollected<ConsoleMessage>(
message_source, mojom::blink::ConsoleMessageLevel::kWarning, message));
}
} // namespace blink
|