File: ml_tensor.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (261 lines) | stat: -rw-r--r-- 8,625 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/modules/ml/webnn/ml_tensor.h"

#include "base/metrics/histogram_functions.h"
#include "base/types/expected.h"
#include "base/types/expected_macros.h"
#include "services/webnn/public/cpp/ml_tensor_usage.h"
#include "services/webnn/public/cpp/operand_descriptor.h"
#include "services/webnn/public/mojom/webnn_tensor.mojom-blink.h"
#include "third_party/blink/renderer/bindings/modules/v8/v8_ml_tensor_descriptor.h"
#include "third_party/blink/renderer/core/execution_context/execution_context.h"
#include "third_party/blink/renderer/modules/ml/ml_context.h"
#include "third_party/blink/renderer/modules/ml/webnn/ml_error.h"
#include "third_party/blink/renderer/modules/ml/webnn/ml_graph_utils.h"

namespace blink {

namespace {

void RecordReadTensorTime(base::ElapsedTimer read_tensor_timer) {
  base::UmaHistogramMediumTimes("WebNN.MLTensor.TimingMs.Read",
                                read_tensor_timer.Elapsed());
}

}  // namespace

MLTensor::MLTensor(
    ExecutionContext* execution_context,
    MLContext* context,
    webnn::OperandDescriptor descriptor,
    webnn::MLTensorUsage usage,
    webnn::mojom::blink::CreateTensorSuccessPtr create_tensor_success,
    base::PassKey<MLContext> /*pass_key*/)
    : ml_context_(context),
      descriptor_(std::move(descriptor)),
      usage_(usage),
      webnn_handle_(std::move(create_tensor_success->tensor_handle)),
      remote_tensor_(execution_context) {
  remote_tensor_.Bind(
      std::move(create_tensor_success->tensor_remote),
      execution_context->GetTaskRunner(TaskType::kMachineLearning));
  remote_tensor_.set_disconnect_handler(
      WTF::BindOnce(&MLTensor::OnConnectionError, WrapWeakPersistent(this)));
}

MLTensor::~MLTensor() = default;

void MLTensor::Trace(Visitor* visitor) const {
  visitor->Trace(ml_context_);
  visitor->Trace(remote_tensor_);
  visitor->Trace(pending_resolvers_);
  visitor->Trace(pending_byob_resolvers_);
  ScriptWrappable::Trace(visitor);
}

V8MLOperandDataType MLTensor::dataType() const {
  return ToBlinkDataType(descriptor_.data_type());
}

Vector<uint32_t> MLTensor::shape() const {
  return Vector<uint32_t>(descriptor_.shape());
}

bool MLTensor::exportableToGPU() const {
  return usage_.Has(webnn::MLTensorUsageFlags::kWebGpuInterop);
}

bool MLTensor::readable() const {
  return usage_.Has(webnn::MLTensorUsageFlags::kRead);
}

bool MLTensor::writable() const {
  return usage_.Has(webnn::MLTensorUsageFlags::kWrite);
}

bool MLTensor::constant() const {
  return usage_.Has(webnn::MLTensorUsageFlags::kGraphConstant);
}

void MLTensor::destroy() {
  // Calling OnConnectionError() will disconnect and destroy the tensor in
  // the service. The remote tensor must remain unbound after calling
  // OnConnectionError() because it is valid to call destroy() multiple times.
  OnConnectionError();
}

const webnn::OperandDescriptor& MLTensor::Descriptor() const {
  return descriptor_;
}

webnn::OperandDataType MLTensor::DataType() const {
  return descriptor_.data_type();
}

const std::vector<uint32_t>& MLTensor::Shape() const {
  return descriptor_.shape();
}

const webnn::MLTensorUsage& MLTensor::Usage() const {
  return usage_;
}

uint64_t MLTensor::PackedByteLength() const {
  return descriptor_.PackedByteLength();
}

ScriptPromise<DOMArrayBuffer> MLTensor::ReadTensorImpl(
    webnn::ScopedTrace scoped_trace,
    ScriptState* script_state,
    ExceptionState& exception_state) {
  // Remote context gets automatically unbound when the execution context
  // destructs.
  if (!remote_tensor_.is_bound()) {
    exception_state.ThrowDOMException(
        DOMExceptionCode::kInvalidStateError,
        "Tensor has been destroyed or context is lost.");
    return EmptyPromise();
  }

  auto* resolver = MakeGarbageCollected<ScriptPromiseResolver<DOMArrayBuffer>>(
      script_state, exception_state.GetContext());
  pending_resolvers_.insert(resolver);

  base::ElapsedTimer read_tensor_timer;
  remote_tensor_->ReadTensor(WTF::BindOnce(
      &MLTensor::OnDidReadTensor, WrapPersistent(this), std::move(scoped_trace),
      WrapPersistent(resolver), std::move(read_tensor_timer)));

  return resolver->Promise();
}

ScriptPromise<IDLUndefined> MLTensor::ReadTensorImpl(
    webnn::ScopedTrace scoped_trace,
    ScriptState* script_state,
    AllowSharedBufferSource* dst_data,
    ExceptionState& exception_state) {
  // Remote context gets automatically unbound when the execution context
  // destructs.
  if (!remote_tensor_.is_bound()) {
    exception_state.ThrowDOMException(DOMExceptionCode::kInvalidStateError,
                                      "Invalid tensor state");
    return EmptyPromise();
  }

  base::span<uint8_t> bytes = AsByteSpan(*dst_data);
  if (bytes.size() < PackedByteLength()) {
    exception_state.ThrowTypeError("The destination tensor is too small.");
    return EmptyPromise();
  }

  auto* resolver = MakeGarbageCollected<ScriptPromiseResolver<IDLUndefined>>(
      script_state, exception_state.GetContext());
  pending_byob_resolvers_.insert(resolver);

  base::ElapsedTimer read_tensor_timer;
  remote_tensor_->ReadTensor(
      WTF::BindOnce(&MLTensor::OnDidReadTensorByob, WrapPersistent(this),
                    std::move(scoped_trace), WrapPersistent(resolver),
                    WrapPersistent(dst_data), std::move(read_tensor_timer)));
  return resolver->Promise();
}

void MLTensor::OnDidReadTensor(
    webnn::ScopedTrace scoped_trace,
    ScriptPromiseResolver<DOMArrayBuffer>* resolver,
    base::ElapsedTimer read_tensor_timer,
    webnn::mojom::blink::ReadTensorResultPtr result) {
  pending_resolvers_.erase(resolver);

  if (result->is_error()) {
    const webnn::mojom::blink::Error& read_tensor_error = *result->get_error();
    resolver->RejectWithDOMException(
        WebNNErrorCodeToDOMExceptionCode(read_tensor_error.code),
        read_tensor_error.message);
    return;
  }

  CHECK_EQ(result->get_buffer().size(), descriptor_.PackedByteLength());

  resolver->Resolve(DOMArrayBuffer::Create(result->get_buffer()));

  RecordReadTensorTime(std::move(read_tensor_timer));
}

void MLTensor::OnDidReadTensorByob(
    webnn::ScopedTrace scoped_trace,
    ScriptPromiseResolver<IDLUndefined>* resolver,
    AllowSharedBufferSource* dst_data,
    base::ElapsedTimer read_tensor_timer,
    webnn::mojom::blink::ReadTensorResultPtr result) {
  pending_byob_resolvers_.erase(resolver);

  if (result->is_error()) {
    const webnn::mojom::blink::Error& read_tensor_error = *result->get_error();
    resolver->RejectWithDOMException(
        WebNNErrorCodeToDOMExceptionCode(read_tensor_error.code),
        read_tensor_error.message);
    return;
  }

  base::span<uint8_t> bytes = AsByteSpan(*dst_data);
  if (bytes.size() == 0) {
    resolver->RejectWithTypeError("Buffer was detached.");
    return;
  }

  CHECK_EQ(result->get_buffer().size(), descriptor_.PackedByteLength());

  // It is safe to write into `dst_data` even though it was not transferred
  // because this method is called in a task which runs on same thread where
  // script executes, so script can't observe a partially written state (unless
  // `dst_data` is a SharedArrayBuffer).
  bytes.copy_prefix_from(result->get_buffer());
  resolver->Resolve();

  RecordReadTensorTime(std::move(read_tensor_timer));
}

void MLTensor::WriteTensorImpl(base::span<const uint8_t> src_data,
                               ExceptionState& exception_state) {
  // Remote context gets automatically unbound when the execution context
  // destructs.
  if (!remote_tensor_.is_bound()) {
    exception_state.ThrowDOMException(
        DOMExceptionCode::kInvalidStateError,
        "Tensor has been destroyed or context is lost.");
    return;
  }

  // Return early since empty written data can be ignored with no observable
  // effect.
  if (src_data.size() == 0) {
    return;
  }

  // Copy src data.
  remote_tensor_->WriteTensor(src_data);
}

void MLTensor::OnConnectionError() {
  remote_tensor_.reset();

  for (const auto& resolver : pending_resolvers_) {
    resolver->RejectWithDOMException(
        DOMExceptionCode::kInvalidStateError,
        "Tensor has been destroyed or context is lost.");
  }
  pending_resolvers_.clear();

  for (const auto& resolver : pending_byob_resolvers_) {
    resolver->RejectWithDOMException(
        DOMExceptionCode::kInvalidStateError,
        "Tensor has been destroyed or context is lost.");
  }
  pending_byob_resolvers_.clear();
}

}  // namespace blink