1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/modules/sensor/sensor_reading_remapper.h"
#include "base/notreached.h"
#include "services/device/public/mojom/sensor.mojom-shared.h"
using device::SensorReading;
using device::SensorReadingXYZ;
using device::SensorReadingQuat;
using device::mojom::blink::SensorType;
namespace blink {
namespace {
constexpr int SinScreenAngle(uint16_t angle) {
switch (angle) {
case 0:
return 0;
case 90:
return 1;
case 180:
return 0;
case 270:
return -1;
default:
NOTREACHED();
}
}
constexpr int CosScreenAngle(uint16_t angle) {
switch (angle) {
case 0:
return 1;
case 90:
return 0;
case 180:
return -1;
case 270:
return 0;
default:
NOTREACHED();
}
}
void RemapSensorReadingXYZ(uint16_t angle, SensorReadingXYZ& reading) {
int cos = CosScreenAngle(angle);
int sin = SinScreenAngle(angle);
double x = reading.x;
double y = reading.y;
reading.x = x * cos + y * sin;
reading.y = y * cos - x * sin;
}
constexpr double kInverseSqrt2 = 0.70710678118;
// Returns sin(-angle/2) for the given orientation angle.
constexpr double SinNegativeHalfScreenAngle(uint16_t angle) {
switch (angle) {
case 0:
return 0; // sin 0
case 90:
return -kInverseSqrt2; // sin -45
case 180:
return -1; // sin -90
case 270:
return -kInverseSqrt2; // sin -135
default:
NOTREACHED();
}
}
// Returns cos(-angle/2) for the given orientation angle.
constexpr double CosNegativeHalfScreenAngle(uint16_t angle) {
switch (angle) {
case 0:
return 1; // cos 0
case 90:
return kInverseSqrt2; // cos -45
case 180:
return 0; // cos -90
case 270:
return -kInverseSqrt2; // cos -135
default:
NOTREACHED();
}
}
void RemapSensorReadingQuat(uint16_t angle, SensorReadingQuat& reading) {
// Remapping quaternion = q = [qx, qy, qz, qw] =
// [0, 0, sin(-angle / 2), cos(-angle / 2)] - unit quaternion.
// reading = [x, y, z, w] - unit quaternion.
// Resulting unit quaternion = reading * q.
double qw = CosNegativeHalfScreenAngle(angle);
double qz = SinNegativeHalfScreenAngle(angle);
double x = reading.x;
double y = reading.y;
double z = reading.z;
double w = reading.w;
// Given that qx == 0 and qy == 0.
reading.x = qw * x + qz * y;
reading.y = qw * y - qz * x;
reading.z = qw * z + qz * w;
reading.w = qw * w - qz * z;
}
} // namespace
// static
void SensorReadingRemapper::RemapToScreenCoords(
SensorType type,
uint16_t angle,
device::SensorReading* reading) {
DCHECK(reading);
switch (type) {
case SensorType::AMBIENT_LIGHT:
NOTREACHED() << "Remap must not be performed for the sensor type "
<< type;
case SensorType::ACCELEROMETER:
case SensorType::LINEAR_ACCELERATION:
case SensorType::GRAVITY:
RemapSensorReadingXYZ(angle, reading->accel);
break;
case SensorType::GYROSCOPE:
RemapSensorReadingXYZ(angle, reading->gyro);
break;
case SensorType::MAGNETOMETER:
RemapSensorReadingXYZ(angle, reading->magn);
break;
case SensorType::ABSOLUTE_ORIENTATION_QUATERNION:
case SensorType::RELATIVE_ORIENTATION_QUATERNION:
RemapSensorReadingQuat(angle, reading->orientation_quat);
break;
case SensorType::ABSOLUTE_ORIENTATION_EULER_ANGLES:
case SensorType::RELATIVE_ORIENTATION_EULER_ANGLES:
NOTREACHED() << "Remap is not yet implemented for the sensor type "
<< type;
}
}
} // namespace blink
|