1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/modules/webaudio/audio_buffer_source_handler.h"
#include <algorithm>
#include "base/compiler_specific.h"
#include "base/numerics/safe_conversions.h"
#include "third_party/blink/renderer/bindings/modules/v8/v8_audio_buffer_source_options.h"
#include "third_party/blink/renderer/modules/webaudio/audio_graph_tracer.h"
#include "third_party/blink/renderer/modules/webaudio/audio_node_output.h"
#include "third_party/blink/renderer/modules/webaudio/base_audio_context.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/bindings/exception_messages.h"
#include "third_party/blink/renderer/platform/bindings/exception_state.h"
#include "third_party/blink/renderer/platform/instrumentation/tracing/trace_event.h"
#include "third_party/blink/renderer/platform/instrumentation/use_counter.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/fdlibm/ieee754.h"
namespace blink {
namespace {
constexpr double kDefaultGrainDuration = 0.020; // 20ms
// Arbitrary upper limit on playback rate.
// Higher than expected rates can be useful when playing back oversampled
// buffers to minimize linear interpolation aliasing.
constexpr double kMaxRate = 1024.0;
// Default to mono. A call to setBuffer() will set the number of output
// channels to that of the buffer.
constexpr unsigned kDefaultNumberOfOutputChannels = 1;
} // namespace
AudioBufferSourceHandler::AudioBufferSourceHandler(
AudioNode& node,
float sample_rate,
AudioParamHandler& playback_rate,
AudioParamHandler& detune)
: AudioScheduledSourceHandler(NodeType::kNodeTypeAudioBufferSource,
node,
sample_rate),
playback_rate_(&playback_rate),
detune_(&detune),
grain_duration_(kDefaultGrainDuration) {
AddOutput(kDefaultNumberOfOutputChannels);
Initialize();
}
scoped_refptr<AudioBufferSourceHandler> AudioBufferSourceHandler::Create(
AudioNode& node,
float sample_rate,
AudioParamHandler& playback_rate,
AudioParamHandler& detune) {
return base::AdoptRef(
new AudioBufferSourceHandler(node, sample_rate, playback_rate, detune));
}
AudioBufferSourceHandler::~AudioBufferSourceHandler() {
Uninitialize();
}
void AudioBufferSourceHandler::Process(uint32_t frames_to_process) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("webaudio.audionode"),
"AudioBufferSourceHandler::Process");
AudioBus* output_bus = Output(0).Bus();
if (!IsInitialized()) {
output_bus->Zero();
return;
}
// The audio thread can't block on this lock, so we call TryLock() instead.
base::AutoTryLock try_locker(process_lock_);
if (try_locker.is_acquired()) {
if (!Buffer()) {
output_bus->Zero();
return;
}
// After calling setBuffer() with a buffer having a different number of
// channels, there can in rare cases be a slight delay before the output bus
// is updated to the new number of channels because of use of TryLocks() in
// the context's updating system. In this case, if the the buffer has just
// been changed and we're not quite ready yet, then just output silence.
if (NumberOfChannels() != shared_buffer_->numberOfChannels()) {
output_bus->Zero();
return;
}
uint32_t quantum_frame_offset;
uint32_t buffer_frames_to_process;
double start_time_offset;
std::tie(quantum_frame_offset, buffer_frames_to_process,
start_time_offset) =
UpdateSchedulingInfo(frames_to_process, output_bus);
if (!buffer_frames_to_process) {
output_bus->Zero();
return;
}
for (unsigned i = 0; i < output_bus->NumberOfChannels(); ++i) {
destination_channels_[i] = output_bus->Channel(i)->MutableData();
}
// Render by reading directly from the buffer.
if (!RenderFromBuffer(output_bus, quantum_frame_offset,
buffer_frames_to_process, start_time_offset)) {
output_bus->Zero();
return;
}
output_bus->ClearSilentFlag();
} else {
// Too bad - the TryLock() failed. We must be in the middle of changing
// buffers and were already outputting silence anyway.
output_bus->Zero();
}
}
// Returns true if we're finished.
bool AudioBufferSourceHandler::RenderSilenceAndFinishIfNotLooping(
AudioBus*,
unsigned index,
uint32_t frames_to_process) {
if (!Loop()) {
// If we're not looping, then stop playing when we get to the end.
if (frames_to_process > 0) {
// We're not looping and we've reached the end of the sample data, but we
// still need to provide more output, so generate silence for the
// remaining.
for (unsigned i = 0; i < NumberOfChannels(); ++i) {
UNSAFE_TODO(memset(destination_channels_[i] + index, 0,
sizeof(float) * frames_to_process));
}
}
Finish();
return true;
}
return false;
}
bool AudioBufferSourceHandler::RenderFromBuffer(
AudioBus* bus,
unsigned destination_frame_offset,
uint32_t number_of_frames,
double start_time_offset) {
DCHECK(Context()->IsAudioThread());
// Basic sanity checking
DCHECK(bus);
DCHECK(Buffer());
unsigned number_of_channels = NumberOfChannels();
unsigned bus_number_of_channels = bus->NumberOfChannels();
bool channel_count_good =
number_of_channels && number_of_channels == bus_number_of_channels;
DCHECK(channel_count_good);
// Sanity check destinationFrameOffset, numberOfFrames.
size_t destination_length = bus->length();
DCHECK_LE(destination_length, GetDeferredTaskHandler().RenderQuantumFrames());
DCHECK_LE(number_of_frames, GetDeferredTaskHandler().RenderQuantumFrames());
DCHECK_LE(destination_frame_offset, destination_length);
DCHECK_LE(destination_frame_offset + number_of_frames, destination_length);
// Potentially zero out initial frames leading up to the offset.
if (destination_frame_offset) {
for (unsigned i = 0; i < number_of_channels; ++i) {
UNSAFE_TODO(memset(destination_channels_[i], 0,
sizeof(float) * destination_frame_offset));
}
}
// Offset the pointers to the correct offset frame.
unsigned write_index = destination_frame_offset;
uint32_t buffer_length = shared_buffer_->length();
double buffer_sample_rate = shared_buffer_->sampleRate();
// Avoid converting from time to sample-frames twice by computing
// the grain end time first before computing the sample frame.
unsigned end_frame =
is_grain_
? base::saturated_cast<uint32_t>(audio_utilities::TimeToSampleFrame(
grain_offset_ + grain_duration_, buffer_sample_rate))
: buffer_length;
// Do some sanity checking.
if (end_frame > buffer_length) {
end_frame = buffer_length;
}
// If the .loop attribute is true, then values of
// m_loopStart == 0 && m_loopEnd == 0 implies that we should use the entire
// buffer as the loop, otherwise use the loop values in m_loopStart and
// m_loopEnd.
double virtual_end_frame = end_frame;
double virtual_delta_frames = end_frame;
if (Loop() && (loop_start_ || loop_end_) && loop_start_ >= 0 &&
loop_end_ > 0 && loop_start_ < loop_end_) {
// Convert from seconds to sample-frames.
double loop_start_frame = loop_start_ * shared_buffer_->sampleRate();
double loop_end_frame = loop_end_ * shared_buffer_->sampleRate();
virtual_end_frame = std::min(loop_end_frame, virtual_end_frame);
virtual_delta_frames = virtual_end_frame - loop_start_frame;
}
// If we're looping and the offset (virtualReadIndex) is past the end of the
// loop, wrap back to the beginning of the loop. For other cases, nothing
// needs to be done.
if (Loop() && virtual_read_index_ >= virtual_end_frame) {
virtual_read_index_ =
(loop_start_ < 0) ? 0 : (loop_start_ * shared_buffer_->sampleRate());
virtual_read_index_ =
std::min(virtual_read_index_, static_cast<double>(buffer_length - 1));
}
double computed_playback_rate = ComputePlaybackRate();
// Sanity check that our playback rate isn't larger than the loop size.
if (computed_playback_rate > virtual_delta_frames) {
return false;
}
// Get local copy.
double virtual_read_index = virtual_read_index_;
// Adjust the read index by the start_time_offset (compensated by the playback
// rate) because we always start output on a frame boundary with interpolation
// if necessary.
if (start_time_offset < 0) {
if (computed_playback_rate != 0) {
virtual_read_index +=
std::abs(start_time_offset * computed_playback_rate);
}
}
// Render loop - reading from the source buffer to the destination using
// linear interpolation.
int frames_to_process = number_of_frames;
const float** source_channels = source_channels_.get();
float** destination_channels = destination_channels_.get();
DCHECK_GE(virtual_read_index, 0);
DCHECK_GE(virtual_delta_frames, 0);
DCHECK_GE(virtual_end_frame, 0);
// Optimize for the very common case of playing back with
// computedPlaybackRate == 1. We can avoid the linear interpolation.
if (computed_playback_rate == 1 &&
virtual_read_index == floor(virtual_read_index) &&
virtual_delta_frames == floor(virtual_delta_frames) &&
virtual_end_frame == floor(virtual_end_frame)) {
unsigned read_index = static_cast<unsigned>(virtual_read_index);
unsigned delta_frames = static_cast<unsigned>(virtual_delta_frames);
end_frame = static_cast<unsigned>(virtual_end_frame);
while (frames_to_process > 0) {
int frames_to_end = end_frame - read_index;
int frames_this_time = std::min(frames_to_process, frames_to_end);
frames_this_time = std::max(0, frames_this_time);
DCHECK_LE(write_index + frames_this_time, destination_length);
DCHECK_LE(read_index + frames_this_time, buffer_length);
for (unsigned i = 0; i < number_of_channels; ++i) {
DCHECK(UNSAFE_TODO(destination_channels[i]));
// Note: the buffer corresponding to source_channels[i] could have been
// transferred so need to check for that. If it was transferred,
// source_channels[i] is null.
UNSAFE_TODO({
if (source_channels[i]) {
memcpy(destination_channels[i] + write_index,
source_channels[i] + read_index,
sizeof(float) * frames_this_time);
} else {
// Recall that a floating-point zero is represented by 4 bytes of 0.
memset(destination_channels[i] + write_index, 0,
sizeof(float) * frames_this_time);
}
});
}
write_index += frames_this_time;
read_index += frames_this_time;
frames_to_process -= frames_this_time;
// It can happen that `frames_this_time` is 0. DCHECK that we will
// actually exit the loop in this case. `frames_this_time` is 0 only if
// `read_index` >= `end_frame`.
DCHECK(frames_this_time ? true : read_index >= end_frame);
// Wrap-around.
if (read_index >= end_frame) {
read_index -= delta_frames;
if (RenderSilenceAndFinishIfNotLooping(bus, write_index,
frames_to_process)) {
break;
}
}
}
virtual_read_index = read_index;
} else {
while (frames_to_process--) {
unsigned read_index = static_cast<unsigned>(virtual_read_index);
double interpolation_factor = virtual_read_index - read_index;
// For linear interpolation we need the next sample-frame too.
unsigned read_index2 = read_index + 1;
if (read_index2 >= buffer_length) {
if (Loop()) {
// Make sure to wrap around at the end of the buffer.
read_index2 = static_cast<unsigned>(virtual_read_index + 1 -
virtual_delta_frames);
} else {
read_index2 = read_index;
}
}
// Final sanity check on buffer access.
// FIXME: as an optimization, try to get rid of this inner-loop check and
// put assertions and guards before the loop.
if (read_index >= buffer_length || read_index2 >= buffer_length) {
break;
}
// Linear interpolation.
UNSAFE_TODO({
for (unsigned i = 0; i < number_of_channels; ++i) {
float* destination = destination_channels[i];
const float* source = source_channels[i];
double sample;
// The source channel may have been transferred so don't try to read
// from it if it was. Just set the destination to 0.
if (source) {
if (read_index == read_index2 && read_index >= 1) {
// We're at the end of the buffer, so just linearly extrapolate
// from the last two samples.
double sample1 = source[read_index - 1];
double sample2 = source[read_index];
sample = sample2 + (sample2 - sample1) * interpolation_factor;
} else {
double sample1 = source[read_index];
double sample2 = source[read_index2];
sample = (1.0 - interpolation_factor) * sample1 +
interpolation_factor * sample2;
}
destination[write_index] = ClampTo<float>(sample);
} else {
destination[write_index] = 0;
}
}
});
write_index++;
virtual_read_index += computed_playback_rate;
// Wrap-around, retaining sub-sample position since virtualReadIndex is
// floating-point.
if (virtual_read_index >= virtual_end_frame) {
virtual_read_index -= virtual_delta_frames;
if (RenderSilenceAndFinishIfNotLooping(bus, write_index,
frames_to_process)) {
break;
}
}
}
}
bus->ClearSilentFlag();
virtual_read_index_ = virtual_read_index;
return true;
}
void AudioBufferSourceHandler::SetBuffer(AudioBuffer* buffer,
ExceptionState& exception_state) {
DCHECK(IsMainThread());
if (buffer && buffer_has_been_set_) {
exception_state.ThrowDOMException(DOMExceptionCode::kInvalidStateError,
"Cannot set buffer to non-null after it "
"has been already been set to a non-null "
"buffer");
return;
}
// The context must be locked since changing the buffer can re-configure the
// number of channels that are output.
DeferredTaskHandler::GraphAutoLocker context_locker(Context());
// This synchronizes with process().
base::AutoLock process_locker(process_lock_);
if (!buffer) {
// Clear out the shared buffer.
shared_buffer_.reset();
} else {
buffer_has_been_set_ = true;
// Do any necesssary re-configuration to the buffer's number of channels.
unsigned number_of_channels = buffer->numberOfChannels();
// This should not be possible since AudioBuffers can't be created with too
// many channels either.
if (number_of_channels > BaseAudioContext::MaxNumberOfChannels()) {
exception_state.ThrowDOMException(
DOMExceptionCode::kNotSupportedError,
ExceptionMessages::IndexOutsideRange(
"number of input channels", number_of_channels, 1u,
ExceptionMessages::kInclusiveBound,
BaseAudioContext::MaxNumberOfChannels(),
ExceptionMessages::kInclusiveBound));
return;
}
shared_buffer_ = buffer->CreateSharedAudioBuffer();
Output(0).SetNumberOfChannels(number_of_channels);
source_channels_ = std::make_unique<const float*[]>(number_of_channels);
destination_channels_ = std::make_unique<float*[]>(number_of_channels);
for (unsigned i = 0; i < number_of_channels; ++i) {
source_channels_[i] =
static_cast<float*>(shared_buffer_->channels()[i].Data());
}
// If this is a grain (as set by a previous call to start()), validate the
// grain parameters now since it wasn't validated when start was called
// (because there was no buffer then).
if (is_grain_) {
ClampGrainParameters(shared_buffer_.get());
}
}
virtual_read_index_ = 0;
}
unsigned AudioBufferSourceHandler::NumberOfChannels() {
return Output(0).NumberOfChannels();
}
void AudioBufferSourceHandler::ClampGrainParameters(
const SharedAudioBuffer* buffer) {
DCHECK(buffer);
// We have a buffer so we can clip the offset and duration to lie within the
// buffer.
double buffer_duration = shared_buffer_->duration();
grain_offset_ = ClampTo(grain_offset_, 0.0, buffer_duration);
// If the duration was not explicitly given, use the buffer duration to set
// the grain duration. Otherwise, we want to use the user-specified value, of
// course.
if (!is_duration_given_) {
grain_duration_ = buffer_duration - grain_offset_;
}
if (is_duration_given_ && Loop()) {
// We're looping a grain with a grain duration specified. Schedule the loop
// to stop after grainDuration seconds after starting, possibly running the
// loop multiple times if grainDuration is larger than the buffer duration.
// The net effect is as if the user called stop(when + grainDuration).
grain_duration_ =
ClampTo(grain_duration_, 0.0, std::numeric_limits<double>::infinity());
end_time_ = start_time_ + grain_duration_;
} else {
grain_duration_ =
ClampTo(grain_duration_, 0.0, buffer_duration - grain_offset_);
}
// We call timeToSampleFrame here since at playbackRate == 1 we don't want to
// go through linear interpolation at a sub-sample position since it will
// degrade the quality. When aligned to the sample-frame the playback will be
// identical to the PCM data stored in the buffer. Since playbackRate == 1 is
// very common, it's worth considering quality.
virtual_read_index_ = audio_utilities::TimeToSampleFrame(
grain_offset_, shared_buffer_->sampleRate());
}
base::WeakPtr<AudioScheduledSourceHandler>
AudioBufferSourceHandler::AsWeakPtr() {
return weak_ptr_factory_.GetWeakPtr();
}
void AudioBufferSourceHandler::Start(double when,
ExceptionState& exception_state) {
AudioScheduledSourceHandler::Start(when, exception_state);
}
void AudioBufferSourceHandler::Start(double when,
double grain_offset,
ExceptionState& exception_state) {
StartSource(when, grain_offset, Buffer() ? shared_buffer_->duration() : 0,
false, exception_state);
}
void AudioBufferSourceHandler::Start(double when,
double grain_offset,
double grain_duration,
ExceptionState& exception_state) {
StartSource(when, grain_offset, grain_duration, true, exception_state);
}
void AudioBufferSourceHandler::StartSource(double when,
double grain_offset,
double grain_duration,
bool is_duration_given,
ExceptionState& exception_state) {
DCHECK(IsMainThread());
Context()->NotifySourceNodeStart();
if (GetPlaybackState() != UNSCHEDULED_STATE) {
exception_state.ThrowDOMException(DOMExceptionCode::kInvalidStateError,
"cannot call start more than once.");
return;
}
if (when < 0) {
exception_state.ThrowRangeError(
ExceptionMessages::IndexExceedsMinimumBound("start time", when, 0.0));
return;
}
if (grain_offset < 0) {
exception_state.ThrowRangeError(ExceptionMessages::IndexExceedsMinimumBound(
"offset", grain_offset, 0.0));
return;
}
if (grain_duration < 0) {
exception_state.ThrowRangeError(ExceptionMessages::IndexExceedsMinimumBound(
"duration", grain_duration, 0.0));
return;
}
// The node is started. Add a reference to keep us alive so that audio
// will eventually get played even if Javascript should drop all references
// to this node. The reference will get dropped when the source has finished
// playing.
Context()->NotifySourceNodeStartedProcessing(GetNode());
// This synchronizes with process(). updateSchedulingInfo will read some of
// the variables being set here.
base::AutoLock process_locker(process_lock_);
is_duration_given_ = is_duration_given;
is_grain_ = true;
grain_offset_ = grain_offset;
grain_duration_ = grain_duration;
// If `when` < `currentTime()`, the source must start now according to the
// spec. So just set `start_time_` to `currentTime()` in this case to start
// the source now.
start_time_ = std::max(when, Context()->currentTime());
if (Buffer()) {
ClampGrainParameters(Buffer());
}
SetPlaybackState(SCHEDULED_STATE);
}
void AudioBufferSourceHandler::SetLoop(bool looping) {
DCHECK(IsMainThread());
// This synchronizes with `Process()`.
base::AutoLock process_locker(process_lock_);
is_looping_ = looping;
SetDidSetLooping(looping);
}
void AudioBufferSourceHandler::SetLoopStart(double loop_start) {
DCHECK(IsMainThread());
// This synchronizes with `Process()`.
base::AutoLock process_locker(process_lock_);
loop_start_ = loop_start;
}
void AudioBufferSourceHandler::SetLoopEnd(double loop_end) {
DCHECK(IsMainThread());
// This synchronizes with `Process()`.
base::AutoLock process_locker(process_lock_);
loop_end_ = loop_end;
}
double AudioBufferSourceHandler::ComputePlaybackRate() {
// Incorporate buffer's sample-rate versus BaseAudioContext's sample-rate.
// Normally it's not an issue because buffers are loaded at the
// BaseAudioContext's sample-rate, but we can handle it in any case.
double sample_rate_factor = 1.0;
if (Buffer()) {
// Use doubles to compute this to full accuracy.
sample_rate_factor = shared_buffer_->sampleRate() /
static_cast<double>(Context()->sampleRate());
}
// Use finalValue() to incorporate changes of AudioParamTimeline and
// AudioSummingJunction from m_playbackRate AudioParam.
double base_playback_rate = playback_rate_->FinalValue();
double final_playback_rate = sample_rate_factor * base_playback_rate;
// Take the detune value into account for the final playback rate.
final_playback_rate *= fdlibm::pow(2, detune_->FinalValue() / 1200);
// Sanity check the total rate. It's very important that the resampler not
// get any bad rate values.
final_playback_rate = ClampTo(final_playback_rate, 0.0, kMaxRate);
DCHECK(!std::isnan(final_playback_rate));
DCHECK(!std::isinf(final_playback_rate));
// Record the minimum playback rate for use by HandleStoppableSourceNode.
if (final_playback_rate < min_playback_rate_) {
min_playback_rate_ = final_playback_rate;
}
return final_playback_rate;
}
double AudioBufferSourceHandler::GetMinPlaybackRate() {
DCHECK(Context()->IsAudioThread());
return min_playback_rate_;
}
bool AudioBufferSourceHandler::PropagatesSilence() const {
DCHECK(Context()->IsAudioThread());
if (!IsPlayingOrScheduled() || HasFinished()) {
return true;
}
// Protect `shared_buffer_` with TryLock because it can be accessed by the
// main thread.
base::AutoTryLock try_locker(process_lock_);
if (try_locker.is_acquired()) {
return !shared_buffer_.get();
} else {
// Can't get lock. Assume `shared_buffer_` exists, so return false to
// indicate this node is (or might be) outputting non-zero samples.
return false;
}
}
void AudioBufferSourceHandler::HandleStoppableSourceNode() {
DCHECK(Context()->IsAudioThread());
base::AutoTryLock try_locker(process_lock_);
if (!try_locker.is_acquired()) {
// Can't get the lock, so just return. It's ok to handle these at a later
// time; this was just a hint anyway so stopping them a bit later is ok.
return;
}
// If the source node has been scheduled to stop, we can stop the node once
// the current time reaches that value. Usually,
// AudioScheduledSourceHandler::UpdateSchedulingInfo handles stopped nodes,
// but we can get here if the node is stopped and then disconnected. Then
// UpdateSchedulingInfo never gets a chance to finish the node.
if (end_time_ != AudioScheduledSourceHandler::kUnknownTime &&
Context()->currentTime() > end_time_) {
Finish();
return;
}
// If the source node is not looping, and we have a buffer, we can determine
// when the source would stop playing. This is intended to handle the
// (uncommon) scenario where start() has been called but is never connected to
// the destination (directly or indirectly). By stopping the node, the node
// can be collected. Otherwise, the node will never get collected, leaking
// memory.
//
// If looping was ever done (m_didSetLooping = true), give up. We can't
// easily determine how long we looped so we don't know the actual duration
// thus far, so don't try to do anything fancy.
double min_playback_rate = GetMinPlaybackRate();
if (!DidSetLooping() && Buffer() && IsPlayingOrScheduled() &&
min_playback_rate > 0) {
// Adjust the duration to include the playback rate. Only need to account
// for rate < 1 which makes the sound last longer. For rate >= 1, the
// source stops sooner, but that's ok.
double actual_duration = Buffer()->duration() / min_playback_rate;
double stop_time = start_time_ + actual_duration;
// See crbug.com/478301. If a source node is started via start(), the source
// may not start at that time but one quantum (128 frames) later. But we
// compute the stop time based on the start time and the duration, so we end
// up stopping one quantum early. Thus, add a little extra time; we just
// need to stop the source sometime after it should have stopped if it
// hadn't already. We don't need to be super precise on when to stop.
double extra_stop_time =
kExtraStopFrames / static_cast<double>(Context()->sampleRate());
stop_time += extra_stop_time;
if (Context()->currentTime() > stop_time) {
// The context time has passed the time when the source nodes should have
// stopped playing. Stop the node now and deref it. Deliver the onended
// event too, to match what Firefox does.
Finish();
}
}
}
} // namespace blink
|